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Abstract
In this talk, I shall report on the difficulties presented by the treat-

ment of 𝜂-conversion in the setting of the MetaCoq project. I will

try to give insight on why the situation is surprisingly thorny in

that specific setting, and what we could do to get out of this.

1 η is good
The 𝜂-equality rule for functions, stating that 𝜆 𝑥.𝑓 𝑥 is convertible

to 𝑓 whenever 𝑥 is free in 𝑓 , is present in one form or another in

most modern proof assistants based upon type theory: Lean and

Agda have always had it, Coq has it since version 8.4. . . It is also an

important tool in practice, for instance to derive function extension-

ality from univalence [4]. So the case looks closed: 𝜂-conversion is

desirable, and we know how to implement it. Why would it still be

an issue? Sadly, trying to give it a good theoretical treatment in the

setting of the MetaCoq project [3] proved surprisingly challenging

– to the point that it is still not handled despite quite some efforts.

2 What are we talking about?
The MetaCoq project aims at describing a type theory for Coq’s

kernel. Without going into all gory details, let us mention its main

characteristics of interest to us. Abstractions are Church-style, e.g.,
the identity at type𝐴 is 𝜆 𝑥 : 𝐴.𝐴. To relate different types for a same

term, we rely not only on conversion ≡, but also the restricted form

of subtyping called cumulativity, written ⪯. Their definitions rely
on reduction⇝, rather than being presented as a (typed) judgement.

Moreover, cumulativity is equivariant on domains for product types,

meaning that Π𝑥 : 𝐴.𝐵 ⪯ Π𝑥 : 𝐴′.𝐵′
whenever𝐴 ≡ 𝐴′

and 𝐵 ⪯ 𝐵′
.

The cornerstone property of MetaCoq is subject reduction (SR),

which asserts that if Γ ⊢ 𝑡 : 𝑇 and 𝑡 ⇝ 𝑡 ′ then Γ ⊢ 𝑡 ′ : 𝑇 . To

establish this, one first introduces =𝛼 , an extension of the usual

𝛼-equality to handle universe levels, then proves that 𝑡 ≡ 𝑡 ′ if
and only if there exists 𝑢 and 𝑢 ′ such that 𝑡 ⇝ 𝑢, 𝑡 ′ ⇝ 𝑢 ′ and
𝑢 =𝛼 𝑢 ′. The main lemmas here are confluence of⇝, and =𝛼 being

a simulation for⇝. From this many consequences follow, including

injectivity of type constructors, the key ingredient of SR.

Now we wish to extend conversion with 𝜂-equality, i.e., add the

fact that 𝜆 𝑥.𝑓 𝑥 ≡ 𝑓 . If we wish to keep the previous strategy, we

have three ways to go: we can incorporate 𝜂-equality into reduction,

either by adding 𝜂-reduction 𝜆 𝑥 : 𝐴.𝑓 𝑥 ⇝ 𝑓 or 𝜂-expansion

𝑓 ⇝ 𝜆 𝑥 : 𝐴.𝑓 𝑥 ; or we can extend =𝛼 instead.

3 η is hard
3.1 Expansion
Expansion is perhaps the most problematic strategy. First, it is non-

normalizing, since one can alternate 𝛽-reduction and 𝜂-expansion

steps. Moreover, inventing the type annotation on the 𝜆 binder on

the fly without any type information is impossible, even more so if

one wishes to preserve SR.

3.2 Reduction
Reduction seems more promising, as at least the reduct is clear.

However, we hit subtler problems because of type annotations.

Indeed, consider types 𝐴 and 𝐴′
such that 𝐴 ⪯ 𝐴′

. Then 𝑓 : 𝐴′ →
𝐴′ ⊢ 𝜆𝑥 : 𝐴.𝑓 𝑥 : 𝐴 → 𝐴′

because the variable has type 𝐴′
by

cumulativity, but this term 𝜂-reduces to 𝑓 , and 𝑓 : 𝐴′ → 𝐵 ⊬ 𝑓 :

𝐴 → 𝐴′
because cumulativity is equivariant for product types.

Thus, SR is once again broken. In the same vein, the term 𝜆𝑥 :

𝐴.(𝜆𝑦 : 𝐴′.𝑦) 𝑥 𝜂-reduces to 𝜆𝑦 : 𝐴′.𝑦 and 𝛽-reduces to 𝜆𝑥 : 𝐴.𝑥 , so

confluence does not hold, even on typed terms.

There are other, softer arguments against reduction. First it is

non-local insofar as it requires a global variable freedom test, which

makes it more complex to handle than other reduction rules. It is

also quite different from Coq’s conversion test – which performs a

form of 𝜂-expansion, but only on well-chosen terms.

3.3 Equality
Inspired by the previous failures and by the way 𝜂-expansion is

performed in the kernel only when comparing two terms, a last

possibility is to extend =𝛼 so that 𝑓 =𝛼 𝜆 𝑥 : 𝐴.𝑔 if 𝑓 𝑥 =𝛼 𝑔. This

goes some way, but again hits issues, this time because =𝛼 fails to

stay a simulation for⇝. Indeed, one would have

if true then 0 else 1 =𝛼 if(𝜆 𝑥 : □.true 𝑥) then 0 else 1

and the left term reduces to 0 while the right one is stuck. This

issue arises because of the possibility to block 𝜄-redexes via an ill-

typed 𝜂-expansion. Imposing some typing constraint to ban such

pathological terms and regain the characterization of conversion is

unfeasible, because one would need SR to know that this typability

constraint is preserved by reduction during the proof of equivalence,

but SR is a consequence of that equivalence.

4 Can we still have η?
In the current setting, it seems that extending MetaCoq with 𝜂-

equality is at least complex, if not unfeasible. What ways out do we

have to specify Coq’s kernel?

A first possibility is to somewhat alter the type system, but keep

the same general strategy, for instance by turning to contravariant

product types and/or ignoring type annotations for conversion – as

done in [2] –, so as to mitigate some of the issues we exposed.

Another option, more ambitious but also maybemore interesting,

is to turn to typed conversion in order to completely remove the

need to consider untyped terms. One could then try to follow [1] to

get an equivalence between conversion and an algorithmic version

thereof to which Coq’s kernel could be compared – and hopefully

proven correct and complete.
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