
THÈSE DE DOCTORAT DE

NANTES UNIVERSITÉ

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Meven LENNON-BERTRAND

Bidirectional Typing for the Calculus of Inductive Constructions

Typage Bidirectionnel pour le Calcul des Constructions Inductives

Thèse présentée et soutenue à Nantes, le 24 Juin 2022
Unité de recherche : Laboratoire des Sciences du Numérique de Nantes

Rapporteurs avant soutenance :

Neel KRISHNASWAMI Associate Professor, University of Cambridge
Conor MCBRIDE Reader, University of Strathclyde

Composition du Jury :

Présidente : Christine PAULIN-MOHRING Professeure des Universités, Université Paris Sud
Examinateurs : Jesper COCKX Assistant Professor, TU Delft

Herman GEUVERS Professor, Radboud Universiteit Nijmegen
Hugo HERBELIN Directeur de Recherche, Inria Paris
Assia MAHBOUBI Directrice de Recherche, Inria Rennes

Directeur de thèse : Nicolas TABAREAU Directeur de Recherche, Inria Rennes
Membre invité : Matthieu SOZEAU Chargé de Recherche, Inria Rennes

Bidirectional Typing in the Calculus of
Inductive Constructions

Doctoral Thesis

Meven Lennon-Bertrand

October 10, 2022

À Tangi,
Parce que je sais que tu aurais été le premier à te réjouir avec moi de là où j’en

suis arrivé… et le premier à me taquiner pour me garder les pieds sur terre.

Abstract

This thesis broadly considers the question of giving a bidirectional treat-
ment of the Calculus of Constructions (CIC), which underpins the proof as-
sistant Coq, under three different angles corresponding to its three parts.

It first considers the question of giving a bidirectional account of CIC from
a theoretical point of view. It contains the exposition of such a bidirectional
presentation of CIC, with the general discipline that led to it. Follow a proof
of equivalence between this presentation and the standard one. This equiv-
alence is then used to establish properties of CIC that are hard to obtain in
the standard setting: existence of principal types, and strengthening.

The second part sets on to formalize the idea of the first one, in the setting
of the MetaCoq project, which aims at formalizing the meta-theory CIC in
Coq, and to implement a kernel that is proven sound and complete. The for-
malized bidirectional structure supplies an intermediate between the high-
level specification and the algorithm, which is key in order to prove that
the kernel is complete.

Finally, the last part considers the question of designing an extension of
CIC incorporating ideas from gradual typing, with the aim of bringingmore
flexibility to development in Coq. The bidirectional structure is once again
valuable, as the characteristics of gradual typing – in particular the way it
relaxes conversion – make it impossible to base the extension on the stan-
dard presentation of CIC.

Acknowledgments

I wouldn’t have got halfway to the end of this thesis without the many
great people around me, so let me try and thank them here for all they
have brought me.

Obviously, the one person this thesis owes themost to ismy advisor Nicolas.
I feel extremely lucky to have had the possibility to run free and do my
things, while still knowing that he was in the next office with an open door
whenever I got an issue. I am proud that I can call myself his student.

Beyond Nicolas, I am very honoured that my jury members accepted to
be part of it. Neel and Conor, because of their deep knowledge about bidi-
rectional typing and programming language theory in general. Herman, be-
causemy year in Nijmegen has been an important one for where I am today.
Christine and Hugo, because they shaped the great tool that Coq is today;
and, for Hugo, because he was the one who introduced me both to Coq
and to research. Jesper, because I have a great respect his work on Agda. I
hope there are still many pages to write in the collaboration between our
two close but yet subtly different worlds. Matthieu, because his work on
MetaCoq is impressive, and he still is kind enough to let me leave him dis-
charge on him my ugliest lemmas. Finally, Assia, because I admire both her
achievements and her genuine humanity.

During these three and a half years, I have learned so much from the re-
searchers around me, and I am very grateful for that. From Pierre-Marie,
that you should not be afraid to stand by your ideas. From Assia, that this
does not mean you have to crush others, but that you can instead learn a
great deal from them, exactly because they took another path. From Guil-
laume, that there are some non-negotiable values in academia that you
cannot just ignore. From Guilhem, I hopefully learned a bit about teach-
ing. Thanks for helping me navigate the meanders of the university and for
trusting me with your exercise sessions. From Matthieu, I learned most of
what I know about another kind of meanders, those of Coq and formaliza-
tion. Éric taught me that having a solid technique is only useful if readers
get that far in your paper, and showed me how to achieve that.

But Gallinette is not only permanent researchers, and I learned an equally
great deal from my senpais. Marie and Étienne came up with the brilliant
idea of the Quésaco seminars. Yannick still patiently answer my random
questions, even after so many of them. Théo guided me through the intri-
cacies of the PhD, which is no small feat. Loïc does not really fit in the
senpai category, after all of the two thesis siblings I am the one coming out
first. Still, I learned a lot with him, from precious insight on normalization
to painting beautiful banners. Good luck with your own writing, and see
you on the other side! Last but not least, Kenji taught me just too many
things to be all recorded here. I’ll miss our random but always worthwhile
exchanges between computer screens and your valuable ideas on depen-
dent types and vegetables alike.

Learning is nice, but it’s not everything. Happily, the Gallinette members
are not just cool researchers, they are also wonderful people, and it’s been

an immense pleasure to work in that team. Thanks to all those I have al-
ready mentioned and to Pierre (Vial), Maxime, Simon, Matthieu (Piquerez),
Ambroise, Xavier, Martin, Enzo, Pierre (Benjamin? Giraud? How do I cite
you?), Hamza, Chris, Gaëtan for the seminars, coffee discussion, corridor
talks, online chats, beer disputes, and all the other conversations. A spe-
cial acknowledgment to Ambroise for thanking me in advance in his thesis,
the prophecy has been accomplished. Following this now established tra-
dition, I hereby thank in advance Martin, Enzo, Pierre, Hamza and Chris
for thanking me in their own theses when the time comes. Best of luck to
get there. Another special thanks to those who proofread this thesis even
with the rushy calendar, and especially to Martin who found the courage
to go through all of it. You made it much better than it was. And let me not
forget Anne-Claire, who kindly watches over our unruly lot.

Au-delà de Gallinette, je me dois aussi de mentionner les doctorant·e·s du
LS2N. Entre le Covid et la rédaction, je n’ai que trop peu profité d’eux, mais
quelle chouette équipe ! Plus loin de Nantes, je n’oublie pas mon camarade
Curry-Howardien Rémy. Un jour ce livre de théorie des catégories verra le
jour, j’en suis sûr.Merci aussi à toute l’équipe des CHATS, Sylvain, Bertrand,
Rémi, Brigitte, Audrey, Marianne, Baptiste, Mélanie, et tou·te·s les profs et
élèves du lycée Michelet. Ces trois années d’art et de sciences n’ont pas
exactement été de tout repos, mais j’ai beaucoup de plaisir à partager un
peu de mon enthousiasme pour les mathématiques et l’informatique, et
de tant recevoir en retour. Enfin, j’ai été très heureux de faire partie de
l’éphémère collectif des précaires à l’hiver 2020, hélas presque aussi vite
dispersé qu’il s’est formé. Merci à eux et à tous les autres qui luttent pour
faire de l’université et du monde des endroits un peu meilleurs.

These pandemics years have not exactly been the best for exchanges. Yet,
I feel very fortunate to be part of the thriving proof assistants and types
communities. Thanks for all the online questions, answers and discussions,
for giving nice talks and listening to mine. Hope to finally meet you all in
person soon. And thanks to Andrej for giving me the occasion to have the
first (!) scientific trip of my PhD in Ljubljana.

Je n’aurais jamais pu arriver là où j’en suis sans les nombreux·ses ensei-
gnant·e·s qui ont croisé ma longue route de la maternelle au master. Ils et
elles ont su nourrir ma curiosité, et memontrer que ce n’est pas parce qu’un
sujet est difficile que son apprentissage doit être dur. Je ne saurais toutes et
tous les nommer, mais je veux en particulier remercier Jean-Michel Rey et
François Sauvageot pour m’avoir fait entrer dans le monde des grandes per-
sonnes en posant les fondations sur lesquelles tout le reste s’est construit,
et Daniel Hirschkoff pour avoir veillé avec bienveillance sur mes années à
l’ENS et m’avoir un jour parlé de cette petite équipe sympathique qui fait
du Coq à Nantes. I have already mentioned Herman, but let me extend the
praise to Freek, Jurriaan, and my other Dutch professors, for having been
great teachers and having introduced me to proof assistants, type theory,
and many of the ideas I still use today.

Si on en croit von Neumann, si les gens ne croient pas que les mathéma-
tiques sont simples, c’est qu’ils ne réalisent pas à quel point la vie est com-
pliquée. Fort heureusement, je suis au moins aussi bien entouré dans la vie
qu’en mathématiques.

Bien sûr, par ma famille. Merci évidemment à mes parents d’avoir été là
pour moi depuis toujours, de m’avoir soutenu de toutes les manières pos-

sibles, dans tous mes choix. Et d’avoir été d’attentifs et exigeants lecteurs et
relecteurs de cette introduction. Merci à Tangi pour les leçons si profondes
et les moments si légers. Et pour être toujours avec moi. Merci à Malo et
Maïan d’avoir repris avec brio le flambeau de la taquinerie de ses mains, et
à Marc et Karine de nous avoir fait grandir, eux et moi. Enfin, merci à Papi
de toujours croire en ma réussite avec une confiance sans faille, même sans
y comprendre grand-chose.

Je serais devenu fou si je n’avais pas pu sortir de mon bureau pour prendre
un peu de grand air, merci donc à Karlijn (not sure our trips qualify as sim-
ply “a little fresh air” though), Olivier (pour le trad et pour les olives), Daniel
(à quand la grande voie en 7?), Manon (les force 5, quelle aventure), Jodie,
Émile, Alice, et Sacha. J’accepterai un jour qu’avec les Zouzous on passe
plus de temps de part et d’autre d’une table bien garnie que d’une corde à
double. Merci à Léo pour avoir été non seulement un excellent compagnon
de cordée, mais aussi un compagnon de mathématiques, de musique, bref
de vie ! Et à Paul de compléter avec brio le trio et pour sa curiosité scienti-
fique toujours passionnante. Comment oublier les lyonnais qui ont toujours
eu une place pour moi sur un canapé quand je les rejoignais pour une soirée
de fête ou à jouer (Dune c’est le feu). Merci donc à Hugo, Angèle, Solène,
Audrey, Clément, Loïs, Colin et tous les autres. Enfin, comment parler de
soirées sans évoquer celles à la Milleterie, organisées et surtout illustrées
avec un talent rare par Valentin.

L’évasion n’est pas tout, j’ai aussi été entouré par une équipe de choc dans
ma vie nantaise. Allan et Maxou sont aussi généreux comme hôtes que fé-
roces aux aventuriers du rail, et c’est parfait ainsi. Marine, qui même si elle
réussit l’exploit d’être encore plus busy quemoi reste une ancre à laquelle je
sais que je peux me raccrocher. Mes colocataires, Julien, Laurine et Martin,
pour avoir partagé ma vie et mon quotidien, les rires et les moments moins
funs, et avoir survécu aux confinements ensemble sans qu’on s’entretue.
Lucie, qui à ce stade rentre presque dans la catégorie précédente (la team
Olivettes restera). Enfin merci évidemment à Jo, qui est à la fois une colo-
cataire, une ancre, une féroce joueuse, une compagne d’aventure, et bien
plus encore, pour m’avoir nourri pendant ma rédaction, traîné à la mer, ou
pallié mon inculture cinématographique quand je n’en pouvais plus… Hâte
de lire tes remerciements à toi, j’espère que j’y serai en aussi bonne place.

How to Read This Thesis

As I think screen reading will be the medium used by most of my readers, I
use hyperlinking as much as possible inside the document. While it is not
visible – in order to keep the text readable –, most technical keywords are
actually linked to the place of their definitions. For instance, bidirectional
typing links to the place in Chapter 2 where the notion is introduced. This
definition itself is put into emphasis like the following example. I might
cheat a bit and introduce a notion twice, once on a high level in an intro-
ductory section, and a second time precisely later on, in which case the
link point to the precise definition. Most notations are also linked: if you
wonder what the symbol ⊑ob means again, just click on it!

The main text has large margins, which I use and abuse for notes, small fig-
ures and references. Hopefully this reduces the need to go back and forth
between the main text and information too far away. Regarding figures,
rather than having large, bulky ones, I tried to keep them as close as pos-
sible to their explanation. This means that they are often split in multiple
small fragments, so that each part of the figure goes with its explanation.
In such cases, the fragments should really be understood as different parts
of one and the same figure. To indicate this, the fragments share the same
figure number, such as Figures 3.1a to 3.2e which define a single system,
one rule at a time.

Finally, although I primarily intend this document to be read on screen, I
tried to keep it adapted for printing. In particular, no information should
be conveyed using only colour, though I use it to ease readability.

Contents

Abstract v

Acknowledgments vi

How to Read This Thesis ix

Contents xi

1. Résumé en français 1
1.1. Une très courte histoire de la logique . 2
1.2. Les ordinateurs entrent en scène . 5
1.3. Coq et son noyau . 7
1.4. Et cette thèse, alors ? . 10

2. Introduction 13
2.1. A Very Short History of Logic . 14
2.2. Computers Enter the Scene . 16
2.3. Coq and Its Kernel . 19
2.4. And this Thesis ? . 21

3. The Calculus of Inductive Constructions 23
3.1. Terms and Types . 23
3.2. Functional Core: CCω . 24
3.3. 50 Shades of Conversion . 26
3.4. The Good Properties . 30
3.5. Adding Inductive Types: CIC . 35
3.6. Beyond CIC: PCUIC . 41

Bidirectional Calculus of Inductive Constructions 47

4. Warm-up: CCω 51
4.1. Turning CCω Bidirectional . 51
4.2. Properties of the Bidirectional System . 55

5. Bidirectional PCUIC 61
5.1. Cumulativity . 61
5.2. Inductive Types . 62

6. Bidirectional Conversion 65
6.1. Bidirectional Conversion . 66
6.2. Untyped Presentation . 69
6.3. McBride’s Discipline . 70
6.4. Equivalence of the presentations . 74

A Certified Kernel for Coq, in Coq 79

7. Formalized Meta-Theory of PCUIC 83
7.1. Setting up the Definitions: Terms, Cumulativity and Types . 83
7.2. Stabilities . 90
7.3. Confluence . 91
7.4. The Road to Subject Reduction . 93
7.5. Normalization . 95

8. Building a Certified Kernel 97
8.1. Formalized Bidirectional Typing . 97
8.2. Before Typing: Environment Querying and Cumulativity Checking 99
8.3. Sound and Complete Inference . 101
8.4. Beyond Typing: Environment Checking and Re-Typing . 104

Bidirectional Elaboration for Gradual Typing 105

9. Gradual Typing Meets Dependent Types 109
9.1. Safety and Normalization, Endangered . 112
9.2. Non-Gradual Approaches . 113
9.3. Gradual Simple Types . 115
9.4. Graduality and Dependent Types . 119
9.5. The Fire Triangle of Graduality . 122
9.6. GCIC: An Overview . 124

10. From GCIC to CastCIC: Bidirectional Elaboration 129
10.1. CastCIC . 129
10.2. Bidirectional Elaboration: from GCIC to CastCIC . 135
10.3. Precision is a Simulation for Reduction . 141
10.4. Properties of GCIC . 147

11. Beyond CastCIC: Models, Indices and Pure Reasoning 151
11.1. Realizing CastCIC . 151
11.2. The issue with indices: gradual vectors and equalities . 153
11.3. A Reasonably Gradual Type Theory . 156

12. Perspectives 159
12.1. Bidirectional Typing for Dependent Types . 159
12.2. MetaCoq’s Future . 160
12.3. Gradual CIC . 161

Appendix 163

A. Names for Type Systems 165

Bibliography 167

[Har20] : Hartnett (2020), Building the Ma-
thematical Library of the Future

1 : Si vous ne connaissez pas la signi-
fication de ce terme, ou d’un autre qui
apparait dans cette introduction, conti-
nuez votre lecture ! Ils seront expliqués en
temps voulu.

Résumé en français 1.
This chapter is an introduction intended for French-speaking readers. If
your English is better than your French, you should instead read Chap-
ter 2, its translation in English.

“Coq est un vieil homme maintenant, et il a de nombreuses cicatrices.”

[Har20, citant Assia Mahboubi, traduction personnelle]

1.1 Une très courte histoire de la
logique 2

1.1.1 Les syllogismes 2
1.1.2 Les débuts de la logique mathé-

matique : vers un fondement
formel 3

1.1.3 La crise des fondements 3
1.1.4 L’incomplétude 4
1.1.5 Une situation satisfaisante? . 4

1.2 Les ordinateurs entrent en
scène 5

1.2.1 Les assistants à la preuve . . . 5
1.2.2 Logique, programmation et

théorie des types 6

1.3 Coq et son noyau 7
1.3.1 Le noyau 7
1.3.2 MetaCoq 8
1.3.3 Typage bidirectionnel 9
1.3.4 Types graduels 9

1.4 Et cette thèse, alors? 10
1.4.1 Théorie du typage bidirectionnel 10
1.4.2 Typage bidirectionnel dans

MetaCoq 10
1.4.3 Élaboration bidirectionnelle

pour le typage graduel 10
1.4.4 Contributions techniques et

publications 11

Cette thèse se situe dans le domaine de la théorie des types,1 lui-même
au croisement entre informatique et logique mathématique. Un de ses ob-
jectifs est de donner des fondements théoriques et pratiques à des outils
informatiques assistant les humains dans la construction et la vérification
de preuves – au sens mathématique du terme. De tels outils sont appelés
assistants à la preuve, et, dans cette thèse, il sera en particulier beaucoup
question de l’un d’entre eux, sur lequel mon travail s’est principalement
concentré : Coq.

Durant leurs plus de 50 ans d’existence, les assistants à la preuve sont de-
venus une technologie bien établie. Avec l’évolution du domaine, les outils
sont devenus de plus en plus complexes, ce qui les rend à la fois de plus
en plus puissants, mais aussi de plus en plus susceptibles de contenir des
bugs critiques, cachés dans des recoins obscurs. Alors que les assistants à
la preuve sont graduellement adoptés dans un nombre grandissant de com-
munautés attachées à un haut niveau de fiabilité, cette situation n’est pas
tenable. La solution historique consistant à placer sa confiance dans un pe-
tit noyau fiable – dénommée critère de De Bruijn –, n’est tout simplement
pas suffisante si l’on veut avancer en intégrant de nouvelles fonctionnalités
pour suivre les besoins des utilisateurs et utilisatrices.

Il y a une solution simple à ce problème : les assistants à la preuve sont
utilisés depuis des décennies pour certifier la correction de programmes.
Pourquoi ne pourraient-ils pas prouver leur propre correction ? Après tout,
s’il s’agit là du critère le plus restrictif pour mesurer la confiance qu’on peut
accorder à un logiciel, il devrait s’appliquer en premier lieu aux logiciels
utilisés pour justifier cette confiance. Pour l’assistant à la preuve Coq, cette
ambition est portée par le projetMetaCoq, qui vise à construire un nouveau
noyau pour Coq qui soit entièrement prouvé correct. À terme, l’objectif
est de pouvoir tout simplement remplacer le noyau actuel, et on doit donc
prendre en compte toute sa complexité.

Afin de pouvoir atteindre ce but, il est nécessaire d’étudier plus en profon-
deur les structures à l’œuvre dans le noyau. En particulier, son algorithme
de typage est bidirectionnel, ce qui signifie qu’il alterne en permanence
entre la résolution de deux problèmes proches, mais distincts : l’inférence
– trouver un type pour un terme – et la vérification – vérifier qu’un type
donné convient pour un terme. Bien que cette structure soit cruciale pour
relier la spécification du système de type à son implémentation, elle a été
relativement peu étudiée dans le contexte du Calcul des Constructions In-
ductives (CIC), le fondement théorique de Coq – mais aussi de ses cousins
Lean, Agda…

2 1. Résumé en français

2 : Le plus connu est probablement le
syllogisme Barbara, dont un exemple est :
tous les humains sont mortels ; Socrate est
humain ; donc Socrate est mortel.

Cette thèse vise à remplir ce vide, en fournissant une étude rigoureuse d’un
CIC bidirectionnel, formalisée dans le cadre offert par le projet MetaCoq.
Celle-ci est un ingrédient clé dans la première preuve de correction et de
complétude d’un algorithme de typage pour un noyau réaliste d’assistant
à la preuve. Elle a également permis de découvrir des bugs dans le noyau
de Coq qui étaient jusque-là passés inaperçus.

Mais le typage bidirectionnel est également un outil théorique intéressant
en lui-même, donnant un contrôle précieux sur le calcul. En particulier, c’est
une pièce nécessaire dans la conception d’une extension graduelle à CIC,
GCIC. Le typage graduel vise à apporter aux programmeurs et program-
meuses à la fois la flexibilité de développement offerte par le typage dyna-
mique, et les garanties fortes données par le typage statique, dans un seul
et même langage. GCIC cherche à fournir cette flexibilité aux types dépen-
dants, et, en utilisant la puissance de la correspondance de Curry-Howard,
à l’écriture de preuve. Mais cette entreprise bute sur des difficultés que seul
le cadre bidirectionnel permet de résoudre.

Pour replacer ce travail dans son contexte large, le reste de cette introduc-
tion commence par une très courte histoire de la logique mathématique
(Section 1.1), qui expose les principales problématiques de ce domaine. Suit
une présentation des liens entre logique et informatique, par l’intermédiaire
des assistants à la preuve (Section 1.2). La Section 1.3 s’intéresse plus parti-
culièrement aux questions de recherche sur lesquelles j’ai travaillé : typage
bidirectionnel, MetaCoq et typage graduel. Enfin la Section 1.4 résumemes
contributions par cette thèse.

1.1. Une très courte histoire de la logique

1.1.1. Les syllogismes

La question principale à laquelle la logique cherche à répondre est celle
de trouver des critères afin de déterminer si un raisonnement est valide.
Dans la tradition occidentale, on peut faire remonter l’étude de cette pro-
blématique à l’Antiquité, et notamment à Aristote, avec son Organon. L’ap-
port majeur de ce travail est d’introduire la notion de syllogisme. Il s’agit
de fragments simples de raisonnement, dont la validité tient au fait qu’ils
suivent une structure fixée, et non à un contenu particulier.2 Si un raison-
nement complexe est construit en assemblant ces syllogismes, celui-ci pris
dans son entier doit nécessairement être valide, puisque chacun des frag-
ments assemblés l’est. Il y a ici deux idées importantes.

La première est qu’un raisonnement peut être valide ou non du simple fait
de sa structure, indépendamment de son contenu. Il peut s’agir de syllo-
gismes, mais aussi de bien d’autres systèmes. On en rencontrera un certain
nombre au cours cette thèse !

La seconde est celle de la construction à partir de composantes élémen-
taires. En partant d’un système de règles de base qu’on a identifiées comme
valides a priori, on a un moyen de s’assurer de la validité de raisonnements
potentiellement très complexes. Il suffit pour cela de vérifier que ceux-ci
peuvent être décomposés en un assemblage des composantes de base.

1.1. Une très courte histoire de la logique 3

3 : Les règles structurelles à respecter,
comme celles des syllogismes.

4 : Par opposition aux langages formels
qui apparaissent en mathématiques, in-
formatique, etc.

[Fre79] : Frege (1879), Begriffsschrift : Eine
der Arithmetischen Nachgebildete Formels-
prache des Reinen Denkens

5 : Par exemple : « Tout entier pair est la
somme de deux nombres premiers ».

6 : Par exemple : « Il existe un réel dont le
carré vaut 2 ».
[Ded72] : Dedekind (1872), Stetigkeit und
Undirrationale Zahlen
[Can72] : Cantor (1872), Ueber die Ausdeh-
nung eines Satzes aus der Theorie der trigo-
nometrischen Reihen
[Pea89] : Peano (1889), Arithmetices prin-
cipia : Nova methodo exposita

[Can83] : Cantor (1883), Grundlagen
einer allgemeinen Mannigfaltigkeitslehre.
Ein mathematisch-philosophischer Versuch
in der Lehre des Unendlichen
7 : Dans un système où le faux est prou-
vable, toutes les propositions le sont, ce
qui est connu sous le nomde principe d’ex-
plosion. Un tel système où tout – et son
contraire ! – est prouvable ne peut évidem-
ment pas servir de fondement satisfaisant
aux mathématiques.

8 : Dans une lettre à Frege dont ce der-
nier a rendu le contenu public dans Frege
[Fre03, Nachwort, p. 253].

[Fre03] : Frege (1903), Grundgesetze der
Arithmetik

Pour les philosophes grecs, la logique est également pensée comme un outil
de communication. Il s’agit de vérifier la validité de son propre raisonne-
ment, mais surtout de se donner le moyen d’échanger celui-ci, en s’accor-
dant sur un système logique formel.3 Une personne voulant que ses conclu-
sions soient acceptées par d’autres n’a plus qu’à exprimer son raisonne-
ment de manière parfaitement précise dans le cadre d’un tel système.

À partir de cette époque, la logique en tant que discipline se concentre sur
l’étude de cette structure qui sous-tend le raisonnement. L’enjeu principal
est donc de construire un système formel, adapté à un domaine de raisonne-
ment précis. Dans le cadre qui nous intéresse, celui de la logique mathéma-
tique, cela permet de donner un sens précis à ce qui constitue une preuve
mathématique valide.

1.1.2. Les débuts de la logique mathématique : vers un
fondement formel

À la suite d’Aristote, les mathématiciens et mathématiciennes se sont donc
emparés de la logique, à la recherche d’un système formel pouvant servir de
fondement rigoureux aux mathématiques. Les liens entre logique et mathé-
matiques remontent à l’Antiquité grecque, mais la logique mathématique
en tant que discipline indépendante s’est réellement établie durant le 19e

siècle, grâce à d’importants progrès sur deux aspects principaux.

Le premier a consisté à se dégager du langage dit naturel4, inadapté à une
description formellement précise de la déduction, et à concevoir à la place
une nouvelle forme de langage spécifique à même servir de base au raison-
nement mathématique. Une étape importante ici est le Begriffsschrift de
Frege [Fre79], qui, le premier, donne un langage formel suffisamment riche
pour exprimer les mathématiques de manière satisfaisante. Son addition
majeure est l’introduction de la notion de quantificateur, essentielle au lan-
gage mathématique, car ils permettent de fidèlement rendre compte des
propriétés universelles5 et existentielles6.

Le second aspect a eu pour but de montrer que les mathématiques dans
leur entier pouvaient être reconstruites à partir d’un petit nombre de pro-
priétés simples. Une étape importante est la réduction de l’analyse aux
propriétés des nombres réels, puis les constructions de ceux-ci à partir de
l’arithmétique, données quasiment simultanément par entre autres Dede-
kind [Ded72] et Cantor [Can72] en 1872. De son côté, Peano [Pea89] pro-
pose une axiomatisation des nombres entiers proche de celle encore utilisée
aujourd’hui. Enfin, Cantor à nouveau introduit la théorie des ensembles
[Can83] comme un formalisme permettant de décrire tous les objets ma-
thématiques sous la forme d’ensembles d’éléments.

1.1.3. La crise des fondements

Hélas, le système proposé dans leBegriffsschrift est incohérent ! C’est-à-dire
qu’il permet de prouver le faux, faisant s’écrouler le système logique.7 Ce
constat, fait par Russell en 19028 ouvre une période de crise, en remettant
en doute les systèmes qui avaient commencé à s’imposer comme de bons
candidats pour servir de fondements aux mathématiques – celui de Frege,
mais surtout ceux de Cantor, affectés par les mêmes difficultés.

4 1. Résumé en français

[WR13] : Whitehead et al. (1913), Princi-
pia Mathematica

[Zer08] : Zermelo (1908), Untersuchungen
über die Grundlagen der Mengenlehre I

[Zer04] : Zermelo (1904), Beweis, daß jede
Menge wohlgeordnet werden kann

9 : Un axiome très utile dans de nom-
breuses branches des mathématiques,
mais qui est souvent traité séparément,
car il est à la fois moins crucial que les
autres axiomes de ZF et à l’origine de ré-
sultats contre-intuitifs.

[Göd31] : Gödel (1931), Über formal unent-
scheidbare Sätze der Principia mathematica
und verwandter Systeme. I

10 : À moins qu’il ne soit incohérent, au-
quel cas il peut tout démontrer, par le prin-
cipe d’explosion, dont sa cohérence… et
son incohérence !

11 : Cela signifie qu’il existe des énoncés
indépendants, à savoir des assertions qui
ne sont pas démontrables, et dont la né-
gation ne l’est pas non plus. La cohérence
du système considéré en est un exemple.

12 : C’est-à-dire effectivement exprimées
dans un système formel fixé.

Une possible solution est avancée dix ans plus tard par Russell et White-
head dans leur Principia Mathematica [WR13], un énorme travail qui, non
seulement, propose un système formel qui évite l’incohérence du Begriff-
sschrift, mais qui, de plus, construit dans ce système une quantité impor-
tante de mathématiques, en particulier, une construction des entiers, de
l’arithmétique et finalement des nombres réels.

En parallèle, dans la continuité des travaux de Cantor, Zermelo [Zer08] et
d’autres travaillent à fournir une version de la théorie des ensembles de
Cantor qui soit cohérente. Ceci aboutit à ce qu’on appelle actuellement la
théorie des ensembles de Zermelo-Fraenkel – ZF, ou ZFC quand on y ajoute
l’axiome du choix [Zer04]9 –, qui semble également à même de fournir une
base solide pour fonder les mathématiques.

1.1.4. L’incomplétude

La recherche d’un système formel adéquat pour servir de fondement aux
mathématiques se heurte cependant à une seconde difficulté majeure : le
théorème d’incomplétude de Gödel [Göd31]. Celui-ci affirme que tout sys-
tème formel dans lequel on peut construire des nombres entiers comme
ceux de Peano – donc a fortiori tout système suffisamment riche pour fon-
der les mathématiques – ne peut pas démontrer sa propre cohérence.10 De
ce fait, il n’existe pas de système qui puisse servir de base aux mathéma-
tiques avec une certitude formelle sur son adéquation. En effet, puisqu’on
ne peut pas prouver la cohérence du système dans lui-même, il pourrait
finalement s’avérer incohérent, ruinant les efforts fournis – exactement ce
qui est arrivé au Begriffsschrift de Frege. Et si on utilise un second système
pour démontrer la cohérence du premier, on n’a fait que déplacer le pro-
blème : c’est maintenant sur la cohérence de ce second système que l’on
repose.

Une conséquence importante de ce théorème est qu’un système suffisam-
ment riche pour fonder les mathématiques est nécessairement incomplet.11

Ainsi, dans la suite, il ne sera jamais question de vérité dans un sens absolu
– ce qui n’aurait de sens que dans un système complet où tout énoncé est
vrai ou faux –, mais uniquement de prouvabilité relativement à un système
donné.

1.1.5. Une situation satisfaisante?

Malgré les difficultés mises à jour au début du 20e siècle, les recherches
en logique mathématique ont abouti au milieu du siècle à une situation
globalement assez satisfaisante. D’abord, ZFC fournit un système formel
raisonnable sur lequel fonder les mathématiques. Ensuite, la communauté
mathématique est globalement convaincue qu’il serait théoriquement pos-
sible de rédiger les mathématiques dans leur ensemble en utilisant celui-ci.
Cela suffit amplement à la plupart de ses membres, même si rares sont ceux
se risquent à véritablement tenter l’expérience, dans la veine des Principia
Mathematica.

En pratique, les choses sont toutes autres. Le développement et la vérifica-
tion humaine de mathématiques formalisées12 semble à la fois impossible
et inintéressant. D’un côté, cela demanderait un effort considérable, car de

1.2. Les ordinateurs entrent en scène 5

13 : Avec des systèmes comme Auto-
math [dBru70] ou Mizar [Rud92].

[dBru70] : de Bruijn (1970), The mathema-
tical language AUTOMATH, its usage, and
some of its extensions

[Rud92] : Rudnicki (1992), An overview of
the Mizar project

[Voe10] : Voevodsky (2010), Univalent
foundations project

[Hal12] : Hales (2012), Dense Sphere Pa-
ckings : A Blueprint for Formal Proofs

[Sch21] : Scholze (2021), Half a year of the
Liquid Tensor Experiment : Amazing deve-
lopments

14 : Dans la plupart des assistants à
la preuve modernes, la preuve finale
est construite comme le résultat d’un
échange entre la programmeuse et l’outil,
plutôt qu’écrite d’un seul bloc.

[Del00] : Delahaye (2000), A Tactic Lan-
guage for the System Coq

[Bla+16] : Blanchette et al. (2016),Hamme-
ring towards QED
[Eki+17] : Ekici et al. (2017), SMTCoq :
A plug-in for integrating SMT solvers into
Coq

telles mathématiques nécessitent un niveau de précision extrêmement éle-
vée, tant de la part de l’autrice de la preuve formelle que de sa lectrice. Dans
le même temps, cela ne permettrait pas de réduire de manière significative
les risques d’erreurs. Il serait en effet humainement très difficile de vérifier
qu’un raisonnement suit bien les règles du système : une minuscule erreur
peut facilement se cacher au milieu de milliers de pages de raisonnement
formel. Enfin, décrire les mathématiques de cette façon noierait les intui-
tions mathématiques importantes, rendant la communication stérile.

Si on veut rendre les mathématiques formelles praticables et bénéficier des
garanties qu’elles apportent en éliminant ces défauts rédhibitoires, il faut
donc développer de nouveaux outils.

1.2. Les ordinateurs entrent en scène

Un nouvel élément vient cependant modifier radicalement cette situation :
l’avènement des ordinateurs. En effet, l’informatique donne accès à de nou-
veaux outils, qui permettent de rendre à la fois possible et attrayante la
formalisation des mathématiques.

1.2.1. Les assistants à la preuve

Les ordinateurs excellent là où les humains pèchent : leur spécialité est
de traiter d’immenses volumes d’information de façon très précise, exac-
tement le type de besoins que soulève la manipulation de mathématiques
formalisées. C’est pourquoi dès le début des années 7013 commencent à
apparaître des outils informatiques servant à écrire et vérifier ces preuves
formelles, que l’on appelle collectivement des assistants à la preuve. Via la
formalisation des preuves et la vérification par l’ordinateur qu’elles suivent
bien les règles du système logique sous-jacent, les assistants à la preuve
donnent accès à une fiabilité bien plus élevée que celle permise par les
preuves “informelles”. Des mathématiciens reconnus, comme Voevodsky
[Voe10], Hales [Hal12, Preface, p. xi], ou Scholze [Sch21] se sont d’ailleurs
déjà emparés de cette technologie, en particulier dans le but de lever les
incertitudes quant à la solidité de leur propre travail.

De plus, le terme d’assistant à la preuve n’a pas été choisi au hasard : au-
delà de la simple vérification, ils mettent à la disposition des utilisateurs et
utilisatrices un large éventail d’outils pour faciliter la conception de preuves
formelles. Ces outils permettent d’écrire les preuves à haut niveau et de ma-
nière interactive,14 en laissant à l’assistant à la preuve le soin de construire
les preuves formelles. Il peut s’agir de simples facilités comme la possibilité
de visualiser la structure des preuves, de suivre l’utilisation des hypothèses,
mais aussi de techniques beaucoup plus ambitieuses.

En effet l’informatique rend possible l’automatisation de pans entiers de
l’écriture de preuves, par exemple via l’utilisation d’un langage de tactiques
[Del00], qui permet de programmer la génération de preuves. La construc-
tion automatique de preuve est par ailleurs un domaine de recherche à part
entière, et la question de son intégration dans les assistants à la preuve y est
un sujet actif [Bla+16 ; Eki+17]. L’informatique a également fait ses preuves
dans le champ du calcul mathématique (calcul formel, analyse numérique),

6 1. Résumé en français

[LW22] : Lewis et al. (2022), A Bi-
Directional Extensible Interface Between
Lean and Mathematica
[MMS19] : Mahboubi et al. (2019), For-
mally Verified Approximations of Definite
Integrals

[Käs+17] : Kästner et al. (2017), Closing
the Gap – The Formally Verified Optimi-
zing Compiler CompCert

[Bha+17] : Bhargavan et al. (2017), Eve-
rest : Towards a Verified, Drop-in Replace-
ment of HTTPS

[Imm18] : Immler (2018), A Verified ODE
Solver and the Lorenz Attractor

[Coq22a] : Coq Development Team (2022),
The Coq Proof Assistant

15 : Un slogan dû à Milner [Mil78] af-
firme que « Les programmes bien typés ne
peuvent pas mal s’exécuter. »

[Mil78] : Milner (1978), A theory of type
polymorphism in programming

16 : Explicitée la première fois dans des
notes informelles de Howard datant de
1969 mais publiées seulement bien plus
tard [How80], qui reprenaient des re-
marques antérieures de Curry [CFC58].

[How80] : Howard (1980), The Formulae-
as-Types Notion of Construction

[CFC58] : Curry et al. (1958),Combinatory
Logic

𝐴 𝐵
𝐴 ∧ 𝐵

𝐴 ∧ 𝐵
𝐴

𝐴 ∧ 𝐵
𝐵

𝑎 : 𝐴 𝑏 : 𝐵
(𝑎, 𝑏) : 𝐴 × 𝐵

𝑝 : 𝐴 × 𝐵
𝑝.1 : 𝐴

𝑝 : 𝐴 × 𝐵
𝑝.2 : 𝐵

Figure 1.1. Règles d’inférence pour la
conjonction et de typage pour les paires

17 : Ce qui est noté 𝑎 : 𝐴.

et là encore des connexions prometteuses avec les assistants à la preuve
commencent à voir le jour [LW22 ; MMS19].

Enfin, si l’utilisation de l’informatique facilite l’écriture de preuve, les as-
sistants à la preuve ouvrent inversement de nouvelles possibilités pour la
programmation. Ils offrent en effet un cadre naturel dans lequel décrire au
même endroit le code source d’un programme, sa spécification et la preuve
formelle que cette dernière est remplie. On peut alors prouver que le pro-
gramme s’exécute correctement, sans rencontrer de bug. Cette certitude
mathématique est bien plus fiable que n’importe quelle batterie de tests !
Dans ce domaine, de nombreux projets ont déjà abouti à des programmes
d’envergure, entièrement prouvés corrects : compilateur pour le langage C
[Käs+17], implémentation du protocole Https [Bha+17], résolution d’équa-
tions différentielles [Imm18]…

1.2.2. Logique, programmation et théorie des types

Pour fonctionner, les assistants à la preuve nécessitent comme fondement
un système formel, correspondant aux “règles du jeu” mathématique qu’ils
sont censés imposer. Ainsi, ils requièrent une étude renouvelée de la logique
mathématique, mais dans le but pratique de construire des outils à la fois
fonctionnels, puissants et faciles à utiliser. Il existe plusieurs familles d’as-
sistants à la preuve, basées sur des systèmes formels relativement différents.
Celle qui m’intéresse dans cette thèse est fondée sur la correspondance de
Curry-Howard et la théorie des types dépendants. C’est à elle qu’appartient
l’assistant à la preuve Coq [Coq22a] qui est au cœur de mon travail.

Si on compare un programme informatique à un texte dans une langue na-
turelle, les types sont une sorte d’équivalent des catégories grammaticales.
Cependant, contrairement aux langues naturelles, ces types sont conçus en
même temps que le langage de programmation, de manière à refléter des
propriétés des objets manipulés par celui-ci. Cela permet en premier lieu
de détecter des erreurs manifestes. Par exemple, si une procédure atten-
dant un objet de type “image” est appliquée à un objet de type “chaîne de
caractères”, une erreur pourra être rapportée à la programmeuse.15 Mais
les types sont très versatiles, et leur capacité à encoder des propriétés des
programmes sous-jacents peut servir à la compilation, la documentation,
et bien d’autres choses. Dans notre cadre, par exemple, les types corres-
pondent à la validité d’un raisonnement logique.

Cette idée est celle de la correspondance de Curry-Howard.16 Plutôt qu’un
théorème précis, il s’agit d’un concept très général, selon lequel il existe une
ressemblance forte entre d’un côté le monde de la logique et des preuves, et
de l’autre celui des programmes et de leurs types. On parle aussi d’ailleurs
également de correspondance preuves-programmes.

Un exemple valant mieux qu’un discours abstrait, on peut voir la corres-
pondance à l’œuvre dans la Figure 1.1, sous la forme de règles d’inférence
ou de typage : chaque bloc présente une règle, avec au-dessus de la barre
les hypothèses, et en dessous la conclusion. Les trois premières règles gou-
vernent la conjonction logique “et”, notée ∧. La première signifie que pour
déduire la proposition𝐴∧𝐵 (“𝐴 et 𝐵”), il suffit de déduire𝐴 et 𝐵 individuel-
lement. À l’inverse si on a comme hypothèse 𝐴 ∧ 𝐵, alors on peut déduire
à la fois 𝐴, et 𝐵. Les trois dernières règles gouvernent le type des paires
𝐴 × 𝐵. Une paire (𝑎, 𝑏) construite à partir d’un premier objet 𝑎 de type 𝐴17

1.3. Coq et son noyau 7

18 : Dans ce contexte, on parle souvent
de termes plutôt que de programmes,mais
les deux sont synonymes.

et d’un second objet 𝑏 de type 𝐵 a le type 𝐴×𝐵. À l’inverse si 𝑝 est de type
𝐴 × 𝐵, alors on peut en récupérer la première composante 𝑝.1, qui est de
type 𝐴, et la seconde 𝑝.2, de type 𝐵. Si on efface les termes18 des règles du
bas, on obtient exactement les règles du haut ! Ainsi, le concept de paire en
programmation correspond directement à celui de conjonction en logique :
la preuve d’une conjonction est une paire de preuves.

Ceci s’étend bien au-delà du cas de la conjonction, à une correspondance gé-
nérale entre d’une part les énoncés de la logique et leurs preuves, et d’autre
part les types et les programmes. On peut voir les énoncés comme des types,
et une preuve d’un énoncé comme un programme ayant le type qui lui cor-
respond – ou l’inverse. Au-delà de la simple analogie entre formalismes
d’origines différentes, cette correspondance est un outil puissant pour faire
dialoguer deux mondes. En particulier, elle permet de relier deux problèmes
a priori éloignés : vérifier qu’une preuve est correcte, et vérifier qu’un terme
est bien typé. Dans les deux cas, il s’agit de vérifier qu’une construction –
programme d’un côté, preuve de l’autre – respecte un ensemble de règles
formelles garantissant qu’elle est bien formée.

La correspondance de Curry-Howard est donc idéale pour servir de fonde-
ments aux assistants à la preuve, puisqu’elle permet de voir un système
formel comme une logique, tout en donnant accès à des idées venant de
la large littérature sur les langages de programmation, notamment la théo-
rie et l’implémentation des systèmes de types. Dans ce cadre, les systèmes
de types dépendants forment une famille particulière de systèmes de types,
dont la caractéristique principale est d’autoriser les types à dépendre de
termes. L’exemple archétypique du point de vue de la programmation est
le type 𝐕𝐞 (𝐴, 𝑛) des vecteurs de longueurs 𝑛, les listes contenant exacte-
ment 𝑛 éléments de type𝐴 – avec 𝑛 un entier. Ce type dépend de 𝑛, au sens
où les habitants du type diffèrent suivant les valeurs de l’entier. Du point
de vue de la logique, cette dépendance correspond à la quantification : si
on veut exprimer une propriété universelle « pour tout 𝑥 , on a 𝑃(𝑥) », on
a besoin que la propriété 𝑃 puisse dépendre de 𝑥 . Grâce à cette capacité à
exprimer la quantification, les types dépendants sont suffisamment riches
et puissants pour servir de fondement aux mathématiques.

1.3. Coq et son noyau

Intéressons-nous maintenant un peu plus précisément à l’assistant à la
preuve dont il sera le plus question dans cette thèse : Coq.

1.3.1. Le noyau, clé de voûte du système

Coq est basé sur la correspondance de Curry-Howard : les preuves sont
vues comme des programmes dans un langage appelé Gallina, et leur vé-
rification est effectuée par un algorithme proche de ceux utilisés pour les
types des langages conventionnels. Cependant, si, dans les premières ver-
sions des années 80, les preuves Coq étaient écrites quasiment directement
en Gallina, ce n’est actuellement plus du tout le cas. La raison est que
la majeure partie de l’outil dans ses versions actuelles a pour but d’aider
l’utilisatrice à générer une preuve correcte. C’est un véritable assistant à la

8 1. Résumé en français

Figure 1.2. L’architecture schématique
de Coq

[BG01] : Barendregt et al. (2001), Proof-
Assistants Using Dependent Type Systems

19 : De l’ordre d’un bug détecté par an,
une liste est maintenue à l’adresse sui-
vante : https://github.com/coq/coq/blob/
master/dev/doc/critical-bugs.

20 : En effet, grâce à la correspondance
de Curry-Howard, Gallina est certes un
langage de preuve, mais aussi un véritable
langage de programmation !

21 : Si l’algorithme prétend qu’un terme
est bien typé, alors c’est bien le cas.

22 : L’algorithme répond bien affirmative-
ment sur tous les termes bien typés.

23 : C’est-à-dire qu’elle préserve la sé-
mantique des programmes.

preuve ! Ce fonctionnement est illustré ci-contre : l’utilisatrice échange in-
teractivement avec Coq, qui utilise cette interaction pour générer un terme
de preuve. Celui-ci est ensuite envoyé à une partie bien spécifique de l’ou-
til, appelée noyau. C’est lui qui implémente l’algorithme de vérification de
type, et s’assure ainsi de la correction des termes de preuve construits in-
teractivement. Le noyau est donc l’élément crucial de Coq, car c’est lui –
et lui seul – qui est responsable en dernier lieu de la validation des preuves.
Cette architecture, qui isole clairement la partie critique du système, est
appelée critère de De Bruijn [BG01] en hommage à l’un des pionniers des
assistants à la preuve.

Si le reste de l’écosystème s’est beaucoup plus développé que le noyau de-
puis les débuts, celui-ci a cependant également évolué, en se complexifiant
graduellement. Et comme tout développement logiciel, il n’est pas à l’abri
de bugs19. Ceux-ci sont en général difficilement exploitables, encore plus
sans s’en rendre compte. Néanmoins, ils existent, et le noyau tendant à
toujours plus se complexifier ils risquent de continuer à apparaître.

1.3.2. MetaCoq, une formalisation en Coq, pour Coq

Si on veut garantir un niveau de fiabilité le plus élevé possible, il faut donc
de nouvelles idées. Le projet MetaCoq, a pour but de répondre à cette pro-
blématique. L’approche est simple : il s’agit d’utiliser Coq lui-même pour
certifier la correction de son noyau.

Plus précisément, la première étape est de décrire le système de type sur
lequel est basé le noyau, puis de démontrer ses propriétés théoriques. Il
s’agit déjà d’une entreprise difficile : pour faciliter son utilisation, la théo-
rie des types de Coq incorpore de nombreuses particularités complexes à
traiter.

Une fois ces propriétés établies, la deuxième étape consiste à implémenter
un algorithme de vérification de type ressemblant au maximum à celui du
noyau, directement en Gallina.20 On démontre en même temps qu’il est
bien correct21 et complet.22

Enfin, lors d’une troisième étape, on extrait de ce programme Gallina certi-
fié un autre programme plus efficace, en effaçant le contenu lié à la preuve
de correction pour ne garder que celui qui est algorithmiquement intéres-
sant. Cette extraction est une étape complexe, mais cruciale si on veut rem-
placer le noyau actuel en conservant une efficacité raisonnable. C’est pour-
quoi on prouve là encore qu’elle est correcte23, en la programmant à nou-
veau en Gallina.

https://github.com/coq/coq/blob/master/dev/doc/critical-bugs
https://github.com/coq/coq/blob/master/dev/doc/critical-bugs

1.3. Coq et son noyau 9

[Hue89] : Huet (1989), The Constructive
Engine

24 : Qui est celle sur laquelle est basée
Coq.

[Sie+15] : Siek et al. (2015), Refined Crite-
ria for Gradual Typing

1.3.3. Vérification, inférence et typage bidirectionnel

Afin de prouver que l’algorithme de typage de la deuxième étape est com-
plet, il est très utile de passer par une spécification intermédiaire plus struc-
turée que la description théorique de la première étape. En particulier, il est
important de séparer deux questions proches, mais bien distinctes : d’une
part, la vérification, où on cherche à vérifier qu’un terme a bien un type
donné ; d’autre part, l’inférence, où on cherche à trouver un type pour un
terme, s’il en existe un. L’algorithme de typage du noyau de Coq est bidirec-
tionnel, c’est-à-dire qu’il alterne en permanence entre ces deux questions
lorsqu’il vérifie qu’un terme est bien typé. Cette structure bidirectionnelle
étant plus proche de l’algorithme, la décrire formellement mais séparément
de l’implémentation permet de bien diviser les difficultés entre, d’un côté,
son équivalence avec la présentation d’origine, et, de l’autre, la partie pure-
ment liée aux questions d’implémentation.

Dans le cas spécifique des types dépendants, bien que présent depuis l’ori-
gine dans les algorithmes de vérification de type [Hue89], le typage bidirec-
tionnel a été relativement peu étudié pour lui-même. Pourtant, au-delà de
son lien fort avec les algorithmes, cette approche présente également des
avantages théoriques : elle permet, par sa structure plus contrainte que la
présentation standard, d’obtenir des propriétés difficiles à démontrer dans
ce cadre.

1.3.4. Types graduels : un peu de flexibilité dans un
monde désespérément statique

Il existe deux grandes approches de la vérification du type des programmes.
Dans l’approche statique,24 les types sont vérifiés en amont de l’exécution,
alors que, dans l’approche dynamique, le bon typage des opérations est véri-
fié à la volée lors de cette même exécution. La discipline dynamique est plus
flexible, parce qu’elle permet de vérifier exactement ce qui est nécessaire à
la bonne exécution d’un programme. La rigidité du typage statique permet,
elle, de détecter des erreurs plus tôt dans le développement, et impose des
invariants utiles pour optimiser la compilation ou l’exécution.

Plutôt que d’opter exclusivement pour l’une de ces deux approches, le ty-
page graduel [Sie+15] vise à intégrer dans un même langage disciplines sta-
tiques et dynamiques. L’idée est d’avoir une première passe de vérification
avant l’exécution, comme en typage statique, tout en laissant la possibi-
lité de déférer une partie de la vérification à l’exécution, comme en typage
dynamique. On a alors accès à tout un spectre d’options, d’une discipline
totalement statique à une discipline totalement dynamique, en pouvant
choisir finement quelles parties d’un programme on veut vérifier de quelle
façon. En particulier, on peut faire évoluer la discipline au fur et à mesure
d’un développement logiciel, pour bénéficier de la flexibilité du typage dy-
namique dans les phases précoces et des garanties du typage statique par
la suite.

Comme le cas de MetaCoq l’illustre, Coq peut être utilisé comme un vé-
ritable langage de programmation. Mieux : son système de type permet
d’exprimer des propriétés très complexes des programmes, et ainsi de vé-
rifier avant même leur exécution que celles-ci sont bien respectées par le

10 1. Résumé en français

25 : Cette notion cruciale permet d’inté-
grer dans la théorie des types dépendants
l’idée de calcul des programmes.

code. Hélas, ces très fortes contraintes peuvent se retourner contre l’utilisa-
trice, en rendant plus difficile la phase de développement. En effet, il serait
parfois bon de pouvoir lever temporairement les garanties très fortes du
typage afin de faciliter l’expérimentation. Pour ce faire, on peut s’inspirer
des idées du typage graduel, pour permettre un développement logiciel ou
logique plus flexible. À nouveau, la correspondance de Curry-Howard est
à l’œuvre, puisqu’on adapte des concepts venant du monde de la program-
mation au cadre de la logique.

1.4. Et cette thèse, alors?

Mon travail de doctorat lui-même est centré principalement autour du ty-
page bidirectionnel, sous trois aspects, correspondant aux trois parties de
cette thèse. Elles sont précédées par le Chapitre 2, version anglophone de ce
chapitre, et le Chapitre 3, qui introduit les principales notions techniques
utilisées par la suite.

1.4.1. Théorie du typage bidirectionnel

La première partie (Bidirectional Calculus of Inductive Constructions) pro-
pose de combler une partie du manque théorique autour du typage bidirec-
tionnel pour les types dépendants. Elle contient en particulier une preuve
d’équivalence entre la présentation standard de la littérature et une pré-
sentation bidirectionnelle. Le Chapitre 4 présente les idées générales qui
guident ce travail dans un cadre relativement simple, afin de faciliter leur
exposition. Le Chapitre 5montre comment étendre ces idées à un cadre plus
réaliste, proche de la théorie des types implémentée en pratique dans Coq.
Enfin le Chapitre 6 traite du statut particulier de la conversion25 et des liens
entre certains travaux récents sur ce sujet et le typage bidirectionnel.

1.4.2. Typage bidirectionnel dans MetaCoq

La seconde partie de cette thèse (A Certified Kernel for Coq, in Coq) s’in-
téresse au projet MetaCoq, et en particulier à la formalisation en Coq des
idées présentées dans la première partie. Le Chapitre 7 donne une présen-
tation générale du projet, tandis que le Chapitre 8 se concentre spécifique-
ment sur la preuve que le noyau implémenté par MetaCoq respecte sa spé-
cification, et en particulier la preuve de complétude qui nécessite d’utiliser
le typage bidirectionnel.

1.4.3. Élaboration bidirectionnelle pour le typage
graduel

Enfin la troisième et dernière partie (Bidirectional Elaboration for Gradual
Typing) présente mon travail dans le domaine des types graduels. Les types
dépendants formant déjà des systèmes complexes, l’adaptation de ceux-ci
à l’approche graduelle est particulièrement délicate. Un résumé des pos-
sibilités et difficultés est présenté en Chapitre 9. Un point intéressant à
souligner est que la présentation habituelle des types dépendants s’avère

1.4. Et cette thèse, alors ? 11

[Len+22] : Lennon-Bertrand et al. (2022),
Gradualizing the Calculus of Inductive
Constructions

26 : Maillard et al. [Mai+22], actuelle-
ment en phase de relecture.

[Mai+22] : Maillard et al. (2022), A Reaso-
nably Gradual Type Theory

[Len21] : Lennon-Bertrand (2021), Com-
plete Bidirectional Typing for the Calculus
of Inductive Constructions

[SLF22] : Sozeau et al. (2022), The Curious
Case of Case : Correct & Efficient Represen-
tation of Case Analysis in Coq and Meta-
Coq

27 : Une définition – dûe à Simon Boulier
– d’un algorithme de typage dont la cor-
rection était établie mais pas la complé-
tude y était déjà présent, même si j’ai eu
à la modifier pour ma preuve de complé-
tude.

[Len22] : Lennon-Bertrand (2022), À bas
l’η – Coq’s troublesome η-conversion

inadaptée, car trop flexible. Au contraire, la structure additionnelle appor-
tée par le typage bidirectionnel permet de résoudre ces problèmes. Elle est
de plus pertinente pour présenter l’élaboration de termes depuis un langage
source dans un langage cible, une caractéristique importante des langages
graduels. L’utilisation d’une élaboration bidirectionnelle, et les propriétés
qu’elle permet d’obtenir, sont décrites en Chapitre 10. Enfin le Chapitre 11
décrit un travail dans la continuité de celui du Chapitre 10, mais qui n’est
pas directement lié au typage bidirectionnel.

1.4.4. Contributions techniques et publications

Mon doctorat a débuté avec l’étude des types dépendants graduels. J’ai
contribué avec Kenji Maillard, Nicolas Tabareau et Éric Tanter à Lennon-
Bertrand et al. [Len+22], où nous étudions une extension graduelle pour le
Calcul des Constructions Inductives. Ma contribution technique principale
dans ce cadre correspond au Chapitre 10. L’étude fine de la littérature et le
théorème d’impossibilité du Chapitre 9 auquel elle amène sont également
tiré de cette publication. La seconde partie technique de Lennon-Bertrand
et al. [Len+22], à laquelle j’ai participémais dont l’auteur principal est Kenji
Maillard, ainsi qu’un second article avec les mêmes auteurs et dans la conti-
nuité du précédent26 sont présentés au Chapitre 11.

Ce travail ayant montré l’utilité d’un système de type bidirectionnel dépen-
dant et le manque de résultats sur le sujet, j’ai choisi de l’étudier plus en
détail, à la fois sur papier et par le biais d’une formalisation se basant sur
MetaCoq. Ceci a donné lieu à une seconde publication [Len21], et corres-
pond aux Chapitres 4 et 5 pour la partie théorique, ainsi qu’à la Section 8.1
pour la formalisation. Le bug de complétude du noyau de Coq découvert
au cours de cette formalisation, ainsi que l’impact de cette découverte sur
l’implémentation de Coq est présentée dans Sozeau, Lennon-Bertrand et
Forster [SLF22].

J’ai ensuite travaillé à l’intégration de cette formalisation à MetaCoq, et
à son utilisation pour montrer la complétude du noyau qui y est implé-
menté.27 Ceci correspond à la Section 8.3. Au-delà de cette contribution
principale, j’ai également participé à ce projet sur d’autres points plus mi-
neurs. Cette partie de mon travail de thèse n’a pas encore été publiée, mais
les autres contributeurs de MetaCoq et moi-même y œuvrons actuelle-
ment.

Enfin le Chapitre 6 correspond à un projet que j’ai entamé dans le but
d’étendre MetaCoq pour intégrer des règles η d’extensionalité à la conver-
sion, mais qui n’a pas encore atteint le stade de la publication. J’ai en re-
vanche présenté les difficultés qui m’y ont mené dans Lennon-Bertrand
[Len22].

[Har20]: Hartnett (2020), Building the
Mathematical Library of the Future

1: If you do not know what this or any
other word in this introduction means,
read on! They will be explained in due
time.

Introduction 2.
“Coq is an old man now, and it has a lot of scars.”

[Har20, citing Assia Mahboubi]

2.1 A Very Short History of Logic 14
2.1.1 Syllogisms 14
2.1.2 Towards a formal foundation . 15
2.1.3 The foundational crisis 15
2.1.4 Incompleteness 15
2.1.5 A satisfactory situation? . . . 16

2.2 Computers Enter the Scene . 16
2.2.1 Proof assistants 17
2.2.2 Logic, Programming and Type

Theory 17

2.3 Coq and Its Kernel 19
2.3.1 The kernel 19
2.3.2 MetaCoq 19
2.3.3 Bidirectional typing 20
2.3.4 Gradual types 20

2.4 And this Thesis? 21
2.4.1 Theory of bidirectional typing 21
2.4.2 Bidirectional typing in Meta-

Coq 21
2.4.3 Gradual dependent types . . . 22
2.4.4 Technical contributions 22

This thesis belongs to the domain of type theory,1 itself at the crossroads
between computer science and mathematical logic. One of the field’s goals
is to give theoretical and practical foundations for software tools helping
humans in constructing and verifying proofs – in the mathematical sense.
Such tools are called proof assistants, and Coq, the one on which my work
was mainly focused, is central in this thesis.

Over their more than 50 years of existence, proof assistants have turned
into an established technology. This history is both a blessing and a curse:
as the field matured, the tools have become more and more complex, mak-
ing themmore andmore powerful, but also more and more prone to critical
bugs hiding in dark corners. At a time when they are gaining traction in an
increasing number of communities concerned with high trust levels, this
simply cannot be. The historical solution of keeping a small, trusted kernel
– the so-called De Bruijn criterion – is not enough if we wish to keep mov-
ing on and integrate new, powerful features to keep up with the needs of
users.

There is a straightforward solution to this: proof assistants have been used
for decades to certify programs correctness. Why could they not prove
themselves correct? After all, if this is the gold standard we demand for soft-
ware, it should apply first and foremost to the ones used to justify that trust.
For the proof assistant Coq, this is the ambition of the MetaCoq project,
which aims at providing a drop-in replacement for Coq’s kernel that has
been proven correct, even though it handles all the subtleties and quirks of
said kernel. No more trusting a complex and ever-evolving implementation,
trust the formally validated proofs instead!

But before we can hope to achieve that goal, we need a deeper study of
the structures at work in the kernel. In particular, its typing algorithm is
bidirectional, meaning that it constantly alternates between the two prob-
lems of type inference – finding a type for a term – and type checking –
verifying that a type is adequate for a term. While this structure is crucial
in relating the specification of the type system to its implementation, it has
been rather little studied in the context of the Calculus of Inductive Con-
structions (CIC), the theoretical foundation of Coq – but also of the closely
related Lean, Agda…

This thesis aims at filling that gap, by providing a thorough study of bidirec-
tional CIC, formalized in the framework offered by MetaCoq project. This
is a key ingredient in the first formal proof of soundness and completeness
of a type-checking algorithm for a realistic proof assistant kernel. It was
also able to uncover bugs in Coq’s kernel that had gone unnoticed until
then.

But bidirectional typing is also an interesting theoretical tool in its own
right, giving a valuable form of control over computation. In particular, it is

14 2. Introduction

2: The most well-known is probably the
Barbara syllogism, and example of which
is: all humans are mortals; Socrates is hu-
man; so Socrates is mortal.

3: Structural rules reasoning should obey,
as those of syllogisms.

a necessary piece in the design of a gradual extension of CIC, GCIC. Grad-
ual typing aims at bringing to programmers both the flexibility of develop-
ment offered by dynamic typing, and the strong guarantees given by static
typing, in one and the same system. GCIC intends to bring that flexibility
to dependently-typed programming, and, by using the power of the Curry-
Howard correspondence, to proof writing. But this endeavour comes with
subtle difficulties, that can only be solved in a bidirectional setting.

To replace this work in its larger context, this introduction begins with a
very short history of mathematical logic (Section 2.1), which exposes the
main questions of that field. Follows a presentation of the links between
logic and computer science, through proof assistants (Section 2.2). Next,
Section 2.3 focuses more closely on presenting the research questions I
worked on: bidirectional typing, MetaCoq and gradual typing. Finally, Sec-
tion 2.4 summarizes my contributions to these questions.

2.1. A Very Short History of Logic

2.1.1. Syllogisms

The main question that logic seeks to answer is that of finding criteria in
order to determine if a reasoning is valid. In Western tradition, this chal-
lenge can be traced back to the Antiquity, and particularly to Aristotle’s
Organon. The main contribution of this work is to introduce the notion of
syllogism. These are simple fragments of reasoning, whose validity stems
from the fixed structure they follow, rather than a specific content.2 If com-
plex reasoning is built from assembling such syllogisms, it must necessarily
be valid as a whole, since every assembled fragment is. There are two im-
portant ideas at work here.

The first is that reasoning can be valid or not, depending only on its struc-
ture, independently of its content. It can be syllogisms, but many other
systems. We will come across a certain number of them in this thesis!

The second idea is that of a construction from elementary components.
Starting from a set of rules we have identified as valid a priori, we have
a means to ensure the validity of potentially very complex reasoning: it suf-
fices to check that these can be decomposed into the base components.

For the Greek philosophers, logic was also conceived as a means towards
communication. The aim was to check one’s own reasoning, but also to
be able to convey it, by fixing a logical formal system.3 A person wanting
their conclusion to be accepted by others would only have to express their
reasoning in a perfectly precise way in the framework of such a formal
system.

From that point on, the main focus of logic as a discipline concentrates on
this structure which underlies reasoning. Themain challenge is to construct
a formal system, adapted to a specific field of reasoning. In the case we are
interested in, mathematical logic, this allows us to give a precise meaning
to what constitutes a valid mathematical proof.

2.1. A Very Short History of Logic 15

4: By opposition with the formal lan-
guages which appear in mathematics,
computer science, etc.

[Fre79]: Frege (1879), Begriffsschrift: Eine
der Arithmetischen Nachgebildete Formel-
sprache des Reinen Denkens

5: For instance: “Every even natural num-
ber is the sum of two prime numbers”.

6: For instance: “There exists a real whose
square is 2”.

[Ded72]: Dedekind (1872), Stetigkeit und
Undirrationale Zahlen
[Can72]: Cantor (1872), Ueber die Aus-
dehnung eines Satzes aus der Theorie der
trigonometrischen Reihen

[Pea89]: Peano (1889), Arithmetices prin-
cipia: Nova methodo exposita

[Can83]: Cantor (1883), Grundlagen einer
allgemeinen Mannigfaltigkeitslehre. Ein
mathematisch-philosophischer Versuch in
der Lehre des Unendlichen

7: In a system where falsity is provable,
all propositions are, which is known as
the principle of explosion. Such a system,
where everything – and its negation – is
provable can obviously not serve as an ad-
equate foundation for mathematics.

8: In a letter to Frege in 1902 the latter
made made public in Frege [Fre03, Nach-
wort p. 253].

[Fre03]: Frege (1903), Grundgesetze der
Arithmetik
[WR13]: Whitehead et al. (1913), Principia
Mathematica

[Zer08]: Zermelo (1908), Untersuchungen
über die Grundlagen der Mengenlehre I

9: An axiom very useful in numerous
branches of mathematics, but which is of-
ten treated separately, as it is both less
crucial than the other axioms of ZF and
at the root of counter-intuitive results.
[Zer04]: Zermelo (1904), Beweis, daß jede
Menge wohlgeordnet werden kann

[Göd31]: Gödel (1931), Über formal un-
entscheidbare Sätze der Principia mathe-
matica und verwandter Systeme. I

2.1.2. The beginning of mathematical logic: towards a
formal foundation

Following Aristotle, mathematicians seized logic in order to build a formal
system able to serve as a rigorous foundation for mathematics. The links
between logic and mathematics go back to Greek Antiquity, but mathemat-
ical logic as a standalone discipline really established itself during the 19th

century, thanks to important progress on two main aspects.

The first consisted in freeing mathematical logic from natural languages4,
unsuited to a formal description of reasoning, and to instead design a new
specific form of language that could serve as a basis for mathematical rea-
soning. An important step here was Frege’s Begriffsschrift [Fre79], which,
for the first time, gave a formal language rich enough to express mathemat-
ics satisfyingly. Its major addition was the notion of quantifier, essential to
the mathematical vernacular, as they give a faithful way to account for
universal5 and existential6 properties.

The second aimed at showing that mathematics as a whole could be recon-
structed from a few simple properties. An important step was the reduction
of analysis to the properties of real numbers, followed by constructions of
those from arithmetic given almost simultaneously by – among others –
Dedekind [Ded72] and Cantor [Can72] in 1872. Meanwhile, Peano [Pea89]
proposed an axiomatization of natural numbers close to the one still used
today. Finally, Cantor again proposed set theory [Can83] as a formalism ex-
pressive enough to describe all mathematical object as sets of elements.

2.1.3. The foundational crisis of mathematics

Unfortunately, the system proposed in the Begriffsschrift is inconsistent !
That is, it is possible to use it to prove falsity, making the logical system
collapse.7 This result, due to Russell8 marked the opening of a crisis pe-
riod. Indeed, it cast doubt upon the systems that had started to establish
themselves as good candidates to serve as foundations – that of Frege, but
mainly those of Cantor, which were affected by the same difficulties.

A possible solution has been suggested ten years later by Whitehead and
Russell in their Principia Mathematica [WR13]. This colossal piece of work
not only proposed a formal system avoiding the inconsistency of Begriff-
sschrift. It also built a significant amount of mathematics in this system,
including a construction of integers, some arithmetic, and finally real num-
bers.

In parallel, in the continuity of Cantor’s work, Zermelo [Zer08] and others
worked towards giving a version of Cantor’s set theory that is consistent.
This lead to what is colloquially referred to as Zermelo-Fraenkel set theory
– ZF, or ZFC when the axiom of choice9 [Zer04] is added –, which also
seemed able to serve as a solid foundation for mathematics.

2.1.4. Incompleteness

The search for a formal system adequate as a foundation for mathemat-
ics however hit a second major difficulty: Gödel’s incompleteness theorem

16 2. Introduction

10: Unless the system is inconsistent, in
which case it can prove everything, by
virtue on the explosion principle, includ-
ing its own consistency… and inconsis-
tency!

11: This means that there exist indepen-
dent statements, that is assertions which
cannot be proven, and whose negation
cannot be proven either. The consistency
of the system under consideration is one
example of such a statement.

12: That is, effectively expressed in a
fixed formal system.

[Göd31]. It asserts that a formal system inwhich one can construct integers
such as those of Peano – and so a fortiori any system rich enough to serve
mathematician’s needs – cannot prove its own consistency.10 Thus, no for-
mal system can serve as a basis for mathematics with a formal certitude as
to its adequacy. Indeed, as we cannot prove the consistency of the system
in itself, it could very well turn out to be inconsistent, ruining all the efforts
put into its use – just like what happened with Frege’s Begriffsschrift. And if
we were to use a second system to prove the first consistent, we would only
shift the prolem: now we rely on the consistency of the second system.

A consequence of this theorem is that a system rich enough to found math-
ematics is necessarily incomplete.11 Thus, in what follows, I will never re-
fer to truth in an absolute sense – which could only be meaningful in a
complete system where every statement is true or false –, but only about
provability relatively to a given system.

2.1.5. A satisfactory situation?

Despite the difficulties put into light in the beginning of the 20th century,
the research in mathematical logic reached a somewhat satisfactory situa-
tion a few decades later. First, ZFC is a reasonable formal system on which
mathematics can be founded. Moreover, the mathematical community is
overall convinced it would be theoretically possible to write down all mathe-
matics using ZFC. This is enough formost of its members, even if those who
attempt to actually give it a try, in the vein of the Principia Mathematica,
are quite few.

In practice, however, things are very different. The human development and
verification of formalized mathematics12 seems both impossible, and un-
necessary. On the one hand, it would demand a considerable effort, because
such mathematics would require an extremely high level of precision, both
from the author of the formal proof and from the reader. At the same time,
this would not significantly reduce the risk of errors. It would indeed be very
hard for humans to check that some reasoning doubtlessly follows the rules
of the system: a tiny error can easily creep inside thousands of pages of for-
mal reasoning. Finally, describing mathematics in this way would drown
the vital mathematical intuitions, making communication sterile.

If we wish to make formal mathematics practicable, and benefit from the
guarantees they bring while eliminating these crippling defaults, we thus
need new tools.

2.2. Computers Enter the Scene

A new element however radically modifies the previous situation: the ad-
vent of computers. Indeed, computer science provides new tools, making
formalized mathematics both possible and attracting.

2.2. Computers Enter the Scene 17

13: With systems like Automath
[dBru70], or Mizar [Rud92].

[dBru70]: de Bruijn (1970), The mathemat-
ical language AUTOMATH, its usage, and
some of its extensions

[Rud92]: Rudnicki (1992), An overview of
the Mizar project

[Voe10]: Voevodsky (2010),Univalent foun-
dations project

[Hal12]: Hales (2012), Dense Sphere Pack-
ings: A Blueprint for Formal Proofs

[Sch21]: Scholze (2021), Half a year of the
Liquid Tensor Experiment: Amazing devel-
opments

14: In most modern proof assistants, the
final proof is built as the result of an ex-
change between the programmer and the
tool, rather than written as a single block.

[Del00]: Delahaye (2000), A Tactic Lan-
guage for the System Coq

[Bla+16]: Blanchette et al. (2016), Ham-
mering towards QED
[Eki+17]: Ekici et al. (2017), SMTCoq: A
plug-in for integrating SMT solvers into
Coq

[LW22]: Lewis et al. (2022), A Bi-
Directional Extensible Interface Between
Lean and Mathematica
[MMS19]: Mahboubi et al. (2019), For-
mally Verified Approximations of Definite
Integrals

[Käs+17]: Kästner et al. (2017), Closing the
Gap – The Formally Verified Optimizing
Compiler CompCert

[Bha+17]: Bhargavan et al. (2017), Everest:
Towards a Verified, Drop-in Replacement of
HTTPS
[Imm18]: Immler (2018), A Verified ODE
Solver and the Lorenz Attractor

[Coq22a]: Coq Development Team (2022),
The Coq Proof Assistant

2.2.1. Proof assistants

Computers excel where humans are weak: their speciality is to treat large
volumes of information in a very precise way, exactly the kind of needs
brought upwhenmanipulating formalizedmathematics. Therefore, already
at the beginning of the 70s,13 software tools, collectively called proof assis-
tants, start to appear, that are dedicated to writing and verifying formal
proofs. Through the formalization of proofs and the verification by com-
puters that they actually follow the rules of the underlying logical system,
proof assistants open the door to a level of trust much higher than that al-
lowed by “informal” proofs. Renownedmathematicians, such as Voevodsky
[Voe10], Hales [Hal12, Preface, p. xi], or Scholze [Sch21] have indeed turned
to proof assistants, particularly in order to lift uncertainties regarding the
solidity of their own work.

Moreover, proof assistants are not simply proof checkers: beyond verifica-
tion, they supply users with a large range of tools to ease the conception of
formal proofs. These tools allow users to write proofs at a high level, and in
an interactive manner,14 leaving it to the proof assistant to construct the
formal proofs. They range from simple facilities, such as the possibility to
visualize the structure of proofs, or the tracking of hypotheses, to much
more ambitious techniques.

Indeed, computer science lets us automatize entire parts of proof writing,
for instance through the use of tactic languages [Del00], with which one
can program proof generation. In addition, the automatic construction of
proofs is a research field by itself, and the question of its integration intro
proof assistants is an active topic [Bla+16; Eki+17]. Computer science has
also proven its worth in the setting of mathematical computations (com-
puter algebra systems, numerical analysis), and here again promising inter-
actions with proof assistants are starting to arise [LW22; MMS19].

Finally, if the use of software eases the writing of proofs, proof assistants
conversely open new possibilities for programming. They indeed offer a nat-
ural framework to describe in the same place the source code of a program,
its specification, and the formal proof that the former fulfils the latter. This
way, we can prove that the program runs correctly, without encountering
any bugs. This mathematical certainty is much more reliable than any test
set! In this field, numerous projects have already achieved large scale pro-
grams, entirely proven correct: compiler for the C language [Käs+17], im-
plementation of theHttps protocol [Bha+17], differential equations solving
[Imm18]…

2.2.2. Logic, Programming and Type Theory

In order to work, proof assistants must be founded on a formal system, cor-
responding to the “rules” of the mathematical “game” they are supposed
to enforce. Thus, they require a renewed study of mathematical logic, but
with the practical aim of building tools that are at the same time powerful
and easy to use. There are multiple families of proof assistants, based on
very different formal systems. The one I am interested in in this thesis re-
lies on the Curry-Howard correspondence and dependent type theory. The
proof assistant Coq [Coq22a], which is at the heart of my work, belongs to
this family.

18 2. Introduction

15: A well-known slogan due to Milner
[Mil78] claims that “Well-typed programs
cannot go wrong.”

[Mil78]: Milner (1978), A theory of type
polymorphism in programming

16: Made explicit for the first time in
informal notes by Howard dating back
to 1969, but published only much later
[How80], themselves based upon previ-
ous remarks by Curry [CFC58].

[How80]: Howard (1980), The Formulae-
as-Types Notion of Construction

[CFC58]: Curry et al. (1958), Combinatory
Logic

𝐴 𝐵
𝐴 ∧ 𝐵

𝐴 ∧ 𝐵
𝐴

𝐴 ∧ 𝐵
𝐵

𝑎 : 𝐴 𝑏 : 𝐵
(𝑎, 𝑏) : 𝐴 × 𝐵

𝑝 : 𝐴 × 𝐵
𝑝.1 : 𝐴

𝑝 : 𝐴 × 𝐵
𝑝.2 : 𝐵

Figure 2.1. Inference rules for conjunc-
tion and typing rules for pairs

17: Written using a colon.

18: In the context of type theory, we of-
ten talk about terms instead of programs,
but the two are synonyms.

If one compares a computer program with a text in a natural language,
types are a kind of equivalent of grammatical categories. However, contrar-
ily to natural languages, these types are conceived at the same time as
the programming language, in order to mirror properties of the objects it
manipulates. Their first use is to detect manifest errors. For instance, if a
procedure intended for an object of type “image” is applied to an object of
type “character string”, an error can be reported to the programmer.15 But
types are very versatile, and their capacity to encode properties of the un-
derlying programs can be used for compilation, documentation, and many
other applications. In our framework, for instance, types correspond to the
validity of a logical reasoning.

This idea is that of the Curry-Howard correspondence.16 Rather than a pre-
cise theorem, it is more of a very general concept, according to which two
worlds closely resemble each other: on the one hand, that of logic and
proofs, on the other that of programs and their types.

A short example says more than a long abstract talk, so let’s look at the
correspondence at work in Figure 2.1, in the form of inference/typing rules:
each bloc presents a rule, with above the bar the hypotheses, and below
the conclusion. The first three rules govern the logical conjunction “and”,
written ∧. The first means that to deduce the proposition 𝐴 ∧ 𝐵 (“𝐴 and
𝐵”), it is enough to deduce 𝐴 and 𝐵 taken individually. Conversely, if we
have as hypothesis 𝐴 ∧ 𝐵, then we can deduce both 𝐴 (second rule), and
𝐵 (third rule). The last three rules govern typing17 for the pair type 𝐴 × 𝐵.
A pair (𝑎, 𝑏) built from a first object 𝑎 of type 𝐴 and a second object 𝑏 of
type 𝐵 has type 𝐴 × 𝐵. Conversely, if 𝑝 is a pair of type 𝐴 × 𝐵, then we can
retrieve its first component 𝑝.1, which is of type 𝐴, and its second 𝑝.2, of
type 𝐵. If we erase the terms18 of the bottom rules, we obtain exactly the
rules above! Thus, the programming construct of pairs corresponds to the
logical concept of conjunction.

This extends well beyond the specific case of conjunction, in a general corre-
spondence between, on one side, logical propositions and their proofs, and,
on the other, types and programs. We can see properties as types, and a
proof of a given property as a program of the corresponding type – or the
other way around! Beyond a simple analogy between formalisms of differ-
ent origins, this correspondence is a powerful tool to establish a dialogue
between two worlds. In particular, it relates two a priori quite distant prob-
lems: checking that a proof is valid, and checking that a term is well-typed.
In both cases, it amounts to checking that a construction – program on one
side, proof on the other – respects a set of formal rules guaranteeing it is
well-formed.

The Curry-Howard correspondence is therefore ideal to serve as a founda-
tion for proof assistants, since it gives access, when studying formal logical
systems, to the rich literature on programming languages, in particular on
the theory and implementation of types. In this framework, the dependent
type systems are a specific family of type systems, whose main character-
istic is the ability for types to depend on terms. The archetypical example
from the point of view of programming is the type 𝐕𝐞 (𝐴, 𝑛) of vectors of
length 𝑛. These are lists that contain exactly 𝑛 elements of type 𝐴 – with 𝑛
a natural number. This type depends on 𝑛, in the sense that the type’s in-
habitants differ depending on the integer’s value. From the point of view of
logic, this dependency corresponds to quantification: if we wish to express

2.3. Coq and Its Kernel 19

[BG01]: Barendregt et al. (2001), Proof-
Assistants Using Dependent Type Systems

19: The magnitude is that of one
critical bug found every year, a list is
maintained at the following address:
https://github.com/coq/coq/blob/master/
dev/doc/critical-bugs.

a universal property “for all 𝑥 , the property 𝑃(𝑥) holds”, then we need the
property 𝑃 to depend on 𝑥 . Thanks to this ability to express quantification,
dependent types are rich enough to serve as foundations for mathemat-
ics.

2.3. Coq and Its Kernel

Let us now focus a bit more on the proof assistant which we will consider
mainly in this thesis: Coq.

2.3.1. The kernel, cornerstone of the system

Figure 2.2. Coq’s schematic architecture

Coq is based on the Curry-Howard correspondence: proofs are seen as pro-
grams, in a language called Gallina, and their verification is done using an
algorithm close to those used for types in conventional languages. However,
if, in the first versions from the 80s, Coq proof were mostly written directly
in Gallina, it is no longer the case at all. The reason is that the major part
of the tool in its current versions aims at helping the user in generating a
correct proof. It is a true proof assistant ! The way Coq works is illustrated
in Figure 2.2 : the user interactively exchanges with Coq, which uses this
interaction to generate a proof term. This proof term is then sent to a very
specific part of the tool, called the kernel. This is the part implementing the
type-checking algorithm, and thus responsible for ensuring that the proof
terms built interactively are correct. The kernel is thus the crucial part of
Coq, because it is the one – and only – ultimately responsible for proof-
checking. This architecture, which clearly isolates the critical part of the
system, is called De Bruijn criterion [BG01], in tribute to one of the pioneer
of proof assistants.

If the rest of the ecosystem has grownmuch more than the kernel since the
beginning, the latter has also evolved, becoming gradually more complex.
And, as any other software development, it is not safe from bugs.19 These
are in general hard to exploit for a user, even more so without noticing. But
still, they exist, and since the kernel tends to get more and more complex,
they are likely to continue appearing.

2.3.2. MetaCoq, a formalization in Coq, for Coq

If we wish to guarantee a trust level as high as possible in the kernel, we
must resort to new ideas. This is what the MetaCoq project is all about.
The idea is simple: use Coq itself to certify the correctness of its kernel.

https://github.com/coq/coq/blob/master/dev/doc/critical-bugs
https://github.com/coq/coq/blob/master/dev/doc/critical-bugs

20 2. Introduction

20: Indeed, thanks to the Curry-Howard
correspondence, Gallina is not only a
proof language, but also a true program-
ming language!

21: If the algorithm claims that a term is
well-typed, then it is the case.

22: The algorithm answers positively on
all well-typed programs.

23: Meaning that it preserves the seman-
tics of programs.

[Hue89]: Huet (1989), The Constructive En-
gine

24: On which Coq is based.

More precisely, the first step is to describe formally the type system on
which the kernel is based, and to show its theoretical properties. This is
already a difficult endeavour: in order to ease its use, Coq’s type theory
incorporates a lot of complex features.

Once this meta-theory is established, the second step consists in imple-
menting a type-checking algorithm as close as possible to the one of the
kernel, directly in Gallina20. We show, while defining the algorithm, that
it is indeed sound21 and complete22. Together, these two properties corre-
spond to the correctness of the program.

Finally, in a third step, we extract out of this certified Gallina program
another more efficient program, by erasing the content related to the proof
of correctness, in order to keep only the algorithmically relevant one. This
extraction is a complex but crucial step if we wish to replace the current
kernel while keeping a reasonable efficiency. Therefore, we also prove that
said extraction is correct,23 once again by programming it in Gallina.

2.3.3. Checking, inference and bidirectional typing

While proving the correctness of the type-checker is relatively easy once the
meta-theoretical properties of the type system have been established, com-
pleteness is harder. In order to prove it, it is very useful to go through an in-
termediate specification, which is more structured than the theoretical one.
In particular, it is important to separate two close but distinct questions: on
the one side, type-checking, where we check that a term indeed has a given
type; on the other side, inference, where we try and find a type for a term,
if such a type exists. The typing algorithm of Coq’s kernel is bidirectional,
meaning that it alternates constantly between these two processes when it
checks that a term is well-typed. Describing this bidirectional structure in-
dependently of the algorithm allows for a clear separation between, on the
one side, its equivalence with the original specification, and, on the other,
the part purely dedicated to implementation questions.

In the specific case of dependent types, even if present in type-checking al-
gorithms since the origin – see e.g. [Hue89] –, bidirectional typing has been
relatively little studied. However, beyond its strong relation to algorithms,
this approach also presents theoretical advantages: its more constrained
structure makes it easier to obtain properties that are difficult to obtain in
the standard context.

2.3.4. Gradual types: some flexibility in a desperately
static world

There are two main approaches to program type-checking. In the static ap-
proach,24 types are verified prior to the execution, whereas, in the dynamic
approach, the well-typedness of operations is verified on the fly during that
same execution. The dynamic discipline is more flexible, as it checks ex-
actly what is necessary for the good execution of a program. The strictness
of static typing, conversely, allows for error detection earlier in the devel-
opment, and imposes invariants useful to optimize compilation or execu-
tion.

2.4. And this Thesis? 21

[Sie+15]: Siek et al. (2015), Refined Criteria
for Gradual Typing

25: This crucial notion allows the integra-
tion into dependent type theory of the no-
tion of computation of programs.

Instead of opting exclusively for one of the two approaches, gradual typing
[Sie+15] aims at integrating the static and dynamic disciplines in one and
the same language. The main idea is to have a first pass of verification be-
fore the execution, as in static typing, while leaving the possibility to defer
parts of the verification to the execution, as in dynamic typing. This gives
access to a whole spectrum of options, from a rigid completely static dis-
cipline to a flexible dynamic one. It particularly allows for a fine-grained,
local choice of how each part of a program is type-checked. One can thus
evolve the discipline during software development, benefiting from the flex-
ibility of dynamic typing in early phases, and from the guarantees of static
typing later on.

As the case of MetaCoq illustrates, Coq can be used as a true programming
language. Even better: its type system can express very complex properties
of programs, and thus verify even before their execution that the code in-
deed enforces them. Sadly, these reinforced constraints can turn against
the user, by making the early development phase more difficult. Indeed,
nobody writes correct code on the first try, and it would often be nice to
temporarily lift the strong guarantees of typing to facilitate experimenta-
tion. The idea then is to take inspiration from gradual typing, in order to
pave the way for a more flexible logical or software development. Once
again, the Curry-Howard correspondence is at work, since we adapt con-
cepts from the world of programming languages to the logical one.

2.4. And this Thesis?

My doctoral work itself is centred around bidirectional typing, under three
main aspects, corresponding to the three parts of this thesis. They are pre-
ceded by Chapter 3, which introduces the main technical notions used in
what follows.

2.4.1. Theory of bidirectional typing

The first part (Bidirectional Calculus of Inductive Constructions) proposes
to – partially – fill the theoretical gap around bidirectional typing for de-
pendent types. More precisely, it contains a proof of equivalence between
the standard presentation of CIC in the literature, and a bidirectional one.
Chapter 4 presents the main ideas in a relatively simple setting, in order to
ease the exposition. Chapter 5 shows how to extend them to amore realistic
setting, close to the type theory implemented in Coq. Finally, Chapter 6 fo-
cuses on the particular status of conversion25, and the links between recent
work on this subject and bidirectional typing.

2.4.2. Bidirectional typing in MetaCoq

The second part of the thesis (A Certified Kernel for Coq, in Coq) focuses
on the MetaCoq project, and especially the formalization, in Coq, of the
ideas presented in the first part. Chapter 7 gives a general overview of the
project, while Chapter 8 concentrates more specifically on the proof that
the kernel implemented in MetaCoq fulfils its specification.

22 2. Introduction

[Len+22]: Lennon-Bertrand et al. (2022),
Gradualizing the Calculus of Inductive Con-
structions

26: Maillard et al. [Mai+22], currently un-
der review.
[Mai+22]: Maillard et al. (2022), A Reason-
ably Gradual Type Theory

[Len21]: Lennon-Bertrand (2021), Com-
plete Bidirectional Typing for the Calculus
of Inductive Constructions

[SLF22]: Sozeau et al. (2022), The Curious
Case of Case: Correct & Efficient Represen-
tation of Case Analysis in Coq and Meta-
Coq

27: A definition of a type-checking algo-
rithm proven sound but not complete by
Simon Boulier was already present, al-
though I had to alter it during the com-
pleteness proof.

[Len22]: Lennon-Bertrand (2022), À bas
l’η – Coq’s troublesome η-conversion

2.4.3. Gradual dependent types

Finally, the third and last part (Bidirectional Elaboration for Gradual Typ-
ing) presents my work in the area of gradual types. Since dependent types
already form complex systems, their adaptation to the gradual approach is
particularly delicate. A summary of the possibilities and issues is presented
in Chapter 9. An interesting point of emphasis is that the usual presentation
of dependent types turns out to be unsuited, as it is too flexible. The addi-
tional structure provided by bidirectional typing is key to solve this issue.
It is also relevant to present the type-directed elaboration of terms from a
source language to a target one, an important characteristic shared by all
gradual languages. The use of a bidirectional elaboration, and the proper-
ties it allows us to obtain, are described in Chapter 10. Finally, Chapter 11
describes follow-up work complementing that of Chapter 10, but which is
not directly linked to bidirectional typing.

2.4.4. Technical contributions

My doctoral work started with the study of gradual dependent types. I con-
tributed, together with Kenji Maillard, Nicolas Tabareau and Éric Tanter,
to Lennon-Bertrand et al. [Len+22], where we study a gradual extension to
the Calculus of Inductive Constructions. My main technical contribution
corresponds to Chapter 10. The precise literature review and the impossi-
bility theorem of Chapter 9 it leads to also comes from this publication.
The second technical part of Lennon-Bertrand et al. [Len+22], in which I
participated but whose main author is Kenji Maillard, as well as a second
article,26 together with the same authors and again Kenji Maillard as main
investigator, correspond to Chapter 11.

This work having shown the relevance of a bidirectional dependent type
system and the relative scarceness of results on the subject, I focused more
closely on it, both on paper and by means of a formalization based on
MetaCoq. This led to a second publication [Len21], and corresponds to
Chapters 4 and 5 for the theoretical part, and Section 8.1 for the formal-
ized proof of equivalence between bidirectional and undirected typing. The
completeness bug in the kernel of Coq found during this formalisation, to-
gether with the impact of this discovery on the implementation of Coq is
presented in Sozeau, Lennon-Bertrand, and Forster [SLF22].

I then turned to the closer integration of this formalization into MetaCoq,
and its use in order to prove completeness of the kernel it implements.27

This is described in Section 8.3. I also contributed more generally to the
project on various more minor points. This part of my thesis work has not
been published yet, but the other contributors to MetaCoq and I are cur-
rently working on it.

Finally, Chapter 6 corresponds to a project I initiated in order to extend
MetaCoq to integrate extensionality η rules to conversion, but which did
not reach the stage of publication yet. Yet, I presented the difficulties that
led me to it in Lennon-Bertrand [Len22].

Var
⊢ Γ (𝑥: 𝐴) ∈ Γ

Γ ⊢ 𝑥 : 𝐴

Figure 3.1a. Typing rule for a variable

The Calculus of Inductive
Constructions 3.

3.1 Terms and Types 23
3.2 Functional Core: CCω 24
3.2.1 Functions and applications . . 24
3.2.2 Universes 25

3.3 50 Shades of Conversion . . . 26
3.3.1 Declarative conversion 28
3.3.2 Algorithmic conversion 28

3.4 The Good Properties 30
3.4.1 Stability under basic operations 30
3.4.2 Properties of types 31
3.4.3 Subject reduction 32
3.4.4 Progress 33
3.4.5 Normalization 34

3.5 Adding Inductive Types: CIC 35
3.5.1 Booleans 36
3.5.2 Recursion 36
3.5.3 Parameters 38
3.5.4 Indices 39
3.5.5 The Calculus of Constructions 40

3.6 Beyond CIC: PCUIC 41
3.6.1 Cumulativity 41
3.6.2 The sort of propositions 42
3.6.3 Local definitions 42
3.6.4 Global environments 43
3.6.5 Enhanced inductive types . . . 44
3.6.6 Records and co-inductive types 44

Most of this thesis revolves around dependent type systems. Due to their
complexity, there is a high number of points subject to slight variations
when one tries to give a precise definition of a system. Some of these vari-
ations are unimportant, but some introduce subtle albeit large differences
in the resulting systems. In this chapter we go in details over the definition
of what I refer to as the Calculus of Inductive Constructions (CIC) in the
rest of this thesis, where it serves as the base system. While doing so, I try
to give an idea of the trade-offs involved, and of the reasons behind the
choices. Quite a few of those vary during the thesis, and this is by design:
there is no single better choice, instead one has to adapt to the setting.

For the impatient specialists, let me say now that with CIC, I mean an inten-
sional type theory, with Church-style abstractions, a predicative hierarchy
of universes1

1: And only those: by default I do not
include an impredicative sort of proposi-
tions, a feature often associated with the
name CIC. I still use that name because of
two characteristics that I feel sets apart
the tradition around CIC in the depen-
dent type theory literature: the definition
of conversion as an untyped relation, and
the use of Church-style abstractions. See
Appendix A for a longer discussion.

à la Russell, and any amount of inductive types presented by
recursors. Conversion is the reflexive, symmetric, transitive and congruent
closure of βι-reduction, and so in particular it is untyped.

For the others, the present chapter aims at introducing the basic systems
and properties which we refer to in the rest of the text. Section 3.1 intro-
duces the basic notions; Section 3.2 presents a first type system, the Cal-
culus of Constructions (CCω), the purely functional core all our systems
rely on; Section 3.3 defines the main notions of conversion and reduction
encountered in the rest of the thesis; Section 3.4 introduces the main prop-
erties our systems should satisfy; Section 3.5 adds inductive types to CCω
to build CIC; finally Section 3.6 discusses the extra additions to go from
CIC to the Polymorphic, Cumulative Calculus of Inductive Constructions
(PCUIC), a faithful model of the type theory implemented by the kernel of
Coq.

3.1. Terms and Types

Throughout this chapter, type systems are defined by means of a relation
Γ ⊢ 𝑡 : 𝑇 , which reads “in the context Γ, the term 𝑡 has type 𝑇 ”. From the
logical point of view, this judgement means that Γ is the list of hypothesis
available to deduce the conclusion 𝑇 by means of the proof 𝑡 . On the pro-
gramming side, it means that 𝑡 is a well-formed program of type 𝑇 , which
uses the variables listed together with their types in Γ. Hence, Γ is a list of
declarations, of the form 𝑥: 𝐴. We write ⋅ for the empty context, Γ, 𝑥: 𝐴 for
the extension of context Γ with the new variable 𝑥: 𝐴, and (𝑥: 𝐴) ∈ Γ to
denote that the declaration 𝑥: 𝐴 appears in the context Γ.
This typing relation itself is defined by means of inference rules, such as
Rule Var opposite. The way to read this rule is that the judgement under-
neath the line follows from the one above, i.e. from (𝑥: 𝐴) ∈ Γ and ⊢ Γ
– a judgement that we will soon define asserting that the context Γ is well-
formed – we can deduce Γ ⊢ 𝑥 : 𝐴. When objects appear in the hypothesis
but not the conclusion, they are implicitly universally quantified. Once a set
of such inference rules is fixed, typing is defined as the least relation closed
by those rules. Equivalently, a judgement such as Γ ⊢ 𝑡 : 𝑇 holds whenever

24 3. The Calculus of Inductive Constructions

[BHL20]: Bauer et al. (2020), A general def-
inition of dependent type theories

2: In Part ‘A Certified Kernel for Coq, in
Coq’, however, such judgements are for-
malized as inductively defined proposi-
tions.

[Ayd+05]: Aydemir et al. (2005), Mech-
anized metatheory for the masses: the
POPLmark challenge

3: A precise treatment is again given in
Part ‘A Certified Kernel for Coq, in Coq’,
where we use De Bruijn variables.

[CH88]: Coquand et al. (1988), The calcu-
lus of constructions

Γ ⊢ 𝐴 :□ Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝑇
Γ ⊢ λ 𝑥: 𝐴. 𝑡 : 𝐴 → 𝑇

Γ ⊢ 𝑓 : 𝐴 → 𝑇 Γ ⊢ 𝑢 : 𝐴
Γ ⊢ 𝑓 𝑢 : 𝑇

Figure 3.1b. Typing for non-dependent
functions

Abs

Γ ⊢ 𝐴 :□
Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝑇

Γ ⊢ λ 𝑥: 𝐴. 𝑡 :Π 𝑥: 𝐴. 𝑇

App

Γ ⊢ 𝑓 :Π 𝑥: 𝐴. 𝑇
Γ ⊢ 𝑢 : 𝐴

Γ ⊢ 𝑓 𝑢 : 𝑇 [𝑥 ≔ 𝑢]

Figure 3.2a. Typing for dependent func-
tions

we can build a tree whose nodes are instances of the inference rules, and
whose root is the judgement in question. A general setting for this kind of
definitions of type systems can be found in Bauer, Haselwarter, and Lums-
daine [BHL20], but in our case we restrict to this level of informality for the
time being.2

As we have already introduced variables, a word on those as well. Variables
are difficult to account for precisely, because of issues like shadowing – a
conflict between two variables with the same name – or α-equality =α –
the identification between two terms only differing on variable names. There
are multiple techniques to solve these issues – see the many solutions to
the POPLMark Challenge [Ayd+05] –, but we again treat these in an in-
formal way, assuming there is no shadowing whatsoever and identifying
α-equal terms when needed.3

A final important building block of all our type theories is substitution, that
we write 𝑡[𝑥 ≔ 𝑢]. This meta-operation replaces every occurrence of 𝑥 in 𝑡
by the term 𝑢. Once again, we treat this operation informally, assuming
it never creates shadowing – what is sometimes called “capture-avoiding”
substitution. It is sometimes useful to substitute multiple variable at once
in parallel, which we write 𝑡[𝑥1 ≔𝑢1, … , 𝑥𝑛 ≔𝑢𝑛].

3.2. Functional Core: CCω

Let us now turn to the core of CIC, namely the Calculus of Constructions
(CCω). Through the Curry-Howard correspondence, it is both a typed form
of λ-calculus – i.e. a kind of purely functional programming language –
and a minimal form of logic – only containing universal quantification and
implication. Since its introduction by Coquand and Huet [CH88], it has
been the subject of intense theoretical study, modifications, and extensions,
so let us fix what we exactly mean with “CCω”.

3.2.1. Functions and applications

Let us start with the basic terms: functions and applications.

Functions, also called λ-abstractions, are written λ 𝑥: 𝐴. 𝑡 . This corresponds
to the mathematical notation 𝑥 ↦ 𝑡 : the body 𝑡 of the function is a term
that might contain the variable 𝑥 , and the constructor λ abstracts over that
variable to build a function. Conversely, function application is denoted by
simple juxtaposition, as in 𝑡 𝑢. The type of functions is written→, as in ordi-
nary mathematics. You can see those at work in Figure 3.1b: an abstraction
builds a term of arrow type, and application needs its function to be of an
arrow type, whose domain must moreover correspond to the type of the
argument. The side-condition Γ ⊢ 𝐴 :□ ensures that the annotation is a
valid type, we will introduce it shortly. Logically, those rules make sense if
→ is read as implication: if from a hypothesis 𝐴 one can deduce 𝑇 , then
𝐴 → 𝑇 holds; conversely if 𝐴 → 𝑇 and 𝐴 both hold, then 𝑇 does as well.

These arrow types, however, are not as expressive as one could hope for. Re-
member that we are in the realms of dependent types, so not only 𝑡 might
mention 𝑥 , but also 𝑇 . For instance, 𝑇 might be something like “𝑥 is even”.
In such a case, we need to record that dependency, which is the point of

3.2. Functional Core: CCω 25

[Bar92]: Barendregt (1992), Lambda Cal-
culi with Types

[Nor07]: Norell (2007), Towards a practical
programming language based on dependent
type theory

[AÖV17]: Abel et al. (2017),Decidability of
Conversion for Type Theory in Type Theory

[McB22]: McBride (2022), Types Who Say
Ni

[Pal98]: Palmgren (1998), On universes in
type theory

Univ
⊢ Γ

Γ ⊢ □𝑖 :□𝑖+1

Figure 3.2b. Typing for universes

[Fre79]: Frege (1879), Begriffsschrift: Eine
der Arithmetischen Nachgebildete Formel-
sprache des Reinen Denkens

[Gir72]: Girard (1972), Interprétation fonc-
tionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur

[Mar72]: Martin-Löf (1972), An intuitionis-
tic theory of types

ΠTy

Γ ⊢ 𝐴 :□𝑖
Γ, 𝑥: 𝐴 ⊢ 𝐵 :□𝑗

Γ ⊢ Π 𝑥: 𝐴. 𝐵 :□max(𝑖,𝑗)

Figure 3.2c. Typing for dependent func-
tion types

Π-types – or dependent function types –, shown in Figure 3.2a. Seen as
function types, they record the fact that the codomain might vary depend-
ing on the argument. This is reflected in the typing rule for application:
since the codomain 𝑇 might depend on 𝑥 , the type of the application 𝑓 𝑢 is
𝑇 specialized at the argument 𝑢, using substitution. Seen on the logical side,
Π-types correspond to universal quantification ∀ 𝑥: 𝐴. 𝑇 (𝑥). Indeed, if one
can show that 𝑇 (𝑥) holds for an unspecified 𝑥 , then it must hold for all 𝑥: 𝐴
– this is Rule Abs. Conversely, if 𝑇 holds for all 𝑥: 𝐴, then one can deduce
𝑇 (𝑢) for any specific 𝑢 : 𝐴 – this is Rule App. The rules of Figure 3.1b are
just a special case of those, in the case where the codomain 𝑇 does not de-
pend on the variable 𝑥 , and we use this convention throughout the thesis:
𝐴 → 𝑇 is shorthand for Π 𝑥: 𝐴. 𝑇 when 𝑇 does not mention 𝑥 .
One last thing to note about our functions is that they record the type of
their domain – what is called Church-style abstraction [Bar92, Section 3].
There is an alternative – the Curry-style abstractions –, that does not do
so, simply using λ 𝑥. 𝑡 for functions. This difference becomes important as
soon as one looks at the bidirectional structure. Indeed, the annotation is
required if one wants to infer types for functions, rather than barely check-
ing them. The Curry-style option is sensible though, see for instance the
implementation of the proof assistant Agda [Nor07, p. 19], Abel, Öhman,
and Vezzosi [AÖV17] or McBride [McB22]. In the end, this is really a de-
sign choice between being able to infer a type for any term, or requiring
annotations that in a lot of cases are useless. In this thesis we stick with
the approach used in Coq, and annotate our abstractions.

3.2.2. Universes

To be able to express ideas like induction principles or polymorphic func-
tions, it is extremely useful to use functions and Π-types quantifying over
types. This is what the universe □ – read “Type” — is for. It is the type…
of a type. This also means that the border between types and terms is not
a syntactic one, because e.g. functions can abstract over a type. Instead,
types are simply terms of type □. Despite this, we still use upper case let-
ters for terms which we want to think of as types. Such a universe is called
à la Russell [Pal98], by contrast with universes à la Tarski, which regain
the distinction between types and terms at the cost of a somewhat heav-
ier treatment of types. Since we have not much use for a presentation à la
Tarski in this thesis, we use the simpler one.

There is an important caveat regarding universes. Since the paradox exhib-
ited by Russell in Frege’s Begriffsschrift [Fre79], logicians know that con-
sidering a set of all sets is a great source of inconsistencies. Type theory is
not devoid of this issue: Girard [Gir72, Annex A] shows how having a type
with itself as type is inconsistent. This inconsistency directly applies to the
first dependent type system proposed by Martin-Löf [Mar72], which has a
single universe □ and a rule □ :□. A common solution to this issue is to
stratify universes into an infinite hierarchy, which gives us Rule Univ. Note
how □ is indexed by the universe levels 𝑖 and 𝑖+1.
Using those universes, Rule ΠTy gives the typing rule for Π-types. We can
also now give a definition of the ⊢ Γ judgement, asserting that a context
is well-formed, in Figure 3.2d. It simply means that all its types are indeed
types. Note that in Rule Ext, we did not write down a level for the universe,

26 3. The Calculus of Inductive Constructions

Empty ⊢ ⋅

Ext
⊢ Γ Γ ⊢ 𝐴 :□

⊢ Γ, 𝑥: 𝐴

Figure 3.2d. Context well-formation

[HP91]: Harper et al. (1991), Type checking
with universes

Conv

Γ ⊢ 𝑡 : 𝑇
Γ ⊢ 𝑇 ≅ 𝑇 ′ :□

Γ ⊢ 𝑡 : 𝑇 ′

Figure 3.2e. Conversion rule

4: This wraps up our typing rules for
CCω, collected in Figure 3.2. The rule for
non-dependent functions is not included,
since the one for dependent functions sub-
sumes it.

we do so to mean the existence of some unconstrained one in order to ease
reading.

One last important point regarding universes is the kind of levels used. A
simple solution is to rely on natural numbers (of the meta-theory), with
the +1 and max operations interpreted by the usual ones. This is however
not strictly necessary: we need levels to form a (well-founded) pre-order
to avoid inconsistency, and operations such as +1 and max to express our
typing rules, but levels could very well be something different from natural
numbers. In particular, the natural number approach fixes at which exact
level a particular construction is done, which is usually much more rigid
than what one would wish for. A more flexible approach, introduced under
the name typical ambiguity by Harper and Pollack [HP91], uses level ex-
pressions based on level variables, rather than numbers. This way, one can
collect exactly the constraints between levels required for a term to type-
check, without artificially enforcing a rigid interpretation by fixing their
value to a precise number once and for all. To simplify the presentation,
our default CCω and CIC nonetheless use natural numbers, but typical am-
biguity appears at multiple points in this thesis.

3.3. 50 Shades of Conversion

There is one bigmissing part in the picture so far. Rememberwe areworking
with dependent types, and that those can contain terms, which in turn can
be seen as programs. In the case for instance of the vector type we used
in the introduction – and that we are about to introduce formally –, what
happens if a function expects an argument of type 𝐕𝐞 (𝐴, 3), but it is given
as argument the output of a concatenation function, which naturally has
type 𝐕𝐞 (𝐴, 2+1)? Surely we must have a way to relate both, since after all
the small program 2+1 ought to compute 3! This is exactlywhat Rule Conv4

is for: it allows to replace a type 𝑇 with one that is related to it by conversion,
written ≅ . As usual, there are two ways to look at this relation. From the
point of view of programs, it incorporates a computational aspect directly
inside the type system. From the point of view of logic, it corresponds to
types being the same “by definition” rather than due to some reasoning –
which is why conversion is also called definitional equality or judgemental
equality. In our vector example, for instance, the two types are the same by
virtue of the definition of addition.

Conversion is a complex relation, arguably the most subtle part of depen-
dent types. Consequently, there are quite differentways to present it, which
in turn serve different needs. For this reason, we took care to set the typing
rules of Figure 3.2 up so that nothing has to be changed in those when one
definition of conversion or another is taken. The only difference is in how
the relation Γ ⊢ 𝑇 ≅ 𝑇 ′ :□ is defined. This way, we can treat conversion
as a black box when talking about typing, making the theory modular.

A first important divide is between typed and untyped conversion. On one
side, conversion is seen as an intrinsically typed relation: terms are only con-
vertible at a given type. On the other, conversion is a relation between raw
terms, that does not presuppose any form of typing. Figure 3.3 gives an ex-
ample of the computation rule for functions in both systems. The “content”
of the two rules is the same – they equate (λ 𝑥: 𝐴. 𝑡) 𝑢 and 𝑡[𝑥 ≔ 𝑢] – only

3.3. 50 Shades of Conversion 27

⊢ Γ

Empty ⊢ ⋅ Ext
⊢ Γ Γ ⊢ 𝐴 :□

⊢ Γ, 𝑥: 𝐴

Γ ⊢ 𝑡 : 𝑇

Var
(𝑥: 𝐴) ∈ Γ ⊢ Γ

Γ ⊢ 𝑥 : 𝐴 Univ
⊢ Γ

Γ ⊢ □𝑖 :□𝑖+1
ΠTy

Γ ⊢ 𝐴 :□𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 :□𝑗
Γ ⊢ Π 𝑥: 𝐴. 𝐵 :□max(𝑖,𝑗)

Abs
Γ ⊢ 𝐴 :□ Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝑇

Γ ⊢ λ 𝑥: 𝐴. 𝑡 :Π 𝑥: 𝐴. 𝑇 App
Γ ⊢ 𝑓 :Π 𝑥: 𝐴. 𝑇 Γ ⊢ 𝑢 : 𝐴

Γ ⊢ 𝑓 𝑢 : 𝑇 [𝑥 ≔ 𝑢]

Conv
Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′ :□

Γ ⊢ 𝑡 : 𝑇 ′

Figure 3.2. Collected typing rules for CCω

[Mar72]: Martin-Löf (1972), An intuitionis-
tic theory of types

5: Barendregt for instance uses the name
“conversion” for the equational theory of
untyped λ-calculus in his reference work
on the subject[Bar85].

[Bar85]: Barendregt (1985), The Lambda
Calculus: Its Syntax and Semantics. Revised
Edition.
[Bar91]: Barendregt (1991), An Introduc-
tion to Generalized Type Systems

𝑡 ≅ 𝑡′ 𝑡′ ≅ 𝑡″
𝑡 ≅ 𝑡″

Figure 3.4. Example: transitivity rule for
conversion

the side-conditions differ substantially. Typed conversion goes back to the
type theory of Martin-Löf [Mar72], and is a recurring feature in its many
descendants. Untyped conversion relates strongly to (untyped) λ-calculus5

via the Pure Type Systems (PTS) [Bar91] literature. In this thesis, we mainly
consider untyped conversion, as Coq’s meta-theory has been mostly stud-
ied in that tradition. But the relation between both in the context of bidi-
rectional typing is the main subject of Chapter 6.

Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵 Γ ⊢ 𝑢 : 𝐴
Γ ⊢ (λ 𝑥: 𝐴. 𝑡) 𝑢 ≅ 𝑡[𝑥 ≔ 𝑢] : 𝐵[𝑥 ≔ 𝑢] (λ 𝑥: 𝐴. 𝑡) 𝑢 ≅ 𝑡[𝑥 ≔ 𝑢] Figure 3.3. Example: typed and untyped

β rule for conversion

A second axis is about how close the conversion relation is to an imple-
mentation. For instance, conversion should be an equivalence relation, but
there are two approaches to that. The first – and most standard – one is to
simply define conversion as an equivalence relation, by adding rules for e.g.
transitivity, as the one of Figure 3.4. This ensures that conversion has the
right properties, but means it does not directly correspond to an algorithm,
as this transitivity rule cannot be directly implemented, due to the need
to “invent” the middle term 𝑡′. The λ-calculus theorists have known this
issue for a long time, and they have a solution: characterizing conversion
by means of a reduction relation→⋆ , which corresponds to the idea of pro-
gram evaluation [Bar85]. If this reduction is well-behaved, then two terms
are convertible exactly when they reduce to the same third term. This more
operational characterization is closer to what can be implemented. Turning
things around, one can define conversion through reduction, and only show
in retrospect that it has the good properties that were enforced in the first
approach – typically, that it is transitive. Conversion of the first kind we
call declarative conversion, while for the second we talk about algorithmic
conversion.

In the rest of this section we give two presentations of untyped conversion.

28 3. The Calculus of Inductive Constructions

UConv
Γ ⊢ 𝑇 ′ :□ 𝑇 ≅ 𝑇 ′

Γ ⊢ 𝑇 ≅ 𝑇 ′ :□

Figure 3.5a. Typing constraint on un-
typed conversion

βConv (λ 𝑥: 𝐴. 𝑡) 𝑢 ≅ 𝑡[𝑥 ≔ 𝑢]

Figure 3.5b. Computation rule for func-
tions

First, a declarative one, which we use to define CCω, as is standard. Second,
an algorithmic one, anticipating the need for it later on in Parts A Certified
Kernel for Coq, in Coq and Bidirectional Elaboration for Gradual Typing.

3.3.1. Declarative conversion

To start our presentation of untyped conversion, let us first go back to Rule
Conv. Even if wewish to describe conversion as an untyped relation, we still
enforce a typing constraint in Rule Conv, in order to ensure that, whenever
Γ ⊢ 𝑡 : 𝑇 is derivable, Γ ⊢ 𝑇 :□ is as well. This is exactly the content of
Rule UConv, which combines conversion with a check that the target type
is indeed a well-formed type.

Regarding conversion itself, the first rule is Rule βConv, which corresponds
to the computational behaviour of functions: the variable of an applied λ-
abstraction is replaced by the argument, using substitution.

The rest of the rules ensure conversion has the properties it should. First
are the ones ensuring it forms an equivalence relation: it is reflexive (Con-
vRefl), symmetric (ConvSym), and transitive (ConvTrans).

Figure 3.5c. Equivalence rules

ConvRefl 𝑡 ≅ 𝑡 ConvSym
𝑡 ≅ 𝑡′
𝑡′ ≅ 𝑡 ConvTrans

𝑡 ≅ 𝑡′ 𝑡′ ≅ 𝑡″
𝑡 ≅ 𝑡″

A second set of rules, collected in Figure 3.5d, asserts that conversion is a
congruence, meaning that it is compatible with all term formers. As for the
previous three, these correspond to properties we expect from the conver-
sion relation, that we simply declare to be true. Note that we include only
congruence rules for term formers with sub-terms – we e.g. omit □. To be
exhaustive, we could have included congruence rules for all term formers,
but when they have no sub-term congruence is simply a special case of
Rule ConvRefl. Conversely, we could omit Rule ConvRefl altogether and
derive it from congruence rules, which can be seen as a generalized form of
reflexivity.

Figure 3.5d. Congruence rules

𝐴 ≅ 𝐴′ 𝐵 ≅ 𝐵′

Π 𝑥: 𝐴. 𝐵 ≅ Π 𝑥: 𝐴′. 𝐵′
𝐴 ≅ 𝐴′ 𝑡 ≅ 𝑡′

λ 𝑥: 𝐴. 𝑡 ≅ λ 𝑥: 𝐴′. 𝑡′

𝑓 ≅ 𝑓 ′ 𝑢 ≅ 𝑢′
𝑓 𝑢 ≅ 𝑓 ′ 𝑢′

3.3.2. Algorithmic conversion

Before we can describe algorithmic conversion, we first need to have a look
at reduction. Reduction is in some way an operational version of conversion.
The main difference is that it is oriented, in the direction corresponding to
program evaluation. It itself decomposes into three components.

3.3. 50 Shades of Conversion 29

6: In particular, it is non-deterministic.

7: This notion is formally introduced in
Section 3.4.

The first is top-level reduction ⇀ ,

βRed (λ 𝑥: 𝐴. 𝑡) 𝑢 ⇀ 𝑡[𝑥 ≔ 𝑢]

Figure 3.6a. Top-level reduction

which corresponds purely to computa-
tion, without any congruence closure properties. In CCω there is only the
single Rule βRed.

The second component is the congruent closure of top-level reduction, one-
step reduction→1 . It allows triggering top-level reduction exactly once, but
at any position in a term. Its definition is given in Figure 3.6b. Note that
while we talk about congruent closure both for conversion (Figure 3.5d)
and one-step reduction, we mean a different form of closure: in the case
of conversion, we demand the relation to recursively hold in all sub-terms,
while for one-step reduction it is allowed in exactly one sub-term.

𝑡 ⇀ 𝑡′
𝑡 →1 𝑡′

𝐴 →1 𝐴′

Π 𝑥: 𝐴. 𝐵 →1 Π 𝑥: 𝐴′. 𝐵
𝐵 →1 𝐵′

Π 𝑥: 𝐴. 𝐵 →1 Π 𝑥: 𝐴. 𝐵′

𝐴 →1 𝐴′

λ 𝑥: 𝐴. 𝑡 →1 λ 𝑥: 𝐴′. 𝑡
𝑡 →1 𝑡′

λ 𝑥: 𝐴. 𝑡 →1 λ 𝑥: 𝐴. 𝑡′
𝑓 →1 𝑓 ′

𝑓 𝑢 →1 𝑓 ′ 𝑢

𝑢 →1 𝑢′
𝑓 𝑢 →1 𝑓 𝑢′

Figure 3.6b. One-step reduction

Finally, we obtain reduction →⋆ as the reflexive transitive closure of one-
step reduction, see Figure 3.6c.

𝑡 →⋆ 𝑡
𝑡 →1 𝑡′ 𝑡′ →⋆ 𝑡″

𝑡 →⋆ 𝑡″
Figure 3.6c. Reduction

We can now get to algorithmic conversion: two terms are convertible when-
ever they reduce to terms that are α-equal. As for declarative conversion,
we impose a typing condition on the target type. Altogether, this leads to
Rule AlgConv. For once, we make α-equality explicit to anticipate its re-
placement by more complex relations later on.

AlgConv
Γ ⊢ 𝑇 ′ :□ 𝑇 →⋆ 𝑈 𝑇 ′ →⋆ 𝑈 ′ 𝑈 =α 𝑈 ′

Γ ⊢ 𝑇 ≅ 𝑇 ′ :□
Figure 3.6d. Algorithmic conversion

To wrap up this section, let us backtrack for a moment on the reason why
we separated the definition of reduction in three layers. This is because re-
duction as we defined it is somewhat too unconstrained.6 In what follows,
a recurring need is that of a deterministic notion of reduction which is able
to expose a canonical term former,7 if it exists. There is a way to do so,
what is called weak-head reduction →⋆h . It amounts to restricting the place
in a term where top-level reduction can be used, by removing some congru-
ence rules compared to reduction. More precisely, λ-abstractions, Π-types
and universes are not reduced further, as they already are canonical forms
of their types. Variables are not reduced either, since they simply cannot
be. Thus, the only reduction that is allowed is in the function position of

30 3. The Calculus of Inductive Constructions

8: This is a consequence of validity, an-
other property we are about to see.

an application, with the hope to get a λ-abstraction there that can be fur-
ther reduced using top-level reduction. Following these considerations, we
arrive at Figure 3.7. When we want to contrast this weak-head reduction
with the previously defined one →⋆ , we call the latter full reduction.

Figure 3.7. Weak-head reduction

𝑡 ⇀ 𝑡′
𝑡 →1h 𝑡′

𝑓 →1h 𝑓 ′

𝑓 𝑢 →1h 𝑓 ′ 𝑢 𝑡 →⋆h 𝑡
𝑡 →1h 𝑡′ 𝑡′ →⋆h 𝑡″

𝑡 →⋆h 𝑡″

3.4. The Good Properties

Before going further into more definitions of type systems, we should stop
and consider what makes these “good”. Designing type systems is a com-
plex endeavour, and many things can go wrong. What are the properties
we expect from a type system for it to give a valid notion of programming
language or logic? How do we know that a type system is well-behaved?
Let us go over some of these properties, and some proof techniques that
can be employed to establish them.

3.4.1. Stability under basic operations

The most essential properties of a type system are its stability by basic type
theoretic operations. The first is stability under renaming, which states that
a context can be replaced by another one which contains at least the same
variables:

Property 3.1. Stability under renaming

Whenever the following conditions are met

▶ 𝑥1: 𝐴1 …𝑥𝑛: 𝐴𝑛 ⊢ 𝑡 : 𝑇
▶ ⊢ Δ
▶ for all 𝑖, there is a variable 𝑦𝑖 such that (𝑦𝑖: 𝐴𝑖[𝑥1 ≔𝑦1 …𝑥𝑛 ≔𝑦𝑛]) ∈

Δ
we have that Δ ⊢ 𝑡[𝑥1 ≔𝑦1 …𝑥𝑛 ≔𝑦𝑛] : 𝑇 [𝑥1 ≔𝑦1 …𝑥𝑛 ≔𝑦𝑛].

Given the first premise, the context 𝑥1: 𝐴1 …𝑥𝑛: 𝐴𝑛 must be well-formed,8

𝐴𝑖 can only depend on variables 𝑥1 …𝑥𝑖−1, thus we do not actually need to
substitute the variables 𝑥𝑖+1 …𝑥𝑛 in it. However, this presentation, where
the same substitution is applied to all types even if applies to variables
which we know are not present in them, is easier to work with in practice.

A direct consequence is the weakening property:

Property 3.2. Weakening

Whenever Γ ⊢ 𝑡 : 𝑇 and Γ ⊢ 𝐴 :□, it holds that Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝑇 .

A stronger notion is that of stability under substitution, which allows re-
placing variables by arbitrary terms.

3.4. The Good Properties 31

[HB21]: Haselwarter et al. (2021), Finitary
type theories with and without contexts

Property 3.3. Stability under substitution

For any substitution 𝜎 (function from variables to terms) such that the
following hold

▶ 𝑥1: 𝐴1 …𝑥𝑛: 𝐴𝑛 ⊢ 𝑡 : 𝑇
▶ for all 𝑥𝑖, we have Δ ⊢ 𝜎(𝑥𝑖) : 𝐴𝑖[𝜎]

it is also the case that Δ ⊢ 𝑡[𝜎] : 𝑇 [𝜎].
These two stability properties can be proven by direct induction on the typ-
ing derivations, replacing hypotheses on the first context by hypothesis on
the second. Of course, we need to state and prove similar stability proper-
ties for conversion, again by induction.

There is, however, a stronger form of stability under renaming. While not
as crucial as the one above, it is still quite useful, especially to prove cor-
rectness of term manipulations, such as those operated by tactics.

Property 3.4. Conditional stability under renaming

Whenever the following conditions are met

▶ 𝑥1: 𝐴1 …𝑥𝑛: 𝐴𝑛 ⊢ 𝑡 : 𝑇
▶ ⊢ Δ
▶ for all 𝑖 such that 𝑥𝑖 appears in 𝑡 , there is a variable 𝑦𝑖 such that

(𝑦𝑖: 𝐴𝑖[𝑥1 ≔𝑦1 …𝑥𝑛 ≔𝑦𝑛]) ∈ Δ
there exists a type 𝑇 ′ such that Δ ⊢ 𝑡[𝑥1 ≔𝑦1 …𝑥𝑛 ≔𝑦𝑛] : 𝑇 ′.

The difference between the two is that we do not ask for all variables ap-
pearing in Γ to be present in Δ, only those that are “relevant” for 𝑡 . Thus,
the important consequence is the following, which allows removing unused
variables from a context.

Property 3.5. Strengthening

If Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝑇 holds and 𝑥 does not appear in 𝑡 , there exists 𝑇 ′ such
that Γ ⊢ 𝑡 : 𝑇 ′.

Strengthening is not as easy to obtain as weakening, and there are some
type theories where it fails [HB21]. In general, even if it holds – this is the
case in all type theories presented in this thesis – it cannot be proven by
a direct induction on the typing derivation. This is because of Rule Conv.
Indeed, in that rule the target type 𝑇 ′ might very well use the variable 𝑥 , so
that we do not have in general Γ ⊢ 𝑇 ′ :□. Thus, there is a need for further
reasoning to prove that such a type is never actually needed. We show in
Theorem 4.8 how the bidirectional structure makes proving strengthening
straightforward.

3.4.2. Properties of types

A second set of properties pertain to types themselves. They are less crucial
than the previous ones, but assess that the types that can be obtained for
a term are well-behaved, which is often useful to have in proofs of other
properties of the system – such as those in the rest of this section.

32 3. The Calculus of Inductive Constructions

The first is validity, which asserts that both types and contexts are well-
formed whenever they appear in a typing derivation.

Property 3.6. Validity

Whenever Γ ⊢ 𝑡 : 𝑇 , we have ⊢ Γ and Γ ⊢ 𝑇 :□.

We set up CCω so that it satisfies this property, but another approach –
which we use in the bidirectional setting – is to remove pre-conditions such
as ⊢ Γ in Rule Var or Γ ⊢ 𝑇 ′ :□ in Rule UConv. This is possible, but in
that case a lot of properties have to be prefixed with extra hypothesis of
context/type well-formation.

The second property is uniqueness of types, which relates the different
types of a same term.

Property 3.7. Uniqueness of types

A type theory satisfies uniqueness of types up to a relation⪯ if whenever
𝑡 is well-typed in Γ,99: I.e. whenever there exists 𝑆 such that

Γ ⊢ 𝑡 : 𝑆.
there exists a type 𝑇 such that Γ ⊢ 𝑡 : 𝑇 and for

any 𝑇 ′ such that Γ ⊢ 𝑡 : 𝑇 ′, we have 𝑇 ′ ⪯ 𝑇 .

We simply say uniqueness of types for uniqueness up to conversion.

Note that in the case where the relation ⪯ is symmetric and transitive, – in
particular, conversion –, uniqueness of types up to ⪯ simplifies to the fact
that whenever Γ ⊢ 𝑡 : 𝑇 and Γ ⊢ 𝑡 : 𝑇 ′, we have 𝑇 ⪯ 𝑇 ′. However, in PCUIC
we wish to replace conversion with cumulativity, which is not symmetric
– it is only a pre-order –, so the more involved definition is needed.

This property is not so easy to establish, but as for strengthening the bidirec-
tional setting gives a straightforward proof approach, see Theorem 4.5.

3.4.3. Subject reduction

We already mentioned Milner’s slogan that “Well-typed programs cannot go
wrong.” In our context, this means that if a term is well-typed, its reduction
– which corresponds to program evaluation –, should be well-behaved. This
well-behaviour is separated into multiple properties, the first of which is
subject reduction, which asserts that typing is preserved by reduction.

Property 3.8. Subject reduction

If Γ ⊢ 𝑡 : 𝑇 and 𝑡 →⋆ 𝑡′, then also Γ ⊢ 𝑡′ : 𝑇 . This property is also called
preservation.

To show that reduction preserves typing, it suffices to show that one-step
reduction does, by a simple induction. Moreover, using stability under sub-
stitution, this further reduces to top-level reduction preserving typing. But
how do we show this?

Suppose we have a β-redex such that Γ ⊢ (λ 𝑥: 𝐴. 𝑡) 𝑢 : 𝑇 . Analysing the
typing derivation, we can conclude there exists 𝐴′, 𝐵 and 𝐵′ such that

▶ Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵

3.4. The Good Properties 33

𝑡

𝑡1 𝑡2

𝑡″

←→ ←

→

←

→ ←→

Figure 3.8. Confluence, as a diagram

[Tak95]: Takahashi (1995), Parallel Reduc-
tions in λ-Calculus

nm□
nm𝐴 nm𝐵
nm Π 𝑥: 𝐴. 𝐵

nm𝐴 nm 𝑡
nm λ 𝑥: 𝐴. 𝑡

ne 𝑡
nm 𝑡

ne 𝑥
ne 𝑓 nm 𝑢

ne 𝑓 𝑢

Figure 3.9. Normal and neutral forms

10: Alternatively called values.

▶ Π 𝑥: 𝐴. 𝐵 ≅ Π 𝑥: 𝐴′. 𝐵′
▶ Γ ⊢ 𝑢 : 𝐴′
▶ 𝐵′[𝑥 ≔ 𝑢] ≅ 𝑇

If we were able to conclude that 𝐴 ≅ 𝐴′ and 𝐵 ≅ 𝐵′, we could de-
duce Γ ⊢ 𝑢 : 𝐴, then using stability under substitution we would get Γ ⊢
𝑡[𝑥 ≔ 𝑢] : 𝐵[𝑥 ≔ 𝑢], which would finally lead to Γ ⊢ 𝑡[𝑥 ≔ 𝑢] : 𝑇 using sta-
bility of conversion under substitution and transitivity of conversion. Thus,
the key property is the following:

Property 3.9. Injectivity of function types

Whenever Π 𝑥: 𝐴. 𝐵 ≅ Π 𝑥: 𝐴′. 𝐵′, we have 𝐴 ≅ 𝐴′ and 𝐵 ≅ 𝐵′.

In the more general setting of CIC or PCUIC, we do not have only Π-types.
Thus, we more generally talk about injectivity of type constructors.

For declarative conversion, transitivity is trivial, but injectivity of function
types is not so easy. Indeed, due to transitivity we could have

Π 𝑥: 𝐴. 𝐵 ≅ 𝑇1 ≅ …𝑇𝑛 ≅ Π 𝑥: 𝐴′. 𝐵′

where the 𝑇𝑖 have no reason to be Π-types, and so it is not so easy to relate
𝐴 and 𝐴′. Conversely, for algorithmic conversion, injectivity of function
types is rather straightforward by induction on reduction and α-equality,
but transitivity is hard to show. Thus, in both cases subject reduction is
not direct. The main missing property, which allows proving equivalence of
both notions of conversion, and consequently subject reduction for either
one of the corresponding notions of typing, is confluence of reduction.

Property 3.10. Confluence

If 𝑡 →⋆ 𝑡1 and 𝑡 →⋆ 𝑡2 hold, then there exists some 𝑡″ such that 𝑡1 →⋆
𝑡″ and 𝑡2 →⋆ 𝑡″.

This is a very widely studied property in the context of rewriting systems. A
nice proof technique relies on the definition of a notion of parallel reduction
[Tak95].

3.4.4. Progress

Subject reduction ensures that when a term reduces, this reduction is type-
preserving. The second important property linked to reduction character-
izes which terms reduce. To state it, we first need to define the nm and
ne predicates, characterizing respectively normal forms and neutral forms.
The inductive rules for those are given in Figure 3.9. The idea is that neutral
forms are those terms which are stuck on a variable, which blocks further
computation because it is not a λ-abstraction. Normal forms are either neu-
trals or canonical forms,10 which have finished computing. For instance, a
λ-abstraction is the canonical form for a function. What progress says is
that these forms accurately characterize well-typed terms which do not
reduce.

34 3. The Calculus of Inductive Constructions

[WF94]: Wright et al. (1994), A Syntactic
Approach to Type Soundness

Property 3.11. Progress

For every well-typed term 𝑡 , either nm 𝑡 holds, or there is some 𝑡′ such
that 𝑡 →1 𝑡′.

To prove progress, one can again resort to induction on the typing deriva-
tion. The key point is to characterize the normal forms at a given type, by
proving that they are either neutral forms, or canonical form of the right
kind. For instance, if 𝑓 is a normal form and has a function type, then it
must be either a neutral, or a λ-abstraction. Then, if 𝑓 is applied to 𝑢, then
in the first case 𝑓 𝑢 is a neutral – and thus a normal form –, or it reduces
further, by a β step.

One way to understand progress – and, indeed, the origin of the name – is
thatwell-typed terms do not get stuck: either they have finished computing,
and thus satisfy nm , or they should be able to make progress by reducing
further. Put together with preservation, progress can be iterated. Indeed, if
a term is well-typed, it is either a normal form, or reduces to a term, which is
itself well-typed by preservation, so is either a normal form or reduces, and
so on. This decomposition of program safety into progress and preservation
has been standard since Wright and Felleisen [WF94].

Property 3.12. Safety

Safety is the combination of progress and preservation. It implies that
if ⊢ 𝑡 : 𝑇 and 𝑡 →⋆ 𝑣↛1, then 𝑣 must be a canonical form.

3.4.5. Normalization

The last important property, and one which is rather specific to type sys-
tems in the context of proof languages, is normalization. It ensures that
progress cannot be applied forever, but that evaluation always ends up
reaching a normal form. The most standard way to phrase this is to say
that there is no infinite reduction sequence starting from a well-typed term.
This formulation, however, is constructively too weak, so we instead use a
more adequate – but classically equivalent – definition, using the following
accessibility predicate.

Definition 3.13. Accessibility

Let 𝑅 be a relation on 𝐴. An inhabitant 𝑎 of 𝐴 is accessible if all 𝑎′ such
that 𝑎 𝑅 𝑎′ are.

In the intuitionistic setting, this way to phrase well-foundedness is much
better behaved because it does not appeal to negation. In particular, we
can do constructions on all accessible terms of a given relation by means
of well-founded induction, something we exploit in MetaCoq, where this
is the formulation we use for normalization.

Property 3.14. Normalization

Every well-typed term is accessible for one-step co-reduction →1 , the
inverse relation of one-step reduction →1 .

3.5. Adding Inductive Types: CIC 35

11: Thanks to the principle of explosion.

12: Terms which are not closed are called
open.

[Tai67]: Tait (1967), Intensional interpreta-
tions of functionals of finite type I

[Abe13]: Abel (2013), Normalization by
Evaluation: Dependent Types and Impred-
icativity

13: At least if one extends its universe hi-
erarchy with an impredicative universe.

[Geu01]: Geuvers (2001), Induction Is Not
Derivable in Second Order Dependent Type
Theory

14: In a system close to our CCω, but
again with an impredicative universe.

[Pau93]: Paulin-Mohring (1993), Inductive
Definitions in the System Coq - Rules and
Properties

15: Earlier type theories, such as [Mar72;
MS84], presented specific instances of
that class, but not a general scheme.

[Mar72]: Martin-Löf (1972), An intuitionis-
tic theory of types
[MS84]: Martin-Löf et al. (1984), Intuition-
istic Type Theory

Normalization, combined with progress and preservation, entails that any
well-typed term eventually reduces to a normal form – which is moreover
unique, by confluence. This gives a naive way to decide conversion. Even if
one uses a more complex strategy, normalization is a crucial building block
towards decidability of typing. Thus, it is a property of prime importance
if we wish to implement a type-checker for dependent types.

Another key consequence, of normalization is that, there are some uninhab-
ited types in the empty context, for instance Π𝐴:□. 𝐴. This is one way to
phrase logical consistency,11 which has the advantage that it does not put
forward one particular “false” type.

Property 3.15. Logical consistency

There is a type which is not inhabited in the empty context.

Indeed, there are no normal forms in the empty context at that type, and
since any term of that type must reduce to such a normal form, there are
none. Thus, normalization ensures our type systems are meaningful as log-
ics, which we of course care about!

More generally, normalization entails the canonicity property for closed
terms 12 – e.g. those that have no free variables, or, equivalently, that are
well-typed in the empty context.

Property 3.16. Canonicity

Every term 𝑡 that is well-typed in the empty context reduces to a canon-
ical form.

There is however an issue here: since normalization entails logical consis-
tency, it is a hard property to prove. In particular, due to Gödel’s incom-
pleteness theorem, we cannot hope to prove normalization of a type system
in the logic given by that system itself… Still, there are multiple approaches
to proving normalization, from the venerable reducibility method [Tai67] to
the recent normalization by evaluation techniques [Abe13]. However, due
to their complex character, we do not tackle such proofs of normalization
directly in this thesis. Instead, we either suppose normalization when it is
unavoidable, or prove it relatively to that of another, simpler theory.

3.5. Adding Inductive Types: CIC

Of course, not everything in mathematics or programming is a function.
Although CCω is powerful enough to encode many constructions,13 such
encodings are not fully satisfactory: Geuvers [Geu01] shows that it is im-
possible to construct14 an encoding of natural numbers satisfying an in-
duction principle, which is their defining characteristic! Because of such
limitations of encodings, and in order to faithfully represent the use of in-
duction in mathematics and pattern-matching in programming languages,
the general class of inductive types has been introduced by Paulin-Mohring
[Pau93].15 Adding these to CCω results in CIC, the Calculus of Inductive
Constructions.

36 3. The Calculus of Inductive Constructions

BoolTy
⊢ Γ

Γ ⊢ 𝐁 :□0

Figure 3.10a. The type of booleans

False
⊢ Γ

Γ ⊢ ff : 𝐁

True
⊢ Γ

Γ ⊢ tt : 𝐁

Figure 3.10b. The boolean constructors

3.5.1. Booleans

Let us start with a very simple example: booleans. To add those to CCω,
we need to specify three new kinds of term formers. The first is the type,
that we write 𝐁 – see Rule BoolTy. Next we need constructors, giving the
canonical inhabitants of the type. In the case of booleans, there are two
of them: the false boolean ff and the true one tt – this is Rules False and
True.

The last one is a way to use those canonical inhabitants. For booleans, this
corresponds to a conditional, taking one branch or another depending on
the value of the term being used, whose typing rule is given in Rule BoolInd.
We call 𝑠 the scrutinee, 𝑃 the predicate and 𝑏ff , 𝑏tt the branches. As was the
case for dependent functions, here also there is a generalization with re-
spect to usual programming languages: the predicate type itself can depend
on the scrutinee. The usual if-then-else conditional thus corresponds to the
special case when 𝑃 does not depend on the variable 𝑧. We call this ind term
former induction principle, as one can read ind𝐁(𝑠; 𝑧.𝑃 ; 𝑏ff , 𝑏tt) as case dis-
tinction on the scrutinee: to prove that 𝑃 holds for an arbitrary boolean 𝑠,
it suffices to show that both 𝑃[𝑧 ≔ ff] and 𝑃[𝑧 ≔ tt] do – these are respec-
tively proven by 𝑏ff and 𝑏tt. The name induction is not really suitable here
because we only have base cases and no induction step, but we get those as
soon as the inductive type itself is recursive. We also use the name recursor
interchangeably with induction principle, but especially when we want to
emphasize the programming point of view.

Figure 3.10c. Induction principle for
booleans

BoolInd

Γ ⊢ 𝑠 : 𝐁
Γ, 𝑧: 𝐁 ⊢ 𝑃 :□ Γ ⊢ 𝑏ff : 𝑃[𝑧 ≔ ff] Γ ⊢ 𝑏tt : 𝑃[𝑧 ≔ tt]

Γ ⊢ ind𝐁(𝑠; 𝑧.𝑃 ; 𝑏ff , 𝑏tt) : 𝑃[𝑧 ≔ 𝑠]

ιFalse ind𝐁(ff; 𝑧.𝑃 ; 𝑏ff , 𝑏tt) ⇀ 𝑏ff
ιTrue ind𝐁(tt; 𝑧.𝑃 ; 𝑏ff , 𝑏tt) ⇀ 𝑏tt
Figure 3.10d. Top-level reduction for
booleans (ι-reduction)

One thing is still missing in this picture: computation. The extension of top-
level reduction is given in Figure 3.10d – our first example of ι-reduction,
the reduction of recursors on constructors. These rules pick the branch cor-
responding to the scrutinee, which is sensible if ind𝐁 is understood as a
conditional. Declarative conversion can be extended in exactly the same
way. Finally, to account for the arguments of the newly introduced term
former ind𝐁, we need to add new congruence rules, see Figure 3.10e. For
one-step reduction and declarative conversion, there is no subtlety, all po-
sitions behave the same. The interesting rule is the one for weak-head re-
duction: there is only one congruence rule, which allows for reduction of
the scrutinee. This is similar to functions, where we allow reduction only
in the position in the term that triggers a computation if it is a canonical
form – in the case of ind, the scrutinee.

3.5.2. Recursion

Booleans are very simple, but we of course want more. The first thing to
add is recursion. The simplest example is that of natural numbers, given
in Figure 3.11. The rules are more verbose than those for booleans, but the
general idea is very similar: Rule Nat introduces a new type, Rule Zero
and Rule Succ its constructors, and Rule NatInd its induction principle.

3.5. Adding Inductive Types: CIC 37

𝑠 ≅ 𝑠′ 𝑃 ≅ 𝑃 ′ 𝑏ff ≅ 𝑏′ff 𝑏tt ≅ 𝑏′tt
ind𝐁(𝑠; 𝑧.𝑃 ; 𝑏ff , 𝑏tt) ≅ ind𝐁(𝑠′; 𝑧.𝑃 ′; 𝑏′ff , 𝑏′tt)

𝑠 →1 𝑠′
ind𝐁(𝑠; 𝑧.𝑃 ; 𝑏ff , 𝑏tt) →1 ind𝐁(𝑠′; 𝑧.𝑃 ; 𝑏ff , 𝑏tt)

𝑃 →1 𝑃 ′

ind𝐁(𝑠; 𝑧.𝑃 ; 𝑏ff , 𝑏tt) →1 ind𝐁(𝑠; 𝑧.𝑃 ′; 𝑏ff , 𝑏tt)
𝑏ff →1 𝑏′ff

ind𝐁(𝑠; 𝑧.𝑃 ; 𝑏ff , 𝑏tt) →1 ind𝐁(𝑠; 𝑧.𝑃 ; 𝑏′ff , 𝑏tt)

𝑏tt →1 𝑏′tt
ind𝐁(𝑠; 𝑧.𝑃 ; 𝑏ff , 𝑏tt) →1 ind𝐁(𝑠; 𝑧.𝑃 ; 𝑏ff , 𝑏′tt)

𝑠 →1h 𝑠′
ind𝐁(𝑠; 𝑧.𝑃 ; 𝑏ff , 𝑏tt) →1h ind𝐁(𝑠′; 𝑧.𝑃 ; 𝑏ff , 𝑏tt)

Figure 3.10e. Congruence rules for booleans

Nat
⊢ Γ

Γ ⊢ 𝐍 :□0
Zero

⊢ Γ
Γ ⊢ 0 : 𝐍 Succ

Γ ⊢ 𝑛 : 𝐍
Γ ⊢ S(𝑛) : 𝐍

NatInd

Γ ⊢ 𝑠 : 𝐍 Γ, 𝑧: 𝐍 ⊢ 𝑃 :□
Γ ⊢ 𝑏0 : 𝑃[𝑧 ≔ 0] Γ, 𝑦 : 𝐍, 𝑝𝑦 : 𝑃[𝑧 ≔ 𝑦] ⊢ 𝑏S : 𝑃[𝑧 ≔ S(𝑦)]

Γ ⊢ ind𝐍(𝑠; 𝑧.𝑃 ; 𝑏0, 𝑦 .𝑝𝑦 .𝑏S) : 𝑃[𝑧 ≔ 𝑠]
ιZero ind𝐍(0; 𝑧.𝑃 ; 𝑏0, 𝑦 .𝑝𝑦 .𝑏S) ⇀ 𝑏0

ιSucc ind𝐍(S(𝑛); 𝑧.𝑃 ; 𝑏0, 𝑦 .𝑝𝑦 .𝑏S) ⇀
𝑏S[𝑦 ≔ 𝑛, 𝑝𝑦 ≔ind𝐍(𝑛; 𝑧.𝑃 ; 𝑏0, 𝑦 .𝑝𝑦 .𝑏S)]

Figure 3.11. Natural numbers

16: The exact change is documented by
pull-request #13563.

This time said induction principle is a real one, as we can see in the second
branch, where an induction hypothesis 𝑝𝑦 on the predecessor 𝑦 is available.
Similarly to booleans, the induction principle reduces when its scrutinee
is a constructor. But, again, since we have real recursion, a recursive call
appears in the reduct of Rule ιSucc. We do not repeat the congruence rules,
as they are similar to those for booleans (Figure 3.10e). The only difference
is that now there is also a need for congruence rules for the term former S,
since it has a sub-term.

At this point, it might be good to add a note on the way we represent con-
structors: we enforce them to be fully applied, meaning S does not make
sense on its own as a term. Coq is slightly more permissive, and allows
S : 𝐍 → 𝐍. We forbid this, but one can always consider λ 𝑥: 𝐍. S(𝑥) instead
if needed. Likewise, inductive types are also enforced to be fully applied.
We also avoid using the Π and λ term formers to represent binding in the
predicate and branches of constructors, rather using contexts directly. This
allows for a clear separation of concerns, by reducing interactions between
the functional fragment and inductive types. Coq’s kernel used to rely on
Π and λ abstractions to represent predicates and branches, but a version
close to our presentation has recently replaced it,16 in part due to concerns
raised while working on this thesis, that are detailed in Section 5.2.

https://github.com/coq/coq/pull/13563

38 3. The Calculus of Inductive Constructions

Figure 3.12. Inductive dependent pair
type

PairTy
⊢ 𝐴 :□𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 :□𝑗

Γ ⊢ Σ 𝑥: 𝐴. 𝐵 :□max(𝑖,𝑗)

Pair
Γ ⊢ 𝐴 :□ Γ, 𝑥: 𝐴 ⊢ 𝐵 :□ Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑢 : 𝐵[𝑥 ≔ 𝑡]

Γ ⊢ (𝑡,𝑢)(𝐴,𝑥.𝐵) : Σ 𝑥: 𝐴. 𝐵

PairInd

Γ ⊢ 𝑠 : Σ 𝑥: 𝐴. 𝐵 Γ, 𝑧: Σ 𝑥: 𝐴. 𝐵 ⊢ 𝑃 :□
Γ, 𝑦1: 𝐴, 𝑦2: 𝐵[𝑥 ≔ 𝑦1] ⊢ 𝑏 : 𝑃[𝑧 ≔ (𝑦1,𝑦2)(𝐴,𝑥.𝐵)]

Γ ⊢ indΣ (𝑠; 𝑧.𝑃 ; 𝑦1.𝑦2.𝑏) : 𝑃[𝑧 ≔ 𝑠]
ιPair indΣ ((𝑡,𝑢)(𝐴,𝑥.𝐵); 𝑧.𝑃 ; 𝑦1.𝑦2.𝑏) ⇀ 𝑏[𝑦1 ≔ 𝑡, 𝑦2 ≔𝑢]

Figure 3.13. List type

ListTy
⊢ 𝐴 :□𝑖

Γ ⊢ 𝐋𝐢 (𝐴) :□𝑖
Nil

Γ ⊢ 𝐴 :□
Γ ⊢ 𝜀𝐴 : 𝐋𝐢 (𝐴)

Cons
Γ ⊢ 𝐴 :□ Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑙 : 𝐋𝐢 (𝐴)

Γ ⊢ 𝑎 ;;𝐴 𝑙 : 𝐋𝐢 (𝐴)

ListInd

Γ ⊢ 𝑠 : 𝐋𝐢 (𝐴) Γ, 𝑧: 𝐋𝐢 (𝐴) ⊢ 𝑃 :□ Γ ⊢ 𝑏𝜀 : 𝑃[𝑧 ≔ 𝜀]
Γ, 𝑦1: 𝐴, 𝑦2: 𝐋𝐢 (𝐴), 𝑝𝑦2 : 𝑃[𝑧 ≔ 𝑦2] ⊢ 𝑏;; : 𝑃[𝑧 ≔ 𝑦1 ;;𝐴 𝑦2]

Γ ⊢ ind𝐋𝐢 (𝑠; 𝑧.𝑃 ; 𝑏𝜀 , 𝑦1.𝑦2.𝑝𝑦2 .𝑏;;) : 𝑃[𝑧 ≔ 𝑠]
ιNil ind𝐋𝐢 (𝜀𝐴; 𝑧.𝑃 ; 𝑏𝜀 , 𝑦1.𝑦2.𝑝𝑦2 .𝑏;;) ⇀ 𝑏𝜀

ιCons ind𝐋𝐢 (𝑎 ;;𝐴 𝑙 ; 𝑧.𝑃 ; 𝑏𝜀 , 𝑦1.𝑦2.𝑝𝑦2 .𝑏;;) ⇀𝑏;;[𝑦1 ≔𝑎, 𝑦2 ≔ 𝑙, 𝑝𝑦2 ≔ind𝐋𝐢 (𝑙; 𝑧.𝑃 ; 𝑏𝜀 , 𝑦1.𝑦2.𝑝𝑦2 .𝑏;;)]

3.5.3. Parameters

A second direction for enhancement is the ability to have inductive types
with parameters. The main use of this is for type operators, that is types
that take other types as arguments, for instance the pair type𝐴×𝐵 of Chap-
ter 2. As is probably not very surprising by now, this type is a restricted
instance of a more general type, the dependent pair type Σ 𝑥: 𝐴. 𝐵. Logi-
cally, its dependency on 𝐴 means that if we see 𝐵 as a property, the whole
pair type describes a subset of 𝐴 – those elements which validate 𝐵. The
rules are given in Figure 3.12. Similarly to functions, we need an annotation
on the pair constructor, for the exact same reason: we want to ensure that
any term can infer a type. We also omit congruence rules, as they are again
similar to those of Figure 3.10e, although now not only the pair constructor
but also the type constructor Σ get their congruence rules, since both have
sub-terms.

As an example which combines both recursion and parameters, we have the
polymorphic list type 𝐋𝐢 , which mainly combines what we already covered
for natural numbers and pairs. The typing and reduction rules are given in
Figure 3.13.

3.5. Adding Inductive Types: CIC 39

EqType
Γ ⊢ 𝐴 :□𝑖 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑎′ : 𝐴

Γ ⊢ 𝑎 =𝐴𝑎′ :□𝑖

EqRefl
Γ ⊢ 𝐴 :□𝑖 Γ ⊢ 𝑎 : 𝐴

Γ ⊢ refl𝐴,𝑎 : 𝑎 =𝐴𝑎

EqInd

Γ ⊢ 𝑠 : 𝑎 =𝐴𝑎′
Γ, 𝑦 : 𝐴, 𝑧: 𝑎 =𝐴𝑦 ⊢ 𝑃 :□ Γ ⊢ 𝑏 : 𝑃[𝑦 ≔ 𝑎, 𝑧 ≔ refl𝐴,𝑎]

Γ ⊢ ind= (𝑠; 𝑦 .𝑧.𝑃 ; 𝑏) : 𝑃[𝑦 ≔ 𝑎′, 𝑧 ≔ 𝑠]
ιEq ind= (refl𝐴,𝑎; 𝑦 .𝑧.𝑃 ; 𝑏) ⇀ 𝑏

Figure 3.14. Equality type

[Uni13]: Univalent Foundation Program
(2013), Homotopy Type Theory: Univalent
Foundations of Mathematics

3.5.4. Indices

There is one feature missing in the previous inductive types. Indeed, in all
of them the return types of constructors are always the same. In some way,
they do not exploit the real possibilities of dependent types. What if we
wanted constructors to specify that they inhabit a type at some specific
value? This is exactly the point of indexed inductive types.

The paradigmatic example here is (propositional) equality, an inductive
meant to represent equality internally to the logic, i.e. as a notion on which
one can reason – for instance, do proofs by induction –, rather than an ex-
ternal one such as conversion. Rules for equality are given in Figure 3.14.
Rule EqType does not depart much from what we have already seen, apart
from the fact that it takes not only a type as a parameter, but also a term.
Rule EqRefl is already more interesting. Here we can see that the second
argument of type 𝐴 is fixed to be 𝑎 by the constructor. This gets more vis-
ible in Rule EqInd: in order for the branch 𝑏 to be typeable, the predicate
needs to be abstracted not only on the scrutinee, but also on that second
argument. Such arguments to an inductive type, whose value depends on
the constructor and need to be abstracted over in branches, are called in-
dices. By contrast, the other arguments that behave uniformly are called
parameters.

As for the logical interpretation, in the simplified case where 𝑃 only de-
pends on the index, Rule EqInd corresponds to the idea that equal terms
should be indiscernible: whenever both 𝑎 =𝐴𝑎′ and 𝑃[𝑦 ≔ 𝑎] hold, then so
does 𝑃[𝑦 ≔ 𝑎′]. In words, every property true of 𝑎 is also true of 𝑎′. Paired
with the power of dependent types this presentation of equality gives rise
to a very rich theory, and forms the basis for the whole line of research in
Homotopy Type Theory [Uni13].

However, in the context of bare CIC, this richness is also a curse, and in-
dexed inductive types can be very tricky to handle. In particular, the work
of Part ‘Bidirectional Elaboration for Gradual Typing’ does not extend well
to generic indexed inductive types. There is, however, a somewhat simpler
kind of indexed inductive types, where the indices are not any term of any
arbitrary type – as in the case of equality –, but inhabitants of an inductive
type. Such a case is easier to handle, and is often sufficient, especially for
dependently-typed programming. The prototypical example here is that of

40 3. The Calculus of Inductive Constructions

VectType
⊢ 𝐴 :□𝑖 ⊢ 𝑛 : 𝐍
Γ ⊢ 𝐕𝐞 (𝐴, 𝑛) :□𝑖

Vnil
Γ ⊢ 𝐴 :□

Γ ⊢ 𝜀𝐴 : 𝐕𝐞 (𝐴, 0)

Vcons
Γ ⊢ 𝐴 :□ Γ ⊢ 𝑛 : 𝐍 Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑙 : 𝐕𝐞 (𝐴, 𝑛)

Γ ⊢ 𝑎 ;;𝐴,𝑛 𝑙 : 𝐕𝐞 (𝐴, S(𝑛))

VectInd

Γ ⊢ 𝑠 : 𝐕𝐞 (𝐴, 𝑛) Γ, 𝑦 : 𝐍, 𝑧: 𝐕𝐞 (𝐴, 𝑦) ⊢ 𝑃 :□ Γ ⊢ 𝑏𝜀 : 𝑃[𝑦 ≔ 0, 𝑧 ≔ 𝜀]
Γ, 𝑦1: 𝐍, 𝑦2: 𝐴, 𝑦3: 𝐕𝐞 (𝐴, 𝑦1), 𝑝𝑦3 : 𝑃[𝑦 ≔ 𝑦1, 𝑧 ≔ 𝑦3] ⊢ 𝑏;; : 𝑃[𝑦 ≔S(𝑦1), 𝑧 ≔ 𝑦2 ;;𝐴,𝑦1𝑦3]

Γ ⊢ ind𝐕𝐞 (𝑠; 𝑦 .𝑧.𝑃 ; 𝑏𝜀 , 𝑦1.𝑦2.𝑦3.𝑝𝑦3 .𝑏;;) : 𝑃[𝑦 ≔ 𝑛, 𝑧 ≔ 𝑠]
ιVnil ind𝐕𝐞 (𝜀𝐴; 𝑦 .𝑧.𝑃 ; 𝑏𝜀 , 𝑦1.𝑦2.𝑦3.𝑝𝑦3 .𝑏;;) ⇀ 𝑏𝜀

ιVcons ind𝐕𝐞 (𝑎 ;;𝐴,𝑛 𝑙; 𝑦 .𝑧.𝑃 ; 𝑏𝜀 , 𝑦1.𝑦2.𝑦3.𝑝𝑦3 .𝑏;;) ⇀𝑏;; [𝑦1 ≔𝑛, 𝑦2 ≔𝑎, 𝑦3 ≔ 𝑙, 𝑝𝑦3 ≔ind𝐍(𝑙; 𝑧.𝑃 ; 𝑏𝜀 , 𝑦1.𝑦2.𝑦3.𝑝𝑦3 .𝑏;;)]

Figure 3.15. Vector type

vectors, which we have already encountered in Chapter 2, and is described
in detail in Figure 3.15. They are similar to lists, but with a natural num-
ber index which records the length of the vector in its type. This allows for
finely-grained specification, for instance a head function that takes as in-
put a vector of length at least one, and is thus ensured to never fail on an
empty vector by mere virtue of typing.

3.5.5. The Calculus of Constructions

So far we only gave examples of the inductive types one could wish for. A
description of how to generally define inductive types and construct induc-
tion principles in a way that keeps the good properties of the system would
not very enlightening at this point. Let us simply say that the main restric-
tion – barring typing constraints – is to ensure, through a criterion called
(strict) positivity, that the recursive structure of the inductive type is well-
founded, so that positing its existence does not endanger normalization or
consistency.

On paper, rather than a difficult to read general presentation we reuse the
previous set of examples to show how our setting adapts to inductive types
in their three main complexities – recursion, parameters and indices. But
the formalization in MetaCoq handles the general case, in the even more
complex setting of PCUIC as presented in Section 3.6.

In the end, whenwe talk about CICwemean the extension of CCω with any
number of inductive types, valid in the previous sense. As already explained,
in Part ‘Bidirectional Elaboration for Gradual Typing’ we need to restrict to
non-indexed inductive types. In that setting, our base system is CIC−, the
restriction of CIC to exclude indexed inductive types.

3.6. Beyond CIC: PCUIC 41

[LW11]: Lee et al. (2011), Proof-irrelevant
model of CC with predicative induction and
judgmental equality

3.6. Beyond CIC: PCUIC

CIC as described in the previous section is already very expressive and pow-
erful. It is nevertheless still far from a “real-world” type theory such as that
implemented in Coq and formalized in MetaCoq, the Polymorphic, Cumu-
lative Calculus of Inductive Constructions (PCUIC), which extends CIC with
many features which are crucial for usability. As some additions of PCUIC
are discussed throughout this thesis, we wish to already give a high level
idea of them, while reserving the technical details for Part ‘A Certified Ker-
nel for Coq, in Coq’.

3.6.1. Cumulativity

The first addition of PCUIC is cumulativity, which allows some extra flexi-
bility with universe levels. To see why this is useful, consider the polymor-
phic identity function λ(𝐴:□𝑖)(𝑥: 𝐴). 𝑥 , of type Π𝐴:□𝑖. 𝐴 → 𝐴. If we
want to use it at type 𝐍, we must force 𝑖 to be 0. But this means that we
cannot use it later on at type □0! In a concrete system, where a huge num-
ber of universe levels appear under the hood, this would quickly become
unhandy.

Instead, cumulativity – written ⪯ – is an extension of conversion with a
limited form of subtyping, generated by the inclusion of a universe □𝑖 in
any larger universe □𝑗 . This means that while □𝑖 ≅ □𝑗 is true only if 𝑖 = 𝑗 ,
cumulativity allows for □𝑖 ⪯ □𝑗 as soon as 𝑖 ≤ 𝑗 . This subtyping can be
extended to function types, by allowing Π 𝑥: 𝐴. 𝐵 ⪯ Π 𝑥: 𝐴′. 𝐵 whenever
𝐴 ≅ 𝐴′ and 𝐵 ⪯ 𝐵′. Note that contrarily to other forms of subtyping, this
does not allow for contravariant subtyping on the domain – that would
correspond to 𝐴′ ⪯ 𝐴 –, only for equivariant one – the domains should
be convertible. This is because cumulativity is usually modelled using set
inclusion [LW11], which straightforwardly handles equivariant subtyping,
but not so easily contravariant subtyping.

UnivCum
𝑖 ≤ 𝑗
□𝑖 ⪯ □𝑗

ΠCum
𝐴 ≅ 𝐴′ 𝐵 ⪯ 𝐵′

Π 𝑥: 𝐴. 𝐵 ⪯ Π 𝑥: 𝐴′. 𝐵′

ConvCum
𝐴 ≅ 𝐴′

𝐴 ⪯ 𝐴′ Refl 𝐴 ⪯ 𝐴 Trans
𝐴 ⪯ 𝐴′ 𝐴′ ⪯ 𝐴″

𝐴 ⪯ 𝐴″

UCum
Γ ⊢ 𝑇 ′ :□ 𝑇 ⪯ 𝑇 ′

Γ ⊢ 𝑇 ⪯ 𝑇 ′ :□ Cum
Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑇 ⪯ 𝑇 ′ :□

Γ ⊢ 𝑡 : 𝑇 ′
Figure 3.16. Rules for declarative cumu-
lativity

To adapt the definitions of declarative conversion to cumulativity, the three
important rules are given in Figure 3.16. The first two rules are the ones we
already hinted at: Rule UnivCum is the base case for cumulativity, and Rule
ΠCum is the relaxed congruence rule for Π-types. The next one, Rule Con-
vCum, allows to turn any proof of conversion in a cumulativity one, effec-
tively describing how cumulativity behaves outside the fragment formed
by Π-types and universes. Next come Rules Refl and Trans, which assert
that cumulativity is a pre-order. Of course there is no rule for symmetry,
because we do not want cumulativity to be an equivalence relation. Finally,

42 3. The Calculus of Inductive Constructions

[CH88]: Coquand et al. (1988), The calcu-
lus of constructions

Prop
⊢ Γ

Γ ⊢ Prop :□0

ΠTyProp

Γ ⊢ 𝐴 :□
Γ, 𝑥: 𝐴 ⊢ 𝑃 : Prop

Γ ⊢ Π 𝑥: 𝐴. 𝑃 : Prop

ΠPropProp

Γ ⊢ 𝐴 : Prop
Γ, 𝑥: 𝐴 ⊢ 𝑃 : Prop

Γ ⊢ Π 𝑥: 𝐴. 𝑃 : Prop

Figure 3.17. Typing rules for propositions

Rules UCum and Cum show how cumulativity is used: it simply replaces
conversion.

As for algorithmic conversion, the important modification is to replace α-
equality with an α-pre-order ≤α, which extends the former with a rule cor-
responding to Rule UnivCum: 𝑡 ≤α 𝑡′ means that 𝑡 and 𝑡′ have the exact
same structure, up to variable names and universe levels, that might be
lower in 𝑡 compared to 𝑡′.

3.6.2. The sort of propositions

A second addition in PCUIC, and one that has been a distinctive feature
of Coq for a very long time – it is already present in Coquand and Huet
[CH88] – is the sort Prop. This is a universe, like □𝑖, but it is designed to
be a type for propositions – hence the name. It has two main distinctive
characteristics.

The first one is its impredicativity, meaning that while Prop is at the bottom
of the universe hierarchy (Rule Prop), any quantification with a proposition
as codomain is again a proposition (Rules ΠTyProp and ΠPropProp). This
means that propositions are able to formalize properties of types at any
level. Due to this impredicative nature, having such a sort of propositions
makes the systemmuchmore powerful as a logic, which alsomakes it much
harder to build models of it. Indeed, those usually prove consistency of the
modelled system, something which requires having an even higher logical
strength than it. Since parts of this thesis – especially Part ‘Bidirectional
Elaboration for Gradual Typing’ – use such models that do not scale to
an impredicative sort of proposition, we refrain from including one in our
standard CIC. In the other cases, including a sort of propositions makes the
system more complex but without raising new interesting questions.

The second defining characteristic of Prop is proof irrelevance. This means
that PCUIC has a criterion, called singleton elimination, which maintains a
form of segregation between terms inhabiting types in □ and those inhab-
iting types in Prop, ensuring that terms of the first kind cannot depend in
a relevant way on terms of the second. For instance, if 𝑃 : Prop, it ensures
that it is impossible to build a function 𝑓 : 𝑃 → 𝐁 and two terms 𝑝1 : 𝑃
and 𝑝2 : 𝑃 such that 𝑓 𝑝1 ≅ ff and 𝑓 𝑝2 ≅ tt. This segregation aims at
allowing separation between the part of the system that should be seen as
programs and that which should be seen as proofs, so that it is possible to
write programs decorated with complex correctness proofs, while later on
erasing all the logical content to keep only the computational content of
the program. This is the erasure procedure we introduced in Section 1.3.2,
for which Prop is crucial.

3.6.3. Local definitions

It is often useful to locally introduce a shorthand to be used repeatedly,
and this is what PCUIC allows with a new term former, local definitions
let 𝑥: 𝐴 ≔ 𝑡 in 𝑢. In such a local definition, 𝑥 can be used in the term 𝑢 as
a shorthand for 𝑡 .
The main impact of this addition is its effect on contexts: as Rule LetIn
illustrates, when typing 𝑢, not only the type of the definition is recorded,

3.6. Beyond CIC: PCUIC 43

LetIn
Γ ⊢ 𝐴 :□ Γ ⊢ 𝑡 : 𝐴 Γ, 𝑥 ≔ 𝑡 : 𝐴 ⊢ 𝑢 : 𝐵

Γ ⊢ let 𝑥: 𝐴 ≔ 𝑡 in 𝑢 : let 𝑥: 𝐴 ≔ 𝑡 in𝐵
Figure 3.18a. Typing for local definitions

ζRed Γ ⊢ let 𝑥: 𝐴 ≔ 𝑡 in 𝑢
⇀ 𝑢[𝑥 ≔ 𝑡]

δRed
(𝑥 ≔ 𝑡: 𝐴) ∈ Γ
Γ ⊢ 𝑥 ⇀ 𝑡

Figure 3.18b. Top-level reduction for lo-
cal definitions

17: The notations are a bit misleading
here: the local definition is part of the syn-
tax of terms, while substitution is a meta-
level operation. While the former encodes
the latter in the syntax, they are quite dif-
ferent!

[Pol92]: Pollack (1992), Typechecking in
Pure Type Systems

but also its value 𝑡 . This is again due to dependency, because the value of
the definition, and not only its type, might be needed for 𝑢 to be well-typed.
As an example, suppose we have a function

head :Π(𝐴:□)(𝑥: 𝐍). 𝐕𝐞 (𝐴, S(𝑥)) → 𝐴
and consider

let 𝑥: 𝐍 ≔ 1 in λ 𝑣 : 𝐕𝐞 (𝐁, 𝑥). head 𝐁 0 𝑣
This term is well-typed only if the fact that 𝑥 has value 1 is available in the
right-hand side.

This also means that contexts now should be recorded in conversion and
cumulativity, because those need to access the value of a variable bound
by a definition if we want to enable the behaviour just described. In the
end, there are two top-level reductions for definitions, given opposite: they
can be either simplified right away into a substitution (ζRed)17, or recorded
into the context and simplified only later on using Rule δRed.

3.6.4. Global environments

PCUIC offers a second way to record definitions, inside a so-called global
environment. The difference between this and the addition of local defini-
tions in a context we just saw is motivated by rather concrete considera-
tions. The (local) context corresponds to definitions and abstractions en-
countered when type-checking a single proof or program, and should thus
be relatively shallow – the order of magnitude is a dozen variables – but
it might change very often, with variable being both added and abstracted
over. The environment, on the contrary, can become huge – corresponding
to a whole library with thousands of components — but changes less of-
ten, and usually in a monotone way – new definitions are added, but not
removed. Therefore, typing in PCUIC actually has an extra parameter: it is
of the form Σ; ; ; Γ ⊢ 𝑡 : 𝑇 , with Σ corresponding to the environment.

This environment is not only used for definitions and assumptions, but also
to keep track of inductive types. It thus effectively implements our some-
what vague assumption that CIC is extended with “any number of valid in-
ductive types”. Of course, there is a notion of environment well-formation,
which accounts for the fact that it should only contain objects that are well-
typed, together with other constraints, for instance that inductive types
respect the strict positivity criterion.

There is a further use for this environment: it also records the level variables
available for universes, and their constraints. Indeed, in PCUIC, universe
levels are expressions rather than simple natural numbers, and the order
between expressions is relative to a given environment Σ. There are actu-
ally two kinds of those universe variables. The first are global ones, that are
recorded in an ever-growing fashion in the environment. This is the older

44 3. The Calculus of Inductive Constructions

[ST14]: Sozeau et al. (2014), Universe Poly-
morphism in Coq

18: This is somewhat similar to the
Hindley-Milner style of type polymor-
phism [Hin69; Mil78] widely used in the
ML family of languages, albeit with uni-
verse levels rather than types.

[Hin69]: Hindley (1969), The Principal
Type-Scheme of an Object in Combinatory
Logic

[Mil78]: Milner (1978), A theory of type
polymorphism in programming

[TS18]: Timany et al. (2018), Cumulative
Inductive Types In Coq

[Gim95]: Giménez (1995), Codifying
guarded definitions with recursive schemes

approach, that was introduced in Coq together with typical ambiguity, fol-
lowing Pollack [Pol92].

This approach is however still not flexible enough, which is why a second
kind of variables were more recently introduced [ST14]. These are attached
locally to an entry in the environment, corresponding to a form of universe
polymorphism, and each time such a definition is used it can be instanti-
ated with new universe levels.18 This is for instance useful to have a single
(polymorphic) definition of categories, and still be able to define the cate-
gory – at level 𝑗 – of all categories – at a level 𝑖 < 𝑗 –, by instantiating the
definition at the two different levels 𝑖 and 𝑗 . If there was just one global level
𝑘, then doing this would result in a constraint 𝑘 < 𝑘, and this definition
would not be accepted.

3.6.5. Enhanced inductive types

Of course inductive types in PCUIC are also affected by these extensions.
Not only can they be polymorphic, as definitions, they also feature a form of
cumulativity, that makes this polymorphism more seamless – see Timany
and Sozeau [TS18] for a precise description. This for instance prevents is-
sues with 𝜀𝐴 not being of type 𝐋𝐢 (𝐴) because of a mismatch between type
variables – those do not appear in our presentation of CIC, but are present
in PCUIC due to the general setting for polymorphic inductive types.

Moreover, the strict positivity criterion adopted in PCUIC is very general, as
it allows mutually defined and nested inductive types. The former are mul-
tiple inductive types defined at the same time, where a constructor of one
type can take a recursive argument of another. For instance, an inductive
oddness/evenness predicatewith constructors oddS :Π 𝑥: 𝐍. even 𝑥 → odd S(𝑥)
and evenS :Π 𝑥: 𝐍. odd 𝑥 → even S(𝑥). The latter are types where a con-
structor can take a recursive argument mentioning the type being defined
as a parameter to another inductive type – for instance, a type of tree where
a node takes a list of trees as argument.

But the most significant difference is that the induction principles, such as
the ones we gave for CIC, are replaced with two new constructions: pattern-
matching and fixed-points. The first corresponds to the non-recursive com-
ponent of the induction principles, while the second allows to define a
function that calls itself recursively. To avoid paradoxical definitions, not
every recursive definition is accepted, however. Instead, there is a restric-
tion called the guard condition to how a recursive function can be defined,
which amounts to checking that recursive calls are made on structurally
smaller sub-terms – by means of pattern-matching. This guard condition
theoretically ensures that fixed-points and pattern-matching can always
be reduced to recursors [Gim95], which are what proofs of normalization
and/or consistency usually consider. However, in practice the former is
much more flexible and natural to use than the latter.

3.6.6. Records and co-inductive types

The last ingredient in PCUIC goes beyond inductive types, by adding more
primitive types to the theory.

3.6. Beyond CIC: PCUIC 45

[CST20]: Cohen et al. (2020), Hierarchy
Builder: algebraic hierarchies made easy in
Coq with Elpi

[Gim95]: Giménez (1995), Codifying
guarded definitions with recursive schemes

[Abe+13]: Abel et al. (2013), Copatterns:
programming infinite structures by observa-
tions

The first kind are record types, a generalization of Σ-types which allows for
any number of named fields. Themain addition of record types is the ability
to access those fields via projections rather than by using pattern-matching.
For the Σ-type as presented in Section 3.5, this would mean accessing the
two fields of the pair 𝑝 with two term formers 𝑝.1 and 𝑝.2. These record
types are very useful to package objects together, be it in programming or
in mathematics – where such bundles are ubiquitous, for instance when
formalizing hierarchies of mathematical structures [CST20].

The second kind are co-inductive types. These are somewhat similar to in-
ductive types, but while the latter correspond to well-founded objects, the
former represent potentially infinite objects, such as streams of values. Be-
cause of this flavour of infinity, co-inductive types pose an inherent threat
to good properties of the system, in particular decidability of type-checking.
At the time of their introduction in Coq [Gim95], they were presented in
a so-called “positive” fashion – close to the presentation of inductive types
–, which kept normalization at the cost of subject reduction. Another pre-
sentation, inspired by more recent work on co-induction, and especially co-
patterns [Abe+13], is the “negative” one – similar to the projection-based
presentation of record types –, which regains the good properties of the sys-
tem. While the older positive presentation is still present in Coq, in part for
compatibility reasons, only the negative one is formalized in MetaCoq.

Bidirectional Calculus of Inductive
Constructions

49

[Jim96]: Jim (1996), What Are Principal
Typings and What Are They Good For?

1: We call anything related to the Γ ⊢
𝑡 : 𝑇 judgement undirected, by contrast
with bidirectional typing.

2: We use the ▷ and ◁ symbols rather
than the more usual ⇒ and ⇐ to avoid
confusion with implication and with the
Coq notation for functions.

3: Pioneered by Pierce and Turner [PT00],
a general survey can be found in Dunfield
and Krishnaswami [DK21].

[PT00]: Pierce et al. (2000), Local Type In-
ference

[DK21]: Dunfield et al. (2021), Bidirec-
tional Typing

4: Pierce and Turner [PT00] for instance
stress good error reporting as an impor-
tant property of their approach.

[McB18]: McBride (2018), Basics of Bidi-
rectionalism
[McB19]: McBride (2019), Check the Box!

[Hue89]: Huet (1989), The Constructive En-
gine

[Coq96]: Coquand (1996), An algorithm
for type-checking dependent types

[Nor07]: Norell (2007), Towards a practical
programming language based on dependent
type theory

5: They are actually only able to give
types to normal forms.

[Asp+12]: Asperti et al. (2012), A Bi-
Directional Refinement Algorithm for the
Calculus of (Co)Inductive Constructions

When presenting a typing derivation the way we did in Chapter 3, there is
an important piece of information missing. In logical programming, this is
called the mode of the inference rules, i.e. which objects are considered as
inputs and which as outputs in the search for a derivation. This informa-
tion, however, is crucial when one tries to build a type-checker: some rules
might seem fine when writing them down on paper, but trying to give them
a sensible mode fails, indicating they are not suited for an implementation.
In the case of the typing judgement Γ ⊢ 𝑡 : 𝑇 , usually both the term 𝑡 un-
der inspection and the context Γ are inputs – although some depart from
this [Jim96]. The mode of the type 𝑇 , however, is much less clear: should
it be inferred based upon Γ and 𝑡 , or do we merely want to check whether
𝑡 conforms to a given 𝑇 ? Both are sensible questions, and in fact typing
algorithms for complex type systems usually alternate between them dur-
ing the inspection of a single term/program. The bidirectional approach
makes this difference between modes explicit, by decomposing undirected
typing1 Γ ⊢ 𝑡 : 𝑇 into two separate judgements Γ ⊢ 𝑡 ▷ 𝑇 (inference) and
Γ ⊢ 𝑡 ◁ 𝑇 (checking)2, that differ only by their modes. The type is an in-
put in inference, but an output in checking. Following this decomposition3

leads to type systems that are more structured and directly amenable to
implementations, and to good quality algorithms.4

This is appealing, but in the dependently typed world, despite advocacy
by e.g. McBride [McB18; McB19] to adopt this approach during the de-
sign of type systems on paper rather than in their implementations only,
most of the theoretical work to this day remains undirected. Bidirectional-
ity appears mostly in articles concentrating on the description of typing al-
gorithms, for instance Huet [Hue89], Coquand [Coq96], or Norell [Nor07].
However, since these primarily insist on the algorithmic aspect, they do
not consider the bidirectional structure for itself. Moreover, in the case of
Coquand [Coq96] and Norell [Nor07], they concentrate on bidirectional
typing as a way to remedy for the lack of annotations on their Curry-style
λ-abstractions. This is sensible when looking for lightness of the input syn-
tax, but poses an inherent completeness problem: a term such as (λ 𝑥.𝑥) 0
is not typeable in those systems.5 In the context of Church-style abstrac-
tion, the closest there is to a description of bidirectional typing for CIC is
probably the one given by the Matita team [Asp+12], which however con-
centrates again on the challenges posed by the elaboration and unification
algorithms. They also do not consider the problem of completeness with
respect to a given undirected system, as it would fail in their setting due to
the undecidability of higher order unification.

In this part (Bidirectional Calculus of Inductive Constructions), we wish
to fill this gap in the literature, by describing a bidirectional type system
that is complete with respect to (undirected) CIC, as presented in Chap-
ter 3. By completeness, we mean that any term that is typeable in the undi-
rected system should also infer a type in the bidirectional one. This feature
is very desirable when implementing kernels for proof assistants, whose
algorithms should correspond to their undirected specification – even on
terms not in normal form. Indeed, reduction is only normalizing on well-
typed terms, so it should not be called on a term that is not known to be
well-typed. Thus if a developer wishes to generate a term using tactics, they
cannot use reduction before knowing that it is well-typed, but might not be
able to type-check it because it is not a normal form… And ensuring that a
tactic returns normal forms only might be unfeasable, and should not be a

50

concern.

The bidirectional system we present naturally forms an intermediate step
between actual algorithms and undirected type systems, something we ex-
ploit in Part ‘A Certified Kernel for Coq, in Coq’. But its interest is not
limited to the relation with implementations. Indeed, the structure of a
bidirectional derivation is more constrained than that of an undirected one,
especially controlling the usage of computation – e.g. the conversion rule
Referencesrule:cic-conv. This finer structure can make proofs easier, while
the equivalence ensures that they can be transported to the undirected
world. We show this by providing straightforward proofs of uniqueness of
types up to cumulativity, and of strengthening.

As we did in Chapter 3, we start by exposing the main ideas in the simpler
setting of CCω, in Chapter 4. With those set clear, we go on with their
adaptation to PCUIC, and the subtle issues that arose in that context, in
Chapter 5. Finally, Chapter 6 describes early investigations into giving a
bidirectional treatment not only of typing, but also of conversion.

1: The motto – slightly adapted from
McBride [McB18] – is:A rule is a server for
its conclusion and a client for its premises.
Servers receive promises about inputs and
make promises about outputs, clients make
promises about inputs and receive promises
about outputs.

Warm-up: CCω 4.
4.1 Turning CCω Bidirectional . 51
4.1.1 McBride’s discipline 51
4.1.2 The typing rules 53
4.1.3 Constrained inference in

disguise 54

4.2 Properties of the Bidirec-
tional System 55

4.2.1 Soundness 55
4.2.2 Completeness 56
4.2.3 Uniqueness 58
4.2.4 Strengthening 59

4.1. Turning CCω Bidirectional

4.1.1. McBride’s discipline

To design our bidirectional type system, we follow a discipline exposed by
McBride [McB18; McB19]

[McB18]: McBride (2018), Basics of Bidi-
rectionalism
[McB19]: McBride (2019), Check the Box!

. The central point is to distinguish in a judge-
ment between three modes: the subject, whose well-formation is under ex-
amination, inputs, whose well-formation is a condition for the judgement to
bemeaningful, and outputs, whose well-formation should be a consequence
of the judgement. By well-formed, which we use indistinctly for contexts,
terms and types, we mean:

▶ ⊢ Γ in the case of a context Γ,
▶ Γ ⊢ 𝑇 :□ in the case of a type 𝑇 ,
▶ the existence of some 𝑇 such that Γ ⊢ 𝑡 : 𝑇 in the case of a term 𝑡 .

For the last two, this is relative to an implicit context Γ. We also use well-
typed for a term, with the same meaning as well-formed.

In the case of inference Γ ⊢ 𝑡 ▷ 𝑇 , the subject is 𝑡 , Γ is an input and 𝑇 is an
output. On the contrary, in checking Γ ⊢ 𝑡 ◁ 𝑇 , 𝑡 is still the subject and Γ
is an input, but this time 𝑇 is an input as well. This means that one should
consider whether Γ ⊢ 𝑡 ▷ 𝑇 only in cases where ⊢ Γ is already known, and
if the judgement is derivable it should be possible to conclude that not only
𝑡 , but also 𝑇 are well-formed.

In order to enforce this property globally, all inference rules should locally
preserve it as an invariant.1 More precisely, information flows in a clock-
wise manner. First, we can assume that inputs to the conclusion are well-
formed, as inputs to the whole rule. Next, we move to the premises. Here
the constraint is reversed: we should ensure that inputs to a premise are
well-formed, but can assume that its outputs and subjects are. We might
need to use the well-formation of subjects or outputs of previous ones for
that. Finally, information goes to the conclusion again, and now not only
the subject but also the output should be well-formed if all those of the
premises are.

(1)
Γ ⊢ 𝑡 ▷Π Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ◁ 𝐴

Γ ⊢ 𝑡 𝑢 ▷ 𝐵[𝑥 ≔ 𝑢]

(2)
Γ ⊢ 𝑡 ▷Π Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ◁ 𝐴

Γ ⊢ 𝑡 𝑢 ▷ 𝐵[𝑥 ≔ 𝑢]

(3)
Γ ⊢ 𝑡 ▷Π Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ◁ 𝐴

Γ ⊢ 𝑡 𝑢 ▷ 𝐵[𝑥 ≔ 𝑢]
(4)
Γ ⊢ 𝑡 ▷Π Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ◁ 𝐴

Γ ⊢ 𝑡 𝑢 ▷ 𝐵[𝑥 ≔ 𝑢]

(5)
Γ ⊢ 𝑡 ▷Π Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ◁ 𝐴

Γ ⊢ 𝑡 𝑢 ▷ 𝐵[𝑥 ≔ 𝑢]

Figure 4.1. An illustration of McBride’s discipline (well-formed objects are in blue, those not known to be so are in red)

52 4. Warm-up: CCω

2: In the extended context Γ, 𝑥: 𝐴.

[DK21]: Dunfield et al. (2021), Bidirec-
tional Typing

[BHL20]: Bauer et al. (2020), A general def-
inition of dependent type theories

3: These are the only type formers in
CCω, but in PCUIC, ℎ can also be e. g. an
inductive type.

4: Or, rather, a family of judgements in-
dexed by ℎ.

As an illustration, an example of a rule that respects this discipline – that
for application – is given in Figure 4.1. Let us ignore for an instant the exact
meaning of the judgement ▷Π which we introduce soon, and whose modes
are the same as inference. Instead, focus on well-formation: objects known
to be well-formed are on a blue background, those which are not are on
a red one. First, Γ is well-formed, as an input to the conclusion (1). Thus
we can thus move to the first premise, since its only input is Γ. From that
premise holding, we learn that 𝑡 and Π 𝑥: 𝐴. 𝐵 are well-formed (2). There-
fore,𝐴 is in particular well-formed, and we canmove to the second premise
whose two inputs are now known to be well-formed (3). From it, we learn
that 𝑢 is well-formed (4). Now we can deduce that 𝑡 𝑢 is well-formed. But
this is not enough: since 𝐵[𝑥 ≔𝑢] is an output of the conclusion, we must
ensure it is well-formed too. Fortunately, it is, since Π 𝑥: 𝐴. 𝐵 is, so 𝐵 is
too,2 and so 𝐵[𝑥 ≔𝑢] is as well, since Γ ⊢ 𝑢 ◁ 𝐴. Thus, we can move back
to the conclusion (5), which ends our roundtrip.

A somewhat similar discipline has appeared independently in Dunfield and
Krishnaswami [DK21, Section 4], where it is called ”Pfenning’s recipe”. The
main criterion ismode-correctness, which demands an information flow sim-
ilar to McBride’s, but is coarser, as it does not consider well-formation of
the objects, only their knowledge. For instance, in the case of λ 𝑥: 𝐴. 𝑡 ,
that criterion allows to directly extend a context with 𝐴 to infer a type
for 𝑡 , because it is known, but McBride’s discipline forbids it, because 𝐴’s
well-formation is not established. Another related condition is also used in
Bauer, Haselwarter, and Lumsdaine [BHL20]. The authors introduce the
notions of a (weakly) presuppositive type theory [BHL20, Def. 5.6] and of
well-presented premise-family and rule-boundary [BHL20, Def. 6.16 and
6.17], using what they call the boundary of a judgement as the analogue
of our inputs and outputs. Due to their setting being undirected, this is
however more restrictive, because they are not able to distinguish inputs
from outputs and thus cannot relax the condition to only demand inputs
to be well-formed but not outputs.

Because of our dependently typed setting, we actually need to introduce
a third judgement, beyond the already mentioned inference and checking:
constrained inference, written Γ ⊢ 𝑡 ▷ℎ 𝑇 , where ℎ is either Π or □.3 Con-
strained inference is a judgement4 with the exact same modes as inference,
but where the type output is not completely free. Rather, as the name sug-
gests, a constraint is imposed on it, namely that its head constructor can
only be the corresponding element of ℎ. This is needed to handle the be-
haviour absent in simple types that some terms might not have a desired
type “on the nose”. Take for instance the first premise Γ ⊢ 𝑡 :Π 𝑥: 𝐴. 𝐵 of
Rule App. What bidirectional judgement should replace it? It would be too
much to ask 𝑡 to directly infer a Π-type, as some reduction might be needed
to uncover this Π. Checking also cannot be used, because the domain and
codomain of the tentative Π-type are not known at that point: they should
be inferred from 𝑡 .
Finally, this mode distinction also applies to computation-related judge-
ments, although those have no subject. Instead, what is under scrutiny is
the “computational content” of the rule. For conversion Γ ⊢ 𝑇 ≅ 𝑇 ′:□,
both 𝑇 and 𝑇 ′ are inputs and thus should be known to be well-formed be-
forehand. For reduction 𝑇 →⋆ 𝑇 ′, on the contrary, 𝑇 is an input, but 𝑇 ′ is
an output. Hence, only 𝑇 needs to be well-formed a priori, and we rely on
the subject reduction property to ensure that the output 𝑇 ′ also is.

4.1. Turning CCω Bidirectional 53

Γ ⊢ 𝐴 :□
Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵

Γ ⊢ λ 𝑥: 𝐴. 𝑡 :Π 𝑥: 𝐴. 𝐵 Abs

[Bar91]: Barendregt (1991), An Introduc-
tion to Generalized Type Systems

5: PTS where this is true are called full.

[Pol92]: Pollack (1992), Typechecking in
Pure Type Systems

4.1.2. The typing rules

To transform the rules of CCω as given in Figure 3.2, start by recalling that
wewish to obtain a complete bidirectional type system. Therefore, any term
should infer a type, and thus all rules where the subject of the conclusion
starts with a term former should give rise to a rule with inference as a con-
clusion. It thus remains to choose the judgements for the premises, which
amounts to determining theirmodes. If a term in a premise appears as input
in the conclusion or output of a previous premise, then it can be considered
an input, otherwise it must be an output. Moreover, if a type output is un-
constrained, then inference can be used, otherwise we must resort to con-
strained inference. This transformation leads to the rules of Figure 4.2a.

Var
(𝑥: 𝑇) ∈ Γ
Γ ⊢ 𝑥 ▷ 𝑇 Univ Γ ⊢ □𝑖 ▷ □𝑖+1

ΠTy
Γ ⊢ 𝐴 ▷□ □𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 ▷□ □𝑗

Γ ⊢ Π 𝑥: 𝐴. 𝐵 ▷ □max(𝑖,𝑗)

Abs
Γ ⊢ 𝐴 ▷□ □𝑖 Γ, 𝑥: 𝐴 ⊢ 𝑡 ▷ 𝐵

Γ ⊢ λ 𝑥: 𝐴. 𝑡 ▷ Π 𝑥: 𝐴. 𝐵

App
Γ ⊢ 𝑡 ▷Π Π 𝑥: 𝐴. 𝐵 Γ ⊢ 𝑢 ◁ 𝐴

Γ ⊢ 𝑡 𝑢 ▷ 𝐵[𝑥 ≔ 𝑢]
Figure 4.2a.Rules for inference in bidirec-
tional CCω

In anticipation, we set the typing rules for CCω so that this transformation
would be direct. This particularly applies to the undirected Rule Abs, re-
called opposite. Indeed, there are at least two other ways to write it, which
do not lead to a valid bidirectional presentation. The first, which is the usual
one in Pure Type Systems (PTS) [Bar91], is to have Γ ⊢ Π 𝑥: 𝐴. 𝐵 :□ as a
premise instead of Γ ⊢ 𝐴 :□. In the setting of a general PTS, this is needed,
because not every Π-type is well-formed, even if the domain and codomain
are.5 However, this premise is problematic in the bidirectional setting. In-
deed, 𝐵 can only be inferred as a type for the body of the abstraction 𝑡 . But
to infer a type for 𝑡 , the context Γ, 𝑥: 𝐴 needs to be well-formed, which is
not known if this premise is the first one. This issue has been identified by
Pollack [Pol92], who remarked that the bidirectional structure we present
here is only equivalent to the undirected one in semi-full PTS – a slight
generalization of the full ones. In a full PTS, the opposite path of simply
removing the first premise altogether can also be taken, relying on validity
to ensure that ⊢ Γ, 𝑥 : 𝐴 and thus Γ ⊢ 𝐴:□. But again, in a bidirectional
setting, this does not respect McBride’s discipline.

The main difference between the bidirectional and undirected rules is that
we dropped hypotheses of context well-formation in Rules Univ and Var.
Indeed, since the context is always supposed to be well-formed as an input
to the conclusion, it is not useful to re-check it. This is also in line with
implementations, where the context is not checked at leaves of a derivation
tree, with performance issues in mind. The well-formation invariants then
ensure that any derivation starting with the (well-formed) empty context
will only ever encounter well-formed contexts.

54 4. Warm-up: CCω

Check
Γ ⊢ 𝑡 ▷ 𝑇 ′ 𝑇 ′ ≅ 𝑇

Γ ⊢ 𝑡 ◁ 𝑇

UnivInf
Γ ⊢ 𝑡 ▷ 𝑇 𝑇 →⋆ □𝑖

Γ ⊢ 𝑡 ▷□ □𝑖

ΠInf

Γ ⊢ 𝑡 ▷ 𝑇
𝑇 →⋆ Π 𝑥: 𝐴.𝐵

Γ ⊢ 𝑡 ▷Π Π 𝑥: 𝐴.𝐵

Figure 4.2b. Computation rules for bidi-
rectional CCω

[AA11]: Abel et al. (2011), A Partial Type
Checking Algorithm for Type:Type

[Pol92]: Pollack (1992), Typechecking in
Pure Type Systems

[ACD08]: Abel et al. (2008), Verifying a Se-
mantic 𝛽𝜂-Conversion Test for Martin-Löf
Type Theory

[GSB19]: Gratzer et al. (2019), Implement-
ing a Modal Dependent Type Theory

[Saï97]: Saïbi (1997), Typing Algorithm in
Type Theory with Inheritance

[Soz07]: Sozeau (2007), Subset Coercions
in Coq

With the rules for term formers taken care of, we are left with the single
Rule Conv. There are two different possible adaptations of this rule, de-
pending on modes for computation. In the case of checking, the target type
is an input, so it can be compared to the inferred one using conversion. But
in the case of constrained inference it is unknown, and so we must resort
to reduction to obtain it from the inferred one. Using conversion would
not respect modes, since it has two inputs. This eventually leads to the de-
composition of Rule Conv into Rule Check in the first case, while UnivInf
and ΠInf correspond to the second case. Note that while the way conver-
sion and reduction can be used in derivations have changed, those rela-
tions themselves remain untouched, we only refined them by giving them
an explicit mode. We also do not need to choose one or the other notion of
conversion yet. Instead, we can stay abstract, only listing the properties we
need from it in order to establish the equivalence.

4.1.3. Constrained inference in disguise

This need to split the conversion rule into a reduction and conversion sub-
routines depending on the mode is of course known to the implementors
of proof assistants [AA11]. It explains in part the ubiquity of weak-head
reduction in the dependently typed setting. Indeed, it is exactly theminimal
reduction strategy that is needed to expose the head constructor of a type,
and thus to implement constrained inference.

Still, reduction is only a means to determine whether a certain term fits
into a certain kind of types. In the setting of CCω, this is basically the only
way to do. However, as soon as conversion is extended or modified, reduc-
tion is often not enough any more. Putting constrained inference forward
explains some ideas that recurrently appear in such settings: they are not
ad-hoc workarounds, but are based on the need to account for constrained
inference.

We already mentioned Pollack [Pol92], where Γ ⊢ 𝑡 : 𝑇 is used for inference,
and a judgement written Γ ⊢ 𝑡 : ≥ 𝑇 – denoting type inference followed
by reduction – is used to effectively inline the two hypothesis of our con-
strained inference rules. Checking is also inlined. Similarly, Abel, Coquand,
and Dybjer [ACD08] use a judgement written Δ ⊢ 𝑉 𝛿 ⇑ Set ⇝ 𝑖, where
a type 𝑉 is checked to be well-formed, but with its exact level 𝑖 free. This
corresponds very closely to our use of ▷□ . Gratzer, Sterling, and Birkedal
[GSB19] similarly use a judgement Ξ ⊢ 𝑇 ⇐ 𝑡𝑦𝑝𝑒, but they do not bother
inferring the level as they never have any need for it.

But the main area where constrained inference repeatedly becomes appar-
ent is that of elaboration. For instance, Saïbi [Saï97] describes an elabora-
tion mechanism inserting coercions between types. This happens primarily
during checking, when both types are known. However, Saïbi introduces
two special classes to handle the need to cast a term to a sort or a function
typewithoutmore information, exactly in the placeswherewe resort to con-
strained inference instead of checking. More recently, Sozeau [Soz07] de-
scribes a system where conversion is augmented to handle subset types. As
in Pollack [Pol92], Γ ⊢ 𝑡 : 𝑇 is used for inference, and the other judgements
are inlined. Once again, reduction is not enough to perform constrained
inference, this time because type constructors can be hidden in subsets: an
inhabitant of a type such as {𝑓 : 𝐍 → 𝐍 ∣ 𝑓 0 = 0} should be usable as

4.2. Properties of the Bidirectional System 55

[Asp+12]: Asperti et al. (2012), A Bi-
Directional Refinement Algorithm for the
Calculus of (Co)Inductive Constructions

a function of type 𝐍 → 𝐍. An erasure procedure is therefore required on
top of reduction to remove subsets in the places where we use constrained
inference.

Analogous ideas can also be found in Matita’s elaboration algorithm, as
described in Asperti et al. [Asp+12]. Indeed, the presence of unification
meta-variables on top of coercions makes it even clearer that a specific
treatment of what we identified as constrained inference is required. In
the case of ▷Π , they have two rules to apply a function, one where its in-
ferred type reduces to a Π-type, corresponding to Rule ΠInf, and another
one to handle the case when the inferred type instead reduces to a meta-
variable. As Saïbi and Sozeau, they also need to handle coercions for terms
in function position. However, their solution is different: they introduce
new meta-variables for the domain and codomain, and rely on unification,
which is available in their setting, to find values for those. They also need
to introduce a special judgement they call type-level enforcing, which cor-
responds to our ▷□ judgement. The solution they take for Π-types is not
viable there, as one would need a kind of universe meta-variable. Instead,
they rely on backtracking to test multiple possible universe choices.

Finally, in Part ‘Bidirectional Elaboration for Gradual Typing’, somewhat
akin to the use of meta-variables in Asperti et al. [Asp+12], there are two
rules per constrained inference judgement. One when the head constructor
is the desired one – as for CCω –, and a second one to handle the wildcard
?, characteristic of gradual type systems.

4.2. Properties of the Bidirectional System

Let us now state and sketch proofs of the main properties of the bidirec-
tional system. The first two relate it to the undirected one: it is both sound
– terms typeable in the bidirectional system are typeable in the undirected
system – and complete – all terms typeable in the undirected system are
also typeable in the bidirectional system. Next, we investigate uniqueness
of types, and its relation to the choice of a strategy for reduction. Finally,
we expose how strengthening can be shown for undirected CCω by proving
it on the bidirectional side.

4.2.1. Soundness

A bidirectional derivation can be seen as a refinement of an undirected
derivation. Indeed, the bidirectional structure can be erased to obtain an
undirected derivation, replacing each bidirectional rulewith the correspond-
ing undirected rule. As bidirectional rules lack some premises of the undi-
rected ones, missing some sub-derivations must be retrieved by relying on
the well-formation invariants going with McBride’s discipline. Thus, we
get the following soundness theorem – note how the discipline manifests
as well-formation hypothesis on inputs.

Theorem 4.1. Soundness of bidirectional typing for CCω

If Γ is well-formed and Γ ⊢ 𝑡 ▷ 𝑇 or Γ ⊢ 𝑡 ▷ℎ 𝑇 , then Γ ⊢ 𝑡 : 𝑇 . If both
Γ and 𝑇 are well-formed and Γ ⊢ 𝑡 ◁ 𝑇 , then Γ ⊢ 𝑡 : 𝑇 .

56 4. Warm-up: CCω

Proof.
By mutual induction on the bidirectional typing derivation.
Each rule of the bidirectional system can be replaced by the correspond-
ing rule of the undirected system, with all three rules Check, UnivInf
and ΠInf replaced by Conv. In all cases, the induction hypothesis can
be used on sub-derivations of the bidirectional judgement, because con-
text extensions and checking are done with types that are known to be
well-formed,6

6: This is the point where following
McBride’s discipline is crucial!

by induction hypothesis on previous premises and possi-
bly validity.
Some sub-derivations of the undirected rules that have no counterpart
in the bidirectional ones are howevermissing. In Rules Univ and Var, the
hypothesis that Γ is well-formed is enough to get the required premise.
For Rule Check, the well-formation hypothesis on the type is needed
to get the typing premise of UConv. As for Rules UnivInf and ΠInf,
that typing premise is obtained by combining the induction hypothesis,
validity and subject reduction.
Alternatively, the appeal to validity could be removed by strengthening
the theorem to incorporate the well-formation of outputs on top of that
of the subject. Here we follow the proofs in MetaCoq, which establishes
meta-theoretical properties of the undirected system first – including
validity –, so we can exploit these.

4.2.2. Completeness

Contrarily to soundness, which keeps the structure of a derivation, com-
pleteness is of a different nature. Because in bidirectional derivations the
computation rules are much less liberal than in undirected ones, the struc-
ture of derivations must be altered. The crux of the proof is thus to ensure
that all uses of Rule Conv can be permuted down through the other rules,
in order to concentrate them in the places where they are authorized in the
bidirectional derivation. In a way, composing completeness with soundness
gives a kind of normalization procedure on undirected derivations, which
produces a canonical one by pushing conversion down as much as possi-
ble.

The proof mainly relies on the following lemma, which can be seen as a
strong form of injectivity of type constructors – the version of Property 3.9
is a direct consequence.

Lemma 4.2. Conversion implies reduction for type constructors

If 𝑇 ≅ □𝑖, then 𝑇 →⋆ □𝑖.

If 𝑇 ≅ Π 𝑥: 𝐴. 𝐵, then there exist 𝐴′ and 𝐵′ such that:

▶ 𝑇 →⋆ Π 𝑥: 𝐴′. 𝐵′
▶ 𝐴′ ≅ 𝐴
▶ 𝐵′ ≅ 𝐵

4.2. Properties of the Bidirectional System 57

[Coq96]: Coquand (1996), An algorithm
for type-checking dependent types

[Nor07]: Norell (2007), Towards a practical
programming language based on dependent
type theory

[AC07]: Abel et al. (2007), Untyped Algo-
rithmic Equality for Martin-Löf’s Logical
Framework with Surjective Pairs
[ACD08]: Abel et al. (2008), Verifying a Se-
mantic 𝛽𝜂-Conversion Test for Martin-Löf
Type Theory
[AA11]: Abel et al. (2011), A Partial Type
Checking Algorithm for Type:Type
[AÖV17]: Abel et al. (2017),Decidability of
Conversion for Type Theory in Type Theory

[McB16]: McBride (2016), I Got Plenty o’
Nuttin’
[McB18]: McBride (2018), Basics of Bidi-
rectionalism
[McB19]: McBride (2019), Check the Box!

Proof.
Let us spell out the proof on Π-types – the case of□ is similar, but easier.
For algorithmic conversion, by definition there must exist 𝑇 ′ and 𝑇″
such that 𝑇 →⋆ 𝑇 ′, Π 𝑥: 𝐴. 𝐵 →⋆ 𝑇″, 𝑇 ′ =α 𝑇″. But there can be
no top-level reduction step in Π 𝑥: 𝐴. 𝐵 →⋆ 𝑇″, so actually 𝑇″ is some
Π 𝑥: 𝐴″. 𝐵″ and 𝐴 →⋆ 𝐴″, 𝐵 →⋆ 𝐵″. Similarly, 𝑇 ′ must be some
Π 𝑥: 𝐴′. 𝐵′ such that 𝐴′ =α 𝐴″ and 𝐵′ =α 𝐵″. Combining these, we
obtain that 𝐴′ ≅ 𝐴 and 𝐵′ ≅ 𝐵, as expected.
For declarative conversion, we can go through the equivalence with al-
gorithmic conversion – and thus use confluence under the hood.

Theorem 4.3. Completeness of bidirectional typing for CCω

If Γ ⊢ 𝑡 : 𝑇 , then there exists 𝑇 ′ such that Γ ⊢ 𝑡 ▷ 𝑇 ′ and 𝑇 ′ ≅ 𝑇 .

Proof.
By induction on the undirected typing derivation.

Rules Var and Univ are base cases, and can be simply replaced by the
corresponding bidirectional rules. In the case of Rule Conv, the prop-
erty is a direct consequence of the induction hypothesis, together with
transitivity of conversion: we simply conflate two conversions together.

As for Rule ΠTy, the induction hypothesis on the domain 𝐴 gives the ex-
istence of 𝑇𝐴 such that Γ ⊢ 𝐴 ▷ 𝑇𝐴 and 𝑇𝐴 ≅ □𝑖. Using Lemma 4.2, we
can derive Γ ⊢ 𝐴 ▷□ □𝑖. Applying a similar reasoning on the codomain
and combining both is enough to conclude.

In Rule Abs, we do the same reasoning again on the type annotation.
Combined with the induction hypothesis on the body 𝑡 , we get Γ ⊢
λ 𝑥: 𝐴. 𝑡 ▷ Π 𝑥: 𝐴. 𝐵′ for some 𝐵′ such that 𝐵 ≅ 𝐵′, and thus Π 𝑥: 𝐴.
𝐵 ≅ Π 𝑥: 𝐴.𝐵′ as desired.

We are finally left with Rule App. Again, the key is Lemma 4.2, which
can be combined with the induction hypothesis on the function 𝑓 to
get Γ ⊢ 𝑓 ▷Π Π 𝑥: 𝐴′. 𝐵′ for some 𝐴′ and 𝐵′ such that 𝐴 ≅ 𝐴′ and
𝐵 ≅ 𝐵′, where Π 𝑥: 𝐴.𝐵 is the type of 𝑓 in the undirected derivation.
The induction hypothesis on the argument 𝑢 gives Γ ⊢ 𝑢 ▷ 𝐴″ with
𝐴″ ≅ 𝐴. Thus, by transitivity of conversion Γ ⊢ 𝑢 ◁ 𝐴′, and we can
apply Rule App to conclude.

Interestingly, the proof of soundness relies on subject reduction, which it-
self needs injectivity of type constructors and transitivity of conversion.
Similarly, completeness relies both on the injectivity as given by Lemma 4.2,
and transitivity of conversion. Be it for algorithmic or declarative conver-
sion, one at least of those is not directly provable – we need confluence. We
already hit this same tension between injectivity and transitivity with sub-
ject reduction, andmust draw the same conclusion: there is no free lunch!

Theorem 4.3 is quite specific to our Church-style design. Instead, an impor-
tant portion of the research on bidirectional typing in the context of depen-
dent types adopts a Curry-style approach. This is the case of e.g. Coquand
[Coq96], the type system of Agda as described by Norell [Nor07], and most
of the work by Abel [AC07; ACD08; AA11; AÖV17], and McBride [McB16;
McB18;McB19]. In such systems, λ-abstractions can only be checked against
a given type, but cannot infer one, which implies that only terms with no

58 4. Warm-up: CCω

[GSB19]: Gratzer et al. (2019), Implement-
ing a Modal Dependent Type Theory

𝑇 →⋆h Π 𝑥: 𝐴′.𝐵
Γ ⊢ 𝐴 ▷□ □𝑖

𝐴 ≅ 𝐴′ Γ, 𝑥: 𝐴 ⊢ 𝑡 ◁ 𝐵
Γ ⊢ λ 𝑥: 𝐴. 𝑡 ◁ 𝑇

redexes are typeable. Norell [Nor07] argues that explicit redexes are uncom-
mon in real-life programs, so that being unable to type them is not a strong
limitation in practice. Another solution, taken by McBride [McB22], is to
add type annotations in order regain the ability to check non-normal terms,
at the cost of inserting annotations at the right place. In all cases, however,
the fact that all terms well-typed in the declarative system infer a type is
irremediably lost. Weaker forms of completeness should still hold for such
systems, typically one where all terms check against their type, but are not
ensured to infer. See for instance Gratzer, Sterling, and Birkedal [GSB19,
Theorem 7.3] for one restricted to normal forms – and thus not taking the
role of annotations into account.

In a setting with Church-style abstraction, if one wishes to give the possi-
bility for seemingly untyped abstraction, another mechanism has to be re-
sorted to, typically elaboration usingmeta-variables. This is described in e.g.
Asperti et al. [Asp+12], which combines a rule similar to Rule Abs – where
the type of an abstraction is inferred – with another one, similar to the
Curry-style one – where abstraction is checked, see opposite. While such a
rule would make a system as that we have just described “over-complete”,
it is a useful addition to enable the propagation of checking information
upwards in the derivation, which is crucial in elaboration phases, even in
Church-style.

4.2.3. Uniqueness

All the bidirectional judgements of Figure 4.2a are syntax-directed, in the
sense that there is always at most one rule that applies to derive a certain
typing judgement, given a fixed subject. But there is still some indetermi-
nacy. Indeed, in rules involving reduction no strategy is fixed, thus two dif-
ferent reducts can be used with the same rule, resulting in different inferred
types. However, inferred types are still related:

Theorem 4.4. Uniqueness of inferred type up to joinability

If Γ is well-formed, Γ ⊢ 𝑡 ▷ 𝑇 and Γ ⊢ 𝑡 ▷ 𝑇 ′ then 𝑇 and 𝑇 ′ both reduce
to a common 𝑇″, e.g. 𝑇 →⋆ 𝑇″ and 𝑇 →⋆ 𝑇″. In particular, 𝑇 ≅ 𝑇 ′.

Proof.

By mutual induction on the first derivation, together with the same
property for constrained inference.

The main idea is to use confluence to relate different reduction paths
in Rules ΠInf and UnivInf. For the other rules, the conclusion is direct
from the induction hypotheses.

Combining this with soundness and completeness, we get uniqueness of
types for the undirected system.

Theorem 4.5. Uniqueness of types

If Γ ⊢ 𝑡 : 𝑇 and Γ ⊢ 𝑡 : 𝑆 then 𝑇 ≅ 𝑆.

4.2. Properties of the Bidirectional System 59

UnivWhInf

Γ ⊢ 𝑡 ▷ 𝑇
𝑇 →⋆h □𝑖

Γ ⊢ 𝑡 ▷□ □𝑖

ΠWhInf

Γ ⊢ 𝑡 ▷ 𝑇
𝑇 →⋆h Π 𝑥: 𝐴.𝐵

Γ ⊢ 𝑡 ▷Π Π 𝑥: 𝐴.𝐵

Figure 4.3. Constrained inference with a
weak-head strategy

Proof.
Since Γ ⊢ 𝑡 : 𝑇 , by soundness there exists some 𝑇 ′ such that Γ ⊢ 𝑡 ▷ 𝑇 ′
and moreover 𝑇 ′ ≅ 𝑇 . Similarly, there exists some 𝑆′ such that Γ ⊢
𝑡 ▷ 𝑆′ and moreover 𝑆′ ≅ 𝑆. But by uniqueness 𝑇 ′ ≅ 𝑆′, and thus
𝑇 ≅ 𝑆.

In order to completely eliminate indeterminacy, a reduction strategy can be
fixed. This amounts to replacing full reduction with weak-head reduction,
e.g. to replace the two reduction rules in Figure 4.2b by those of Figure 4.3.
This is still sound and complete. Soundness follows exactly the same proof
as Theorem 4.1. As for completeness, the main point is to show an analo-
gous to Lemma 4.2 for weak-head reduction.

Theorem 4.6. Reduction strategy

If Rules UnivInf and ΠInf are replaced by UnivWhInf and ΠWhInf,
then given a well-formed context Γ and a term 𝑡 there is at most one 𝑇
such that Γ ⊢ 𝑡 ▷ 𝑇 , and at most one 𝑇 ′ such that Γ ⊢ 𝑡 ▷ℎ 𝑇 ′.

Proof.

Once again, by mutual induction.

For inference, given a fixed term 𝑡 there is always at most one rule which
applies to derive Γ ⊢ 𝑡 ▷ 𝑇 , since there is exactly one rule per term
former. Combining this with the uniqueness of types inferred in the
premises by induction hypothesis is enough to conclude.

For the constrained inference judgement, once again there is only one
rule that applies. Since weak-head reduction is deterministic – given 𝑇 ,
there is at most one 𝑇 ′ such that 𝑇 →1h 𝑇 ′ –, there is at most one weak-
head normal form □ or Π 𝑥: 𝐴. 𝐵 for a type. Hence, the type obtained
by constrained inference is unique.

4.2.4. Strengthening

Reasoning on the bidirectional derivation makes proofs easier, while sound-
ness and completeness ensure the results can be carried to the undirected
system. One way to understand this is that the canonical derivation ob-
tained by combining soundness and completeness is more structured, and
thus more amenable to proofs.

An example of this is the strengthening property, a consequence of con-
ditional stability under renaming. We explained in Section 3.4 why prov-
ing these in the undirected system is not straightforward: the issue is that
computation is too unconstrained, so that derivations might make use of
needless variables. Bidirectional typing, however, does not have this defect,
since no type is ever ”invented”. Rather, they are obtained either by reduc-
tion of previously inferred types, or as inputs. This means that types in a
bidirectional derivation never mention useless variables, and thus that the
following holds.

60 4. Warm-up: CCω

Theorem 4.7. Conditional stability under renaming – bidirectional

Whenever we have

▶ 𝑥1: 𝐴1 …𝑥𝑛: 𝐴𝑛 ⊢ 𝑡 ▷ 𝑇
▶ for all 𝑖 such that 𝑥𝑖 appears in 𝑡 , there is a variable 𝑦𝑖 such that

(𝑦𝑖: 𝐴𝑖[𝑥1 ≔𝑦1 …𝑥𝑛 ≔𝑦𝑛]) ∈ Δ
it also holds that Δ ⊢ 𝑡[𝑥1 ≔𝑦1 …𝑥𝑛 ≔𝑦𝑛] ▷ 𝑇 [𝑥1 ≔𝑦1 …𝑥𝑛 ≔𝑦𝑛].

Proof.
By a direct induction on the typing derivation.

Note that we do not even need Δ to be well-formed.

And as a special case, strengthening follows.

Theorem 4.8. Strengthening – bidirectional

Whenever Γ, 𝑥: 𝐴 ⊢ 𝑡 ▷ 𝑇 and 𝑥 does not appear in 𝑡 , Γ ⊢ 𝑡 ▷ 𝑇 is
derivable.

From those, conditional stability under renaming and strengthening for the
undirected system can be obtained without any difficulty.

CheckCum

Γ ⊢ 𝑡 ▷ 𝑇
𝑇 ⪯ 𝑇 ′

Γ ⊢ 𝑡 ◁ 𝑇 ′

1: Uniqueness of inferred types up to join-
ability.

2: Uniqueness of types for undirected
typing.

Bidirectional PCUIC 5.
5.1 Cumulativity 61
5.2 Inductive Types 62
5.2.1 The pair type 62
5.2.2 Polymorphic inductive types . 63

As we have seen in Section 3.6, there is much more to the real Coq than
CCω. The ideas exposed in the previous chapter nevertheless scale very
well to these extensions. There are two areas, though, where some care
needs to be taken. The first is cumulativity, which in particular forces us to
reconsider the statement of the completeness and uniqueness properties,
see Section 5.1. But the main one is the introduction of inductive types. In
particular, there is a subtle interplay with cumulativity in the treatment
of pattern-matching. Working on the formalized proof of completeness in
MetaCoq led to the discovery of an incompleteness bug in the kernel of
Coq linked to this. In Section 5.2 we show how the bidirectional setting
adapts to inductive types, and try and give an intuition of the origin of the
completeness issue.

We do not give precise proofs in this chapter, instead relying on the for-
malization in MetaCoq described in Part ‘A Certified Kernel for Coq, in
Coq’.

5.1. Cumulativity

The introduction of the more liberal cumulativity rules in the undirected
system of course calls for an update to the computation rules. The change
to Rule Check is direct: simply replace conversion with cumulativity, as
done in Rule CheckCum opposite. As for the constrained inference rules,
they do not even need any modification. Intuitively, this is because there
is no reason to degrade a type to a larger one, unless it is forced by a given
target type in the checking judgment.

The statement of completeness also needs to account for cumulativity, and
becomes the following one.

Theorem 5.1. Completeness, with cumulativity

If Γ ⊢ 𝑡 : 𝑇 , then Γ ⊢ 𝑡 ▷ 𝑇 ′ is derivable for some 𝑇 ′ such that 𝑇 ′ ⪯ 𝑇 .

This also means that in the setting of PCUIC, uniqueness of types up to
conversion is not true any more. For instance, we both have Γ ⊢ □0 :□1
and Γ ⊢ □0 :□2, but □1 and □2 are not convertible. In that context, how-
ever, the type □1 still has a special property: it is minimal among all types,
what we call a principal type.

Definition 5.2. Principal type
The type 𝑇 is a principal type for term 𝑡 – in a context Γ – if Γ ⊢ 𝑡 : 𝑇
and for any 𝑇 ′ such that Γ ⊢ 𝑡 : 𝑇 ′, we have 𝑇 ⪯ 𝑇 ′.

The existence of such a principal type is the same as uniqueness of types
up to cumulativity. Moreover, even in the cumulative setting, Theorem 4.41

stays true. Intuitively, this is because it only relies on properties of reduc-
tion, but not of conversion. Thus, following the same proof as that of The-
orem 4.5,2 we obtain that inferred types are principal.

62 5. Bidirectional PCUIC

Theorem 5.3. Inferred types are principal

If Γ is well-formed and Γ ⊢ 𝑡 ▷ 𝑇 , then 𝑇 is a principal type for 𝑡 in Γ.

Proof.
If Γ ⊢ 𝑡 : 𝑇 ′, then by completeness there exists some 𝑇″ such that Γ ⊢
𝑡 ▷ 𝑇″, and moreover 𝑇″ ⪯ 𝑇 ′. But by Theorem 4.4, 𝑇 ≅ 𝑇″ ⪯ 𝑇 ′ and
thus 𝑇 ⪯ 𝑇 ′, and 𝑇 is thus indeed a principal type for 𝑡 in Γ.

The existence of principal types is not so easy to prove directly, as it more or
less amounts to showing soundness and completeness of the bidirectional
system at once. Nevertheless, it is useful, because it in particular means
that any well-typed term 𝑡 has an unambiguous smallest universe, which
can be obtained as the principal type of its principal type. This means that
there is a good separation between irrelevant propositions – those terms
whose smallest universe is Prop – and relevant terms – those whose small-
est universe is some □𝑖 –, and that this stays true even in presence of cu-
mulativity, and even if Prop ⪯ □𝑖. If this were not the case, the erasure of
propositional content – which is one of the important use cases of Prop –
would not make sense.

5.2. Inductive Types

5.2.1. An example: the pair type

To set ideas straight, let us look at how we can adapt the dependent pair
type of Figure 3.12 to the bidirectional setting: see Figure 5.1. To obtain
these rules, first notice that all undirected typing rules for the pair type
(Figure 3.12) must become inference rules if we want the resulting system
to be complete. The question therefore is once again to choose modes for
the premises. Rules PairTy and PairInf are very similar to the rule for Π-
types, there is not much surprise there.

Rule Pair shows why we insisted in the undirected system on recording the
types 𝐴 and 𝐵 in the pair. Indeed, they are needed to know which type to

Figure 5.1. Bidirectional pair type

PairTy
Γ ⊢ 𝐴 ▷□ □𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 ▷□ □𝑗

Γ ⊢ Σ 𝑥: 𝐴. 𝐵 ▷ □max(𝑖,𝑗)

Pair

Γ ⊢ 𝐴 ▷□ □𝑖
Γ, 𝑥: 𝐴 ⊢ 𝐵 ▷□ □𝑗 Γ ⊢ 𝑡 ◁ 𝐴 Γ ⊢ 𝑢 ◁ 𝐵[𝑥 ≔ 𝑡]

Γ ⊢ (𝑡,𝑢)(𝐴,𝑥.𝐵) ▷ Σ 𝑥: 𝐴. 𝐵

PairInd

Γ ⊢ 𝑠 ▷Σ Σ 𝑥: 𝐴. 𝐵 Γ, 𝑧: Σ 𝑥: 𝐴. 𝐵 ⊢ 𝑃 ▷□ □
Γ, 𝑦1: 𝐴, 𝑦2: 𝐵[𝑥 ≔ 𝑦1] ⊢ 𝑏 ◁ 𝑃[𝑧 ≔ (𝑦1,𝑦2)(𝐴,𝑥.𝐵)]

Γ ⊢ indΣ (𝑠; 𝑧.𝑃 ; 𝑦1.𝑦2.𝑏) ▷ 𝑃[𝑧 ≔ 𝑠]

PairInf
Γ ⊢ 𝑡 ▷ 𝑇 𝑇 →⋆ Σ 𝑥: 𝐴. 𝐵

Γ ⊢ 𝑡 ▷Σ Σ 𝑥: 𝐴. 𝐵

5.2. Inductive Types 63

Γ ⊢ 𝐴 ◁ □𝑖
Γ, 𝑥: 𝐴 ⊢ 𝐵 ◁ □𝑗

Γ ⊢ Σ@𝑖,𝑗𝑥: 𝐴. 𝐵 ▷ □max(𝑖,𝑗)

infer for the pair. Without the annotation, one could infer a type𝐴 for 𝑡 and
a type 𝐵′ for 𝑢, but there are potentially many incomparable types 𝐵 that
would be correct for the whole pair, depending on which instances of 𝑡 in 𝐵′
are abstracted to 𝑥 . We only know that𝐵′ is𝐵[𝑥 ≔ 𝑡], but this is not enough
to inambiguously determine 𝐵. This impossibility to invert a substitution
is a general source of need for annotations, which is not specific to pair
types!

Finally, Rule PairInd is the most complex. In presentations of recursors, of-
ten the predicate appears first, then the branches, and finally the scrutinee.
But this is not possible here, as the parameters of the inductive type are
needed to construct the context in which the predicate is typed. Instead,
those parameters can be inferred from the scrutinee. Thus, a type for the
scrutinee is first obtained using a new constrained inference judgment, forc-
ing the inferred type to be a Σ-type, but leaving its parameters free. Next,
these parameters can be used to construct the context to type the predicate.
And finally, once the predicate is known to be well-formed, it can be used
to type-check the branch.

This same approach can be readily extended to the other inductive types
of Section 3.5, with recursion or indices posing no specific problems.

5.2.2. Polymorphic inductive types

The account of general inductive types in PCUIC is slightly different from
the one we just gave. The reason for this is that giving a general account
of rules which infer type levels like our Rule PairTy is not easy. Indeed, the
parameters of an inductive type can be of a type much more complex than
simply □, and in that general setting deciding which type variable can be
inferred is a non-trivial problem. Instead, the polymorphic inductive types
as implemented in Coq store explicit universe levels on inductive types and
constructors. The pair type of Figure 5.1, for instance, would contain uni-
verse levels 𝑖, 𝑗 , so that both 𝐴 and 𝐵 would be checked rather than having
their level inferred. The rule for the type constructor in that context is given
opposite. This makes the treatment of complex inductive types possible by
using checking uniformly – rather than relying on constrained inference to
infer universe levels – at the cost of possibly needless annotations, as here
with Σ-types. This is mostly invisible for the end user though, as she does
very seldom write universe levels thanks to typical ambiguity anyway.

In the same spirit, pattern-matching in Coq – and its counterpart in PCUIC
– also stores enough information to easily reconstruct the context in which
the predicate and branches are typed. This information consists in universe
levels – for polymorphic inductive types – and parameters of the inductive
type. Thus, the actual typing rule for pattern-matching in the case of Σ-
types is closer to the following one:

Γ ⊢ 𝑠 ▷Σ Σ@𝑖,𝑗𝑥: 𝐴. 𝐵
𝑖 ≤ 𝑖′ 𝑗 ≤ 𝑗′ 𝐴 ⪯ 𝐴′ 𝐵 ⪯ 𝐵′ Γ, 𝑧: Σ 𝑥: 𝐴′. 𝐵′ ⊢ 𝑃 ▷□ □

Γ, 𝑦1: 𝐴′, 𝑦2: 𝐵′[𝑥 ≔ 𝑦1] ⊢ 𝑏 ◁ 𝑃[𝑧 ≔ (𝑦1,𝑦2)(𝐴′,𝑥.𝐵′)]
Γ ⊢ matchΣ ;𝑖′,𝑗′;𝐴′,𝐵′(𝑠; 𝑧.𝑃 ; 𝑦1.𝑦2.𝑏) ▷ 𝑃[𝑧 ≔ 𝑠]

64 5. Bidirectional PCUIC

3: Until version 8.14 to be precise.

4: A precise description of the problem in
the kernel and an example similar to the
one above are given in issue #13495.

5: This was carried out by Pierre-Marie
Pédrot starting with pull-request #13563,
following ideas that had been laid down
earlier by Hugo Herbelin in the Coq en-
hancement proposal #34.

[SLF22]: Sozeau et al. (2022), The Curious
Case of Case: Correct & Efficient Represen-
tation of Case Analysis in Coq and Meta-
Coq

Note that the domain and codomain are compared using cumulativity. This
is crucial to retain subject reduction. Indeed, reduction of the scrutinee
mightmake its inferred type decrease. For instance, supposewe have a poly-
morphic inductive 𝐼@𝑖 with a single constructor 𝑐 such that𝐴:□𝑖 ⊢ 𝑐@𝑖(𝐴).
Now consider

(λ 𝑦: 𝐼@1. 𝑦) 𝑐@0(𝐍) →1 𝑐@0(𝐍)
the redex infers type 𝐼@1, while the reduct infers 𝐼@0. Thus, if such a term is
plugged as scrutinee in a pattern-matching, the whole term is still typeable
after the reduction of the scrutinee because we allow inequalities rather
than equalities between levels.

But here lies a subtle issue: in pen-and-paper accounts of recursors, the
predicate and branches are often represented respectively as Π-types and λ-
abstractions. This is also how previous versions of Coq represented pattern-
matching.3 But recall that in PCUIC, cumulativity is equivariant on the do-
main of Π-types. This led to an implementation that wrongly compared
the universe levels using equality rather than inequality, leading to a com-
pleteness bug that manifested as a failure of subject reduction in situations
such as the one above.4 This prompted subsequent work, both on the the-
ory of PCUIC and on the implementation, to remove the use of Π- and
λ-abstractions completely from pattern-matching5, making both the im-
plementation less ad-hoc, and the theory cleaner. A detailed summary has
been given in Sozeau, Lennon-Bertrand, and Forster [SLF22].

Further investigations in that area might still be valuable though, in partic-
ular in order to determine what kind of annotations are actually needed for
pattern-matching, both in theory and in practice. Can we give a presenta-
tion of polymorphic inductive types that is as lightweight as pair types in
Figure 5.1? The bidirectional presentation is valuable there, because now it
is clear what the specification of an alternative syntax is: it should remain
complete, in the sense of Theorem 5.1.

https://github.com/coq/coq/issues/13495
https://github.com/coq/coq/pull/13563
https://github.com/coq/ceps/blob/master/text/inductive-branch-predicate-representation-and-reduction.md
https://github.com/coq/ceps/blob/master/text/inductive-branch-predicate-representation-and-reduction.md

[AÖV17]: Abel et al. (2017),Decidability of
Conversion for Type Theory in Type Theory

1: Type information is used to trigger η-
expansionwhen comparing inhabitants of
a Π-type.

2: Coq’s kernel has an implementation
that takes care of extensionality rules in
a term-directed fashion.
3: The changelog of Coq 8.4, where exten-
sionality for functions was introduced, ac-
tually reads: “The addition of η-conversion
is justified by the confidence that the formu-
lation of the Calculus of Inductive Construc-
tions based on typed equality (such as the
one considered in Lee and Werner to build
a set-theoretic model of CIC [LW11]) is
applicable to the concrete implementation
of Coq.” See Lennon-Bertrand [Len22] for
more insight on the difficulties in the un-
typed setting.

[LW11]: Lee et al. (2011), Proof-irrelevant
model of CC with predicative induction and
judgmental equality
[Len22]: Lennon-Bertrand (2022), À bas
l’η – Coq’s troublesome η-conversion

Bidirectional Conversion 6.
In Chapters 4 and 5, we considered typing, and saw how it could be turned
into a bidirectional relation. However, we did not consider conversion. In-
deed, since we chose to use an untyped notion of conversion, a bidirectional
approach would not have made sense, as there was no type around in con-
version.

However, the typed presentation of conversion is also a popular one, and
in that setting the question of giving a bidirectional presentation is sensi-
ble. Luckily, such a presentation is already available if we go through the
literature with the right glasses on. Indeed, in Abel, Öhman, and Vezzosi
[AÖV17], decidability of conversion is shown by introducing a “conver-
sion algorithm”, a relation presented via inference rules, but which directly
corresponds to an implementable convertibility check. This is somewhat
similar to how we show decidability of typing in Part ‘A Certified Kernel
for Coq, in Coq’ by going through bidirectional typing as an intermedi-
ate, more structured representation. But the interesting point is that this
typed1, algorithmic conversion is in fact bidirectional! Indeed, while regu-
lar conversion-checking uses the type as input, it is mutually defined with
a specific relation to compare neutrals, which infers a type while checking
that the neutrals are convertible. In this chapter, we re-cast the ideas of
Abel, Öhman, and Vezzosi [AÖV17] in our setting, clearly delineating their
bidirectional nature.

Moreover, we can use that bidirectional structure to show that this typed
algorithmic conversion agrees with an untyped one, close to the conver-
sion algorithm implemented in Coq. This is interesting, because currently
PCUIC as presented in MetaCoq is not able to handle extensionality rules
such as the η-rule for functions. This is not because we do not know how
to handle them in the kernel2 but rather because it is difficult to give a
good specification of them in the untyped setting chosen for MetaCoq’s
conversion.3 Thus, showing that typed and untyped algorithms agree could
be a first step towards a specification of MetaCoq using typed conversion,
which would facilitate the incorporation of extensionality rules that are
currently direly missing to the project.

The chapter is organized as follows: Section 6.1 introduces the main rela-
tion we will be interested in, namely the bidirectional conversion inspired
by Abel, Öhman, and Vezzosi [AÖV17]; Section 6.2 presents its untyped
counterpart, close to the implementation of Coq; Section 6.3 discusses the
meta-theoretical properties needed for the rest of the chapter, and the diffi-
culties they pose; finally, Section 6.4 presents the equivalence between this
bidirectional conversion and the untyped one.

The content of this chapter is rather new, and its material has not yet been
submitted to peer-reviewing. As such, it should be regarded as a first at-
tempt at making interesting ideas visible, rather than a finished and pol-
ished exposition.

66 6. Bidirectional Conversion

4: Or logical relations, translations…

5: As is the case of all the rules introduced
so far, especially β and ι.

6: Saying that 𝑝 and 𝑞 of type Σ 𝑥: 𝐴. 𝐵
are convertible whenever their two com-
ponents are.

7: A generalized version of pair types, see
Section 3.6.5.
8: Saying that whenever 𝑃 : SProp, and
𝑝 : 𝑃 , 𝑞 : 𝑃 , 𝑝 and 𝑞 are convertible.

9: Something similar happens for record
types.

[Uni13]: Univalent Foundation Program
(2013), Homotopy Type Theory: Univalent
Foundations of Mathematics

[App22]: Appel (2022), Coq’s Vibrant
Ecosystem for Verification Engineering (In-
vited Talk)

[Nor07]: Norell (2007), Towards a practical
programming language based on dependent
type theory

10: In the specific case of functions, for
performance reasons the Agda imple-
mentation actually uses the same term-
directed technique as Coq, similar to that
of Section 6.2. But type-directed exten-
sionality rules are used e. g. for the defi-
nitional unit type.

[AÖV17]: Abel et al. (2017),Decidability of
Conversion for Type Theory in Type Theory

11: We use the colour blue for the typed
relations, and the ⊢t symbol to distin-
guish typing judgments defined using the
typed relations.

6.1. Bidirectional Conversion

6.1.1. Extensionality and η-rules

Before we can get to bidirectional conversion, let us first go over why using
typed conversion is interesting. Typed conversion is as old as type theory
itself [Mar72], and there are two main reasons that make it a better choice
over untyped conversion as we have used until now. The first is that it is
easier to build models4 using typed conversion, because these can use that
extra information to interpret conversion at a given type. But the reason that
is of interest to us here, as we do not build such models, are extensionality
rules.

In general, extensionality rules allow equating two terms, not based on their
shape,5 but on their type. The most basic one is that for functions, which
says that any function 𝑓 and 𝑔 of typeΠ 𝑥: 𝐴. 𝐵 should be convertible when-
ever 𝑓 𝑥 and 𝑔 𝑥 are – note that here 𝑓 and 𝑔 are any functions. As their
name suggest, this kind of rules constrain the system to be somewhat ex-
tensional. For instance, in the case of functions, 𝑓 and 𝑔 cannot contain any
“hidden” information other than their behaviour using application, because
such information would disappear when applying the extensionality rule.
In Coq, similar extensionality rules exist for dependent pair types6, and
more broadly for record types,7 as well as for strict propositions [Gil+19;
PT22].8

In the case of functions,9 the extensionality rule is inter-derivablewithwhat
is called the η-rule, which equates 𝑓 and λ 𝑥: 𝐴.𝑓 𝑥 . While less useful than
β-rules, η-rules are still valuable. For instance, in the setting of homotopy
type theory, they are needed to deduce function extensionality from the
univalence axiom [Uni13, Theorem 4.9.4]. Strict propositions are also seen
as a promising tool for proof management [App22].

6.1.2. Conversion checks, neutral comparison infers

If we want to describe such type-based rules, it is natural to wish for a
typing relation that maintains the type, in order to use it to trigger exten-
sionality rules. This what happens for instance in Agda [Nor07].10 A nice
theoretical presentation of this is given by the “algorithmic conversion” of
Abel, Öhman, and Vezzosi [AÖV17], from which we take inspiration here
to describe a bidirectional conversion relation for CCω.

The important intuition about this relation is that it actually decomposes
conversion in two components. On one side, generic conversion, that we will
continue writing11 ≅, which takes a type as input – i.e. it checks. On the
other side, neutral comparison, written ≈, which takes a type as output – it
infers. There are two reasons for this. First, applying extensionality rules on
neutrals is useless, as this will simply create blocked redexes. For instance,
if 𝑛 and 𝑛′ are neutral functions, 𝑛 𝑥 and 𝑛′ 𝑥 are convertible exactly when 𝑛
and 𝑛′ are. But more importantly, the inferred information is used to know
at which type the recursive appeals to conversion need to be done. In the
case of applications again, comparing 𝑛 𝑡 with 𝑛′ 𝑡′, we need to infer a type
Π 𝑥: 𝐴. 𝐵 while recursively comparing 𝑛 with 𝑛′ to compare 𝑡 to 𝑡′ at type
𝐴. This information can only be inferred from the neutrals: even if we know

6.1. Bidirectional Conversion 67

12: This is due to the product rule, to
which we will get soon.

that the comparison between 𝑛 𝑡 and 𝑛′ 𝑡′ happens at type 𝑇 , this gives no
insight on the type at which 𝑡 and 𝑡′ should be compared.

Check
Γ ⊢t 𝑡 ▷ 𝑇 Γ ⊢ 𝑇 ⪯ 𝑇 ′ ◁

Γ ⊢t 𝑡 ◁ 𝑇 ′ RedCum
𝑇 →⋆h 𝑇 ′ 𝑈 →⋆h 𝑈 ′ Γ ⊢ 𝑇 ′ ⪯h 𝑈 ′ ◁

Γ ⊢ 𝑇 ⪯ 𝑈 ◁

Figure 6.1a. Generic cumulativity

We wish to extend CCω, so the rules we present here are meant to comple-
ment the rules of Figures 4.2a and 4.2b, replacing Rule Check of Figure 4.2b
by Rule Check of Figure 6.1a. We cannot define a system based purely on
conversion,12 so we use generic cumulativity ⪯ instead. Note also that there
is no known level at which the two types should be compared, hence generic
cumulativity “checks”, but against themere fact of being a type, rather than
against a precise type. This is akin to the relation written Γ ⊢ 𝑇 ≅ 𝑇 ′ or
Γ ⊢ 𝑇 ≅ 𝑇 ′ 𝑇𝑦𝑝𝑒 often used in the setting of Martin-Löf type theory.
To deduce generic cumulativity, there is only one rule that applies, Rule
RedCum: both arguments are reduced to weak-head normal forms, before
being compared by the auxiliary relation ⪯h.

BdNeuCum
Γ ⊢ 𝑁 ≈ 𝑁 ′ ▷ 𝑆
Γ ⊢ 𝑁 ⪯h 𝑁 ′ ◁ BdUniCum

𝑖 ≤ 𝑗
Γ ⊢ □𝑖 ⪯h □𝑗 ◁

BdΠCum
Γ ⊢ 𝐴 ≅ 𝐴′ ◁ Γ, 𝑥: 𝐴 ⊢ 𝐵 ⪯ 𝐵′ ◁

Γ ⊢ Π 𝑥: 𝐴. 𝐵 ⪯h Π 𝑥: 𝐴′. 𝐵′ ◁ Figure 6.1b. Generic cumulativity be-
tween reduced types

This auxiliary relation, in turn, is defined by the rules of Figure 6.1b, which
either apply congruence rules if both types being compared are canonical
forms (Rules BdUniCum and BdΠCum), or call neutral comparison other-
wise (Rule BdNeuCum). In the latter case, we do not need to check that the
type 𝑆 inferred by the neutral comparision matches that at which cumula-
tivity happens: this will always be true thanks to the well-typing invariants
we maintain, so we do not need to re-check it here. Instead, the inferred
type is only useful to recover information in further neutral comparison,
see Figure 6.1d.

RedConvTy
𝑇 →⋆h 𝑇 ′ 𝑈 →⋆h 𝑈 ′ Γ ⊢ 𝑇 ′ ≅h 𝑈 ′ ◁

Γ ⊢ 𝑇 ≅ 𝑈 ◁ BdNeuConvTy
Γ ⊢ 𝑁 ≈ 𝑁 ′ ▷ 𝑆
Γ ⊢ 𝑁 ≅h 𝑁 ′ ◁

BdUniConvTy
𝑖 = 𝑗

Γ ⊢ □𝑖 ≅h □𝑗 ◁
BdΠConvTy

Γ ⊢ 𝐴 ≅ 𝐴′ ◁ Γ, 𝑥: 𝐴 ⊢ 𝐵 ≅ 𝐵′ ◁
Γ ⊢ Π 𝑥: 𝐴. 𝐵 ≅h Π 𝑥: 𝐴′. 𝐵′ ◁

Figure 6.1c. Generic conversion between types

Generic conversion between types is defined in Figure 6.1c, in a way very
similar to generic cumulativity.

Next, we get to neutral comparison, in Figure 6.1d. Neutrals are related
exactly when they are the same variable, applied to two lists of recursively
convertible arguments. The interesting rule is Rule AppComp, where we see

68 6. Bidirectional Conversion

VarComp
(𝑥: 𝐴) ∈ Γ

Γ ⊢ 𝑥 ≈ 𝑥 ▷ 𝐴 AppComp
Γ ⊢ 𝑛 ≈ 𝑛′ ▷Π Π 𝑥: 𝐴. 𝐵 Γ ⊢ 𝑡 ≅ 𝑡′ ◁ 𝐴

Γ ⊢ 𝑛 𝑡 ≈ 𝑛 𝑡′ ▷ 𝐵[𝑥 ≔ 𝑡]

RedComp
Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑇 𝑇 →⋆h Π 𝑥: 𝐴. 𝐵

Γ ⊢ 𝑛 ≈ 𝑛′ ▷Π Π 𝑥: 𝐴. 𝐵

Figure 6.1d. Neutral comparison

13: For instance, 𝐴 might be □0 and 𝐵
might be □1, so that 𝐴 → 𝐵 is at level
2 but 𝐴 is at level 1.

14: This is Lemma 6.6.

the behaviour described earlier: the domain of the inferred type for the
neutral is used to compare the arguments.

RedConvTm
𝑡 →⋆h 𝑡′ 𝑢 →⋆h 𝑢′ 𝐴 →⋆h 𝐴′ Γ ⊢ 𝑡′ ≅h 𝑢′ ◁ 𝐴′

Γ ⊢ 𝑡 ≅ 𝑢 ◁ 𝐴

BdNeuConvUni
Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑆

Γ ⊢ 𝑛 ≅h 𝑛′ ◁ □𝑖
BdNeuConvNeu

Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑆 ne𝑁
Γ ⊢ 𝑛 ≅h 𝑛′ ◁ 𝑁

BdUniConvTm
𝑖 = 𝑗

Γ ⊢ □𝑖 ≅h □𝑗 ◁ □𝑘
BdΠConvTm

Γ ⊢ 𝐴 ≅ 𝐴′ ◁ □𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 ≅ 𝐵′ ◁ □𝑖
Γ ⊢ Π 𝑥: 𝐴. 𝐵 ≅h Π 𝑥: 𝐴′. 𝐵′ ◁ □𝑖

Figure 6.1e. Generic conversion between terms

Finally, we are left with generic conversion between terms, which is called
recursively by neutral comparison. The first set of rules, given in Figure 6.1e
is very similar to the one for types. First, the two terms and the type at
which they are compared are reduced, and the terms are then compared
using the auxiliary relation≅h (Rule RedConvTm). If the terms are neutrals,
neutral comparison is used (Rules BdNeuConvUni and BdNeuConvNeu).
This is only possible if the type is a universe or a neutral. Indeed, to keep
the relation deterministic, this rule cannot be applied at a Π-type, where
extensionality must be used instead.

Otherwise, congruence rules must be used. In case the comparison hap-
pens at the universe, these are very similar to that for types (Rules BdUni-
ConvTm and BdΠConvTm). Note, however, that in order to maintain the
well-formation invariant mandated byMcBride’s discipline, we should only
appeal to Γ ⊢ 𝑡 ≅ 𝑡′ ◁ 𝐴when we know that both 𝑡 and 𝑡′ check against𝐴.
But in Rule BdΠConvTm, the domains and codomains might be at a uni-
verse level lower that 𝑖 even if the whole product is at that level.13 Thus, in
order to recursively compare 𝐴 to 𝐴′ and 𝐵 to 𝐵′, we must know that they
still check against □𝑖, which requires cumulativity.

Figure 6.1f. Generic conversion between
functions

BdFunConv
Γ, 𝑥: 𝐴 ⊢ 𝑓 𝑥 ≅ 𝑓 ′ 𝑥 ◁ 𝐵
Γ ⊢ 𝑓 ≅h 𝑓 ′ ◁ Π 𝑥: 𝐴. 𝐵

The last rule is that for comparing two functions (Rule BdFunConv). In that
case, an extensionality rule is directly applied without even looking at the
two terms. There is thus no primitive congruence rule for λ-abstractions,
but it is derivable,14 because (λ 𝑥: 𝐴. 𝑡) 𝑥 →⋆h 𝑡 , and so in case both 𝑓 and

6.2. Untyped Presentation 69

15: The subject is the “computational
content” of the judgment, i. e. whether
the conversion/cumulativity holds. This is
similar to the conversion judgments of
general type theories [BHL20].

[BHL20]: Bauer et al. (2020), A general def-
inition of dependent type theories

16: We use the colour purple for untyped
relations, and the ⊢u symbol for typing
judgments defined using those relations.

𝑓 ′ are abstractions, the recursive calls amount to comparing their bodies.

The rules as given directly translate to an algorithm, as they are nicely term-
or type-directed, i.e. there is always at most one rule that applies to derive
a judgment. Moreover, if in generic cumulativity and generic conversion
we view all objects as inputs,15 in neutral comparison the type is an output
and all other objects are inputs, and in reduction 𝑡 →⋆h 𝑡′, 𝑡 is an input and
𝑡′ is an output, then all rules respect McBride’s discipline.

6.2. Untyped Presentation

In the presentation of Section 6.1, types are carried around, but almost
never used. Indeed, only Rule BdFunConv really needs the type informa-
tion to be applied. However, there is an alternative approach, used by the
kernels of Coq and Agda, which avoids looking at types altogether by re-
placing the type-directed Rule BdFunConv with term-directed ones. As
types are not maintained, there is also no point in maintaining the context
either. Thus, this alternative conversion simply relates two terms: 𝑖𝑛𝑡𝑟𝑜∗𝑡 ≅
𝑡′.16 Let us now spell out the rules for this alternative, untyped presenta-
tion.

CheckUty
Γ ⊢u 𝑡 ▷ 𝑇 𝑇 ⪯ 𝑇 ′

Γ ⊢u 𝑡 ◁ 𝑇 ′

RedCumUty
𝑡 →⋆h 𝑡′ 𝑢 →⋆h 𝑢′ 𝑡′ ⪯h 𝑢′

𝑡 ⪯ 𝑢

RedConvUty
𝑡 →⋆h 𝑡′ 𝑢 →⋆h 𝑢′ 𝑡′ ≅h 𝑢′

𝑡 ≅ 𝑢

BdNeuCumUty
𝑛 ≈ 𝑛′
𝑛 ⪯h 𝑛′ BdNeuConvUty

𝑛 ≈ 𝑛′
𝑛 ≅h 𝑛′ Figure 6.2a. Untyped cumulativity and

conversion

The first rules of Figure 6.2a are similar to those for the typed variants:
cumulativity can be used in checking, and terms are compared by first re-
ducing them to weak-head normal form, and if they are neutrals the special
neutral comparison is called.

BdUniCumUty
𝑖 ≤ 𝑗

□𝑖 ⪯h □𝑗
BdΠCumUty

𝐴 ≅ 𝐴′ 𝐵 ⪯ 𝐵′

Π 𝑥: 𝐴. 𝐵 ⪯h Π 𝑥: 𝐴′. 𝐵′

BdUniConvUty
𝑖 = 𝑗

□𝑖 ≅h □𝑗
BdΠConvUty

𝐴 ≅ 𝐴′ 𝐵 ≅ 𝐵′

Π 𝑥: 𝐴. 𝐵 ≅h Π 𝑥: 𝐴′. 𝐵′
Figure 6.2b. Untyped bidirectional con-
version for types

The rules for the comparison of types are given in Figure 6.2b, and are again
close to those for the typed variant: there is a congruence rule for Π-types,
and universes are convertible when their levels are in the right relation.

70 6. Bidirectional Conversion

Figure 6.2c.Untyped neutral comparison

VarCompUty 𝑥 ≈ 𝑥 AppCompUty
𝑛 ≈ 𝑛′ 𝑡 ≅ 𝑡′

𝑛 𝑡 ≈ 𝑛 𝑡′

17: If wemaintain the invariant that both
terms that are compared have a common
type, then there is no need to compare the
domains of the abstractions because they
are always convertible.

18: That which is under scrutiny.

19: That is, Γ ⊢ 𝑇 ⪯ 𝑇 ′ ◁ and consort.

In the case of neutral comparison, the rules (Figure 6.2c) are even simpler
than in the typed case, because there is no need for a special rule to reduce
the type. Thus, there are only two rules, one for application and one base
case for variables.

Figure 6.2d. Untyped, bidirectional con-
version for functions

BdAbsCong
𝑡 ≅ 𝑡′

λ 𝑥: 𝐴. 𝑡 ≅h λ 𝑥: 𝐴′. 𝑡′

BdAbsNeu
𝑡 ≅ 𝑛′ 𝑥 ne 𝑛′
λ 𝑥: 𝐴. 𝑡 ≅h 𝑛′ BdNeuAbs

𝑛 𝑥 ≅ 𝑡′ ne 𝑛
𝑛 ≅h λ 𝑥: 𝐴′. 𝑡′

Finally, the interesting difference appears in Figure 6.2d. Here what was
done using only one generic rule (Rule BdFunConv) is decomposed into
four of them, depending on whether each function in weak-head normal
form is a neutral or an abstraction. In case both are abstractions, the exten-
sionality rules amounts to a congruence, i.e. Rule BdAbsCong.17 In case
both are neutrals, the extensionality rule only inserts a useless application
to a variable, but neutral comparison can be directly used instead, bymeans
of Rule BdNeuConvUty. The only situation where the extensionality rule
is useful is when comparing a neutral to an abstraction. But in those cases,
the information that the comparison happens at a function type and that
the neutral needs to be η-expanded can be obtained from the abstraction.
This is what the symmetric Rules BdAbsNeu and BdNeuAbs do.

6.3. McBride’s Discipline

6.3.1. Modes for the relations

As we have seen in Section 4.1.1, for a bidirectional system to be well-
behaved, it must preserve the well-formation of the objects it manipulates
as an invariant, what we have called McBride’s discipline. First, we need to
distinguish subjects, inputs and outputs of the judgments. In all relations
we just defined, the subject18 is not a term as in typing, but rather whether
a certain relation holds. As in the case of the typing relation, the context is
always an input. In cumulativity, conversion and neutral comparison, the
two terms are also inputs, since we wonder whether two given terms are
related. This is contrast with reduction, where only the redex is an input,
while the reduct is an output. This separation of modes between conver-
sion/cumulativity and reduction already appeared in Section 4.1.1. Finally,
as hinted by the use of the inference versus checking symbols, the type is
an output in neutral comparison, while it is an input in conversion and cu-
mulativity. As for the type-level relations19 there is no real input, only the
knowledge that the comparison happens at the type level, which is similar
to performing the comparison at some □𝑖 for an unspecified 𝑖.

6.3. McBride’s Discipline 71

With the modes set down, the following definitions of inputs and outputs
well-formation are rather natural. The only maybe surprising point is that
we express all those conditions in the typed variant. This way, we need
only consider the meta-theory of one system – the one based on typed
relations –, and can carry over all these properties to the other system after
we have proven their equivalence.

Definition 6.1. Inputs well-formation – typed relations

We say that “inputs are well-formed” for one of the relations of Fig-
ures 6.1a to 6.1f to mean the following:

▶ in the case of Γ ⊢ 𝑡 ≅ 𝑡′ ◁ 𝑇 and of Γ ⊢ 𝑡 ≅h 𝑡′ ◁ 𝑇 , that ⊢ Γ,
that there exists 𝑖 such that Γ ⊢t 𝑇 ▷□ □𝑖, and that Γ ⊢t 𝑡 ◁ 𝑇
and Γ ⊢t 𝑡′ ◁ 𝑇 ;

▶ in the case of Γ ⊢ 𝑇 ≅ 𝑇 ′ ◁ , Γ ⊢ 𝑇 ≅h 𝑇 ′ ◁ , Γ ⊢ 𝑇 ⪯ 𝑇 ′ ◁
and Γ ⊢ 𝑇 ⪯h 𝑇 ′ ◁ , that ⊢ Γ, and that there exist 𝑖 and 𝑗 such
that Γ ⊢t 𝑇 ▷□ □𝑖 and Γ ⊢t 𝑇 ′ ▷□ □𝑗 ;

▶ in the case of Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑆 and of Γ ⊢ 𝑛 ≈ 𝑛′ ▷Π 𝑆, that
⊢ Γ, and that there exists 𝑇 and 𝑇 ′ such that Γ ⊢t 𝑛 ▷ 𝑇 and
Γ ⊢t 𝑛′ ▷ 𝑇 ′.20

20: Note that we do not a priori demand
that 𝑆 be related to 𝑇 , as this is a well-
formation property of the output 𝑆.

Definition 6.2. Inputs well-formation – untyped relations

We say that “inputs are well-formed” for one of the relations of Fig-
ures 6.2a to 6.2d to mean the following:

▶ in the case of 𝑡 ≅ 𝑡′ and of 𝑡 ≅h 𝑡′, that there exists some Γ, 𝑇
and 𝑖 such that ⊢ Γ, Γ ⊢t 𝑇 ▷□ □𝑖, Γ ⊢t 𝑡 ◁ 𝑇 and Γ ⊢t 𝑡′ ◁ 𝑇
hold;

▶ in the case of 𝑛 ≈ 𝑛′, that there exists some Γ, 𝑇 and 𝑇 ′ such that
⊢ Γ, Γ ⊢t 𝑛 ▷ 𝑇 and Γ ⊢t 𝑛′ ▷ 𝑇 ′.

Moreover, we say that “inputs are well-formed types” in the case of
𝑇 ≅ 𝑇 ′, 𝑇 ≅h 𝑇 ′, 𝑇 ⪯ 𝑇 ′ and 𝑇 ⪯h 𝑇 ′, to mean the existence of Γ, 𝑖
and 𝑗 such that ⊢ Γ, Γ ⊢t 𝑇 ▷□ □𝑖 and Γ ⊢t 𝑇 ′ ▷□ □𝑗 .

Definition 6.3. Outputs well-formation

We say that “outputs are well-formed” for neutral comparison between
two terms 𝑛 and 𝑛′ assumed to be well-typed to mean the following:

▶ in the case of Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑇 , that Γ ⊢t 𝑛 ▷ 𝑇 holds, and also
Γ ⊢t 𝑛′ ▷ 𝑇 ′, for some 𝑇 ′ such that Γ ⊢ 𝑇 ≅ 𝑇 ′ ◁ ;

▶ in the case of Γ ⊢ 𝑛 ≈ 𝑛′ ▷Π Π 𝑥: 𝐴. 𝐵, that Γ ⊢t 𝑛 ▷Π Π 𝑥: 𝐴. 𝐵
holds, and moreover that Γ ⊢t 𝑛′ ▷Π Π 𝑥: 𝐴′. 𝐵′ holds too, with
some 𝐴 and 𝐵 such that Γ ⊢ Π 𝑥: 𝐴. 𝐵 ≅ Π 𝑥: 𝐴′. 𝐵′ ◁ .

6.3.2. Meta-theory of the bidirectional system

Let us now try and see what meta-theoretical properties we need of the
typed system to show that its rules respect McBride’s discipline.

In Rules RedCum, RedConvTy and RedConvTm, the well-formation of in-
puts to the last premise under the hypothesis that inputs to the conclusion

72 6. Bidirectional Conversion

are well-formed is exactly subject reduction. In the case of a β-redex, sub-
ject reduction is equivalent to the following weak version of stability by
substitution.

Property 6.4. Stability of typing by substitution

If Γ, 𝑥: 𝐴 ⊢t 𝑡 ▷ 𝑇 and Γ ⊢t 𝑢 ◁ 𝐴 hold and their inputs are well-
formed, then Γ ⊢t 𝑡[𝑥 ≔ 𝑢] ◁ 𝑇 [𝑥 ≔ 𝑢].

A similar property appears evenmore directly in the case of neutral compar-
ison, this time regarding output well-formation in Rule AppComp. Indeed,
in that case by output well-formation of in premises, we can assume that
Γ ⊢t 𝑛′ ▷Π Π 𝑥: 𝐴′. 𝐵′, with Γ ⊢ Π 𝑥: 𝐴. 𝐵 ≅ Π 𝑥: 𝐴′. 𝐵′ ◁ , and we need
to show that Γ ⊢ 𝐵[𝑥 ≔ 𝑡] ≅ 𝐵′[𝑥 ≔ 𝑡′] ◁ . Again, here we have a form of
stability by substitution.

Property 6.5. Stability of conversion by substitution

If Γ, 𝑥: 𝐴 ⊢ 𝑡 ≅ 𝑡′ ◁ 𝑇 and Γ ⊢ 𝑢 ≅ 𝑢′ ◁ 𝐴 and their inputs are
well-formed, then Γ ⊢ 𝑡[𝑥 ≔ 𝑢] ≅ 𝑡′[𝑥 ≔ 𝑢′] ◁ 𝑇 [𝑥 ≔ 𝑢].

However, here lies a difficulty: Property 6.5 implies normalization. To see
why, a first remark: congruence of conversion holds for all canonical forms,
respectively by Rules BdΠConvTm and BdUniConvTm, and by the follow-
ing lemma.

Lemma 6.6. Congruence of abstraction

If Γ, 𝑥: 𝐴 ⊢ 𝑡 ≅ 𝑡′ ◁ 𝐵 then Γ ⊢ λ 𝑥: 𝐴. 𝑡 ≅ λ 𝑥: 𝐴′. 𝑡′ ◁ Π 𝑥: 𝐴. 𝐵.2121: For the purpose of this congruence,
there is no need for a relation between
𝐴 and 𝐴′, but for the inputs to the con-
clusion to be well-formed, we should also
have Γ ⊢ 𝐴 ≅ 𝐴′ ◁ . Proof.

First, conversion is stable by anti-reduction, i.e. if Γ ⊢ 𝑢2 ≅ 𝑢′2 ◁ 𝑈2
holds and 𝑢1 →⋆h 𝑢2, 𝑢′1 →⋆h 𝑢′2 and 𝑈1 →⋆h 𝑈2 then Γ ⊢ 𝑢1 ≅ 𝑢′1 ◁
𝑈1. Indeed, if the former holds, it must be by an application of Rule
RedConvTm, and so there are 𝑢3 and 𝑢′3 and 𝑈3 respective reducts of 𝑢2,
𝑢′2 and 𝑈2 such that Γ ⊢ 𝑢3 ≅h 𝑢′3 ◁ 𝑈3. But then also 𝑢1 →⋆h 𝑢3 and
similarly for the other two, and so we can use again Rule RedConvTm.

Now, by an application of Rule BdFunConv, we only need to show that
Γ, 𝑥: 𝐴 ⊢ (λ 𝑥: 𝐴. 𝑡) 𝑥 ≅ (λ 𝑥: 𝐴′. 𝑡′) 𝑥 ◁ 𝐵 holds, and we can use
stability by anti-reduction to conclude.

Moreover, if we assume Property 6.5, then congruence also holds for appli-
cation.

Lemma 6.7. Congruence of application

Assuming Property 6.5, if Γ ⊢ 𝑡 ≅ 𝑡′ ◁ Π 𝑥: 𝐴. 𝐵 and Γ ⊢ 𝑢 ≅ 𝑢′ ◁ 𝐴
and their inputs are well-formed, then also Γ ⊢ 𝑡 𝑢 ≅ 𝑡′ 𝑢′ ◁ 𝐵[𝑥 ≔ 𝑢].

Proof.

6.3. McBride’s Discipline 73

[AÖV17]: Abel et al. (2017),Decidability of
Conversion for Type Theory in Type Theory

[Wer94]: Werner (1994), Une Théorie des
Constructions Inductives
[Alt93]: Altenkirch (1993), Constructions,
Inductive Types and Strong Normalization

[Soz+20]: Sozeau et al. (2020), Coq Coq
Correct! Verification of Type Checking and
Erasure for Coq, in Coq

The only way to obtain the first premise is to apply Rule RedCum and
Rule BdFunConv. Thus, we have that 𝑡 →⋆h 𝑓 , 𝑡′ →⋆h 𝑓 ′ and Γ, 𝑥: 𝐴 ⊢
𝑓 𝑥 ≅ 𝑓 ′ 𝑥 ◁ 𝐵. By Property 6.5, we have

Γ ⊢ (𝑓 𝑥)[𝑥 ≔ 𝑢] ≅ (𝑓 ′ 𝑥)[𝑥 ≔ 𝑢′] ◁ 𝐵[𝑥 ≔ 𝑢]
But since we assume no shadowing happens, 𝑥 does not appear in 𝑓
or 𝑓 ′,22 22: In de Bruijn indices, 𝑓 and 𝑓 ′ are

lifted when they are η-expanded, thus
they cannot mention variable 0 corre-
sponding to 𝑥 .

so that we actually have Γ ⊢ 𝑓 𝑢 ≅ 𝑓 ′ 𝑢′ ◁ 𝐵[𝑥 ≔ 𝑢]. Now
stability by anti-reduction is enough to conclude, since 𝑡 𝑢 →⋆h 𝑓 𝑢 and
𝑡′ 𝑢′ →⋆h 𝑓 ′ 𝑢′.

Applying all these congruences in the diagonal case, we obtain reflexivity
of conversion.
Proposition 6.8. Reflexivity

Assuming Property 6.5, if ⊢ Γ and Γ ⊢t 𝑡 ▷ 𝑇 , then also Γ ⊢ 𝑡 ≅ 𝑡 ◁ 𝑇 .

Proof.
By induction on the typing derivation, using the previous congruences
in each case.

But since conversion amounts to iterated weak-head normalization of both
terms, reflexivity implies normalization, in the following sense.

Proposition 6.9. Normalization

Assuming Property 6.5, if Γ ⊢t 𝑡 ▷ 𝑇 and⊢ Γ, then there is some normal
form 𝑡′ such that 𝑡 →⋆ 𝑡′.

Thus, if we wished to establish that our rules respect McBride’s discipline,
we would need a proof technique able to show normalization of the system
under consideration. In the case of a system such as that of this chapter, a
technique close to the logical relation of [AÖV17] might be enough. But if
we add an impredicative sort of propositions, proofs of normalization are
scarcer and further from the presentations of this chapter [Wer94; Alt93].
An alternative solution, followingMetaCoq, would be to assume a property
such as normalization and derive the needed meta-theory from that single
assumption [Soz+20].

In any case, a substantial meta-theoretical study would be needed, one that
I do not wish to pursue further here. Thus, let us simply assume the prop-
erties we need for McBride’s discipline to be correctly maintained in both
presentations. Apart from stability by substitution and subject reduction
that we have already mentioned, the main needed properties are those nec-
essary to handle the left bias of rules. For instance, in Rule BdΠCum, the
context is extended with some 𝐴, but we only know that 𝐵′ is a type in a
context extended by 𝐴′, which is convertible to 𝐴. Similarly, in the second
premise of Rule AppComp, the recursive conversion happens at type 𝐴, but
𝑡′ is only known to check against some 𝐴′ which is convertible to 𝐴.

Property 6.10. Subject reduction

If Γ ⊢t 𝑡 ◁ 𝑇 and 𝑡 →⋆h 𝑡′ then Γ ⊢t 𝑡′ ◁ 𝑇 .

Property 6.11. Stability by context and type conversion

74 6. Bidirectional Conversion

Let Γ and Γ′ be two well-formed context that are pointwise convertible
and 𝑇 , 𝑇 ′ be two well-formed types – respectively in Γ and Γ′ –, such
that Γ ⊢ 𝑇 ≅ 𝑇 ′ ◁ . If Γ ⊢t 𝑡 ◁ 𝑇 then Γ′ ⊢t 𝑡 ◁ 𝑇 ′, and if Γ ⊢t 𝑈 ▷□
□𝑖 then Γ′ ⊢t 𝑈 ▷□ □𝑖.

Conjecture 6.12. Meta-theoretical properties

Properties 6.4, 6.5, 6.10 and 6.11 hold.

With this conjecture in hand, we can show that McBride’s discipline is pre-
served, giving the following.

Proposition 6.13. Input well-formation – untyped

If one of the relations of Figures 6.1a to 6.1f holds and its inputs are
well-formed, then inputs to any sub-derivation are alsowell-formed and
outputs are too.

Proof.
The proof is by mutual induction. It requires stability of typing by con-
text/type cumulativity to handle the fact that the rules are left biased
— e.g. context extension in Rule BdΠConvTy is done using the domain
of the left Π-type –, and to deduce that the η-expansions of Rule Bd-
FunConv are well-formed. Subject reduction is needed to know that
weak-head reduction preserves well-formation. Finally, well-formation
of outputs is necessary in Rule AppComp to ensure that 𝑡′ indeed checks
against 𝐴. It requires stability by substitution of conversion to ensure
that outputs of Rule AppComp are well-formed.

Proposition 6.14. Input well-formation – untyped

If one of the relations of Figures 6.2a to 6.2d holds and its inputs are
well-formed, then inputs to any sub-derivation are alsowell-formed and
outputs are too.

Proof.
The proof is by mutual induction, and similar to the typed case.

6.4. Equivalence of the presentations

With the meta-theoretical requirement exposed, we can now turn to the
part of interest to us: the equivalence between both presentations.

Typed to untyped Unsurprisingly, the main rule that needs looking at
is that which differs between the two systems, i.e. Rule BdFunConv. This
is taken care of by the following lemma.

Lemma 6.15. Injectivity of η-expansion

If ⊢ Γ, Γ ⊢t 𝑓 ◁ Π 𝑥: 𝐴. 𝐵 and Γ ⊢t 𝑓 ′ ◁ Π 𝑥: 𝐴. 𝐵 hold, and moreover
𝑓 𝑥 ≅ 𝑓 ′ 𝑥 holds too, then 𝑓 ≅h 𝑓 ′.

Proof.

6.4. Equivalence of the presentations 75

By inversion on the last hypothesis, we know that 𝑓 𝑥 and 𝑓 ′ 𝑥 reduce to
weak-head normal forms, say 𝑓 𝑥 →⋆h 𝑣 , 𝑓 ′ 𝑥 →⋆h 𝑣 ′ and that 𝑣 ≅h 𝑣 ′.
By inversion on the reductions, we get that also 𝑓 and 𝑓 ′ reduce toweak-
head normal forms, say 𝑓 →⋆h 𝑤 and 𝑓 ′ →⋆h 𝑤 ′. Moreover, because of
input well-formation and subject reduction, we know that both 𝑤 and
𝑤 ′ check against Π 𝑥: 𝐴. 𝐵. Since they are weak-head normal forms,
they must thus be either λ-abstractions, or neutrals. We thus have four
cases to consider.

In case both 𝑤 and 𝑤 ′ are λ-abstractions, say respectively λ 𝑥: 𝐴. 𝑡 and
λ 𝑥: 𝐴′. 𝑡′, we have that 𝑓 𝑥 →⋆h 𝑤 𝑥 →1h 𝑡 , and similarly 𝑓 ′ 𝑥 →⋆h 𝑡′.
Because weak-head reduction is deterministic, we must have 𝑡 →⋆h 𝑣
and 𝑡′ →⋆h 𝑣 ′, but then since 𝑣 ≅h 𝑣 ′ we also have 𝑡 ≅ 𝑡′. Thus, we can
apply Rule BdAbsCong and conclude.

In case 𝑤 is a λ-abstraction, say λ 𝑥: 𝐴. 𝑡 and 𝑤 ′ is a neutral 𝑛′, then 𝑣 ′
must be equal to 𝑛′ 𝑥 . Then we have 𝑓 𝑥 →⋆h 𝑤 𝑥 →1h 𝑡 →⋆h 𝑣 , and thus
𝑡 ≅ 𝑛′ 𝑥 since 𝑣 ≅h 𝑛′ 𝑥 . Therefore, Rule BdAbsNeu applies to conclude.
The reasoning in the symmetric case where 𝑤 ′ is an abstraction and 𝑤
is neutral is similar.

In the last case, both 𝑤 and 𝑤 ′ are neutrals, say 𝑛 and 𝑛′. Then 𝑣 and
𝑣 ′ are respectively 𝑛 𝑥 and 𝑛′ 𝑥 . Since 𝑛 𝑥 ≅h 𝑛′ 𝑥 , we must have also
𝑛 𝑥 ≈ 𝑛′ 𝑥 because all rules but Rule BdNeuConvUty equate canonical
forms. But then the last rule that applies must have been Rule AppComp,
and thus we have 𝑛 ≈ 𝑛′. From this, we can get 𝑛 ≅h 𝑛′ and since
𝑓 →⋆h 𝑛 and 𝑓 ′ →⋆h 𝑛′, we finally obtain 𝑓 ≅ 𝑓 ′, as expected.

Theorem 6.16. Typed to untyped bidirectional conversion

The following implications hold whenever inputs are well-formed:

▶ if Γ ⊢ 𝑡 ≅ 𝑡′ ◁ 𝑇 or Γ ⊢ 𝑡 ≅ 𝑡′ ◁ , then 𝑡 ≅ 𝑡′;
▶ if Γ ⊢ 𝑇 ⪯ 𝑇 ′ ◁ , then 𝑇 ⪯ 𝑇 ′;
▶ if Γ ⊢ 𝑡 ≅h 𝑡′ ◁ 𝑇 or Γ ⊢ 𝑡 ≅h 𝑡′ ◁ then 𝑡 ≅h 𝑡′;
▶ if Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑇 or Γ ⊢ 𝑛 ≈ 𝑛′ ▷Π 𝑇 then 𝑛 ≈ 𝑛′.

Proof.
Once again, by mutual induction.

Most cases are direct, the induction hypothesis can directly be combined
to give the desired result, replacing a typed rule by its untyped coun-
terpart. The only difficulty is for the one rule which does not have an
untyped counterpart, namely Rule BdFunConv. But in that case, Con-
jecture 6.12 ensures that inputs are well-formed since we started from
a rule with well-formed inputs, thus Lemma 6.15 applies, giving the de-
sired result.

From untyped to typed Here again, the main point is to show that the
rules of Figure 6.2d can be simulated by Rule BdFunConv. Lemma 6.6 al-
ready gives the congruence of abstractions, corresponding to Rule BdAb-
sCong. In the case of Rule BdAbsNeu – and its symmetric Rule BdNeuAbs–,
it is also rather direct.

Lemma 6.17. Neutral against abstraction

76 6. Bidirectional Conversion

If Γ ⊢ 𝑡 ≅ 𝑛′ 𝑥 ◁ 𝐵, ⊢ Γ, and there exists a 𝑇 such that Γ ⊢t λ 𝑥: 𝐴.
𝑡 ◁ 𝑇 , then 𝑇 →⋆ Π 𝑥: 𝐴′.𝐵′ and Γ ⊢ λ 𝑥: 𝐴. 𝑡 ≅h 𝑛′ ◁ Π 𝑥: 𝐴′. 𝐵′.

Proof.
By inversion on Γ ⊢t λ 𝑥: 𝐴. 𝑡 ◁ 𝑇 , we get that 𝑇 must be convertible
to the type inferred for λ 𝑥: 𝐴. 𝑡 . But that inferred type is a Π-type, so
𝑇 must also reduce to a Π-type. An application of Rule BdFunConv and
stability of conversion by anti-reduction is enough to get Γ ⊢ λ 𝑥: 𝐴.
𝑡 ≅h 𝑛′ ◁ Π 𝑥: 𝐴′. 𝐵′ from the first hypothesis.

But the main difficulty comes from Rule BdNeuConvUty. Indeed, this rule
can be applied whenever the compared terms are neutral while in the typed
relation, following Abel, Öhman, and Vezzosi [AÖV17][AÖV17]: Abel et al. (2017),Decidability of

Conversion for Type Theory in Type Theory
, extensionality for

functions takes precedence over neutral comparison at Π-types. Thus, to
simulate Rule BdNeuConvUty we need to show neutral comparison is al-
ways included in conversion, even if neutrals get η-expanded.

Lemma 6.18. Conversion subsumes neutral comparison

If Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑆 and Γ ⊢ 𝑆 ⪯ 𝑇 ◁ hold with well-formed inputs, then
Γ ⊢ 𝑛 ≅ 𝑛′ ◁ 𝑇 .

Proof.
By induction on the cumulativity hypothesis.

Both 𝑆 and 𝑇 reduce respectively to 𝑆′ and 𝑇 ′, and then one of the
three rules of Figure 6.1b applies: 𝑆′ and 𝑇 ′ are either both neutrals,
both universes, or both product types. In the first two cases, we are in a
base case: either Rule BdNeuConvUni or Rule BdNeuConvNeu applies.
In the last case, however, only Rule BdFunConv applies, i.e. the neutrals
get η-expanded. Thus, 𝑆′ is some Π 𝑥: 𝐴. 𝐵, and 𝑇 ′ is some Π 𝑥: 𝐴′. 𝐵′.
But then we still have Γ, 𝑥: 𝐴 ⊢ 𝑛 𝑥 ≈ 𝑛′ 𝑥 ▷ 𝐵, so the induction
hypothesis on the codomains can be used to conclude.

We now have all ingredients for the second implication.

Theorem 6.19. Untyped to typed bidirectional conversion

If inputs are well-formed, then the following implications hold, with Γ
and 𝑇 being the respective context and type of the input well-formation
hypothesis:

▶ if 𝑡 ≅ 𝑡′ then Γ ⊢ 𝑡 ≅ 𝑡′ ◁ 𝑇 ;
▶ if 𝑡 ≅h 𝑡′ and 𝑇 is a weak-head normal form, then Γ ⊢ 𝑡 ≅h 𝑡′ ◁

𝑇 ;
▶ if 𝑛 ≈ 𝑛′ then Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑇 .

If inputs are well-formed types, then the following implications hold,
with Γ the context of the input well-formation hypothesis:

▶ if 𝑇 ≅ 𝑇 ′ then Γ ⊢ 𝑇 ≅ 𝑇 ′ ◁ ;
▶ if 𝑇 ≅h 𝑇 ′ then Γ ⊢ 𝑇 ≅h 𝑇 ′ ◁ ;
▶ if 𝑇 ⪯ 𝑇 ′ then Γ ⊢ 𝑇 ⪯ 𝑇 ′ ◁ ;
▶ if 𝑇 ⪯h 𝑇 ′ then Γ ⊢ 𝑇 ⪯h 𝑇 ′ ◁ .

6.4. Equivalence of the presentations 77

Proof.
By mutual induction. Most rules can be directly replaced by (one of)
their typed counterpart, but for those which do not have such a coun-
terpart, namely those of Figure 6.2d, and Rule BdNeuConvUty in case
its arguments are terms – if they are types, then Rule BdNeuCum al-
ways applies. In each case, one of Lemmas 6.6, 6.17 and 6.18 is enough
to conclude.

A Certified Kernel for Coq, in Coq

81

1: A compilation of those is maintained
by Coq’s development team.

2: Keeping a small, trusted kernel that is
the only one responsible for the validity of
proofs.

3: This is for instance the case of the com-
pleteness issue exposed in Section 5.2.

4: Or, maybe more accurately, Gallina.

5: Described in Figure 7.1.

Coq is a very complex tool. Even its kernel, which is only but a very small
fraction of it, is already quite complex: it relies on subtle implicit invari-
ants, which might not be properly maintained, especially when the code
evolves. In practice, around one critical bug is found every year.1 Although
it is in practice generally difficult to exploit these and actually derive an
inconsistency, even less so inadvertently, simply relying on the De Bruijn
criterion2 is not enough if one wants to trust Coq. Indeed, while CIC is
well-understood and has been widely studied, this is much less true of the
type theory actually implemented, PCUIC. Bugs therefore often creep in
with the extra level of complexity coming with the implementation, rather
than being the consequence of a defect of pen-and-paper proofs.3

These difficulties beg for a precise investigation of PCUIC, from the heights
of the type system’s meta-theory, all the way down to the sophisticated de-
tails of the implementation. Due to the complexity of the endeavour, it is
not feasible on paper. Nor is it desirable: if in the end we wish to imple-
ment a certified kernel, it is natural to do so in a proof assistant, so that
we can run that certified implementation. The natural framework is thus
the MetaCoq project, which aims at giving tools to reify and manipulate
Coq terms4 inside Coq itself. This gives the possibility to write down and
certify all kinds of procedures operating on these terms, the first to come to
mind being of course a type-checker. This way, we can have both the help
and guarantees offered by formal proofs inside a proof assistant, and the
possibility to execute our implemented kernel.

There are two important caveats to this, though. The first pertains toGödel’s
second incompleteness theorem. Because of it, it is impossible to prove
Coq’s consistency inside Coq itself, meaning that the meta-theoretical
study can only be partial, since otherwise it would allow a proof of con-
sistency contradicting Gödel’s theorem. In MetaCoq, this blind spot mani-
fests as an axiom assuming the normalization of PCUIC, on which parts of
the development relies. The second caveat is that writing down a certified
kernel is not enough. Indeed, executing directly such a kernel in Coq would
be much too slow to actually type-check any reasonably-sized term. Rather,
we must rely on extraction, a procedure which erases the proof-related con-
tent of a certified program to only keep the algorithmically relevant one. As
this erasure itself is a complex transformation, MetaCoq also incorporates
a certified erasure procedure.

In this part of the thesis, I shall describe the portion of MetaCoq which
is relevant to it. Chapter 7 gives a general overview of the meta-theory of
PCUIC, with themain definitions, properties, and proof ideas.My technical
contributions to this part of the development is relatively minor, mainly
consisting of small patches. However, since I rely on that formalization in
my main contributions, it seems fitting to go over it.

Chapter 8 concentrates on the formalization of bidirectional typing, as pre-
sented in Part ‘Bidirectional Calculus of Inductive Constructions’, and on
the proof of correctness and completeness of the kernel implementation
based on it. This ismymain technical contributions to theMetaCoq project.

Although I will not describe it here, there is more to MetaCoq. The two
main components I will omit are Template Coq, and the certified extrac-
tion procedure. The first faithfully represents the actual abstract syntax
tree of Gallina and a typing predicate for it, gives a translation to the syn-
tax used in the main theoretical development of PCUIC,5 and shows that

https://github.com/coq/coq/blob/master/dev/doc/critical-bugs

82

both notions of typing are equivalent. It also provides facilities for quoting
and unquoting of terms from Coq to MetaCoq’s AST and back, in order to
provide the possibility to write operation on Coq terms directly in Meta-
Coq – including, of course, the certified kernel of Chapter 8. The second
component aims at certifyng the extraction procedure, relating the seman-
tics of the original and extracted programs. The goal is to be able to extract
the certified type-checker itself to an efficient one – execution in Coq is
too inefficient if we wish to type-check realistic examples –, but also more
generally to improve Coq’s current extraction.

Throughout the part, source files of the MetaCoq project and specific def-
initions or theorems are referenced respectively as follows: PCUICTyping,
and typing. They link directly to the source code of the project on GitHub
– on a branch dedicated to this thesis.

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L188

Formalized Meta-Theory of
PCUIC 7.

7.1 Setting up the Definitions . . 83
7.1.1 Terms 83
7.1.2 Cumulativity 85
7.1.3 Typing 87

7.2 Stabilities 90
7.3 Confluence 91
7.3.1 Parallel reduction 92
7.3.2 Formalizing Takahashi’s proof 93

7.4 The Road to Subject Reduc-
tion 93

7.4.1 Algorithmic cumulativity . . . 93
7.4.2 Reaping the fruits 94

7.5 Normalization 95
7.5.1 An abstract guard condition . 95
7.5.2 The normalization axiom . . . 95

Before we can attempt to build a certified kernel, we need a thoroughmeta-
theoretical study of the type system. This is necessary in order to show that
the invariants used by the kernel – typically, well-formation of the objects
it manipulates – are preserved during the type-checking algorithm. The use
of these invariants goes beyond correctness: the cumulativity test used as a
sub-routine by the kernel needs to reduce terms, and, since all functions in
Coq must be terminating, this reduction is defined by well-founded induc-
tion on the normalization of well-typed terms. Since evaluation is not nor-
malizing on ill-typed terms, the mere definition of the cumulativity check
relies on subject reduction to be able to iterate reduction steps.

The properties under scrutiny in this chapter are not new, and neither are
the basic strategy of most proofs. Indeed, the development roughly follows
the architecturewe already exposed in Section 3.4. Themain difficulty is the
scale: due to the complexity of PCUIC, evenwell-understood techniques are
challenging to apply. Moreover, subtleties that do not appear in a simpler
setting become apparent – typically pertaining to universe levels or general
inductive types –, demanding original ideas. Thus, rather than getting lost
in the gory details of the formalization which are best understood by look-
ing at it – and maybe replaying it –, we try and focus on describing these
interesting subtleties.

In more details, we start with the main definitions : the syntax, cumulativ-
ity and typing judgments (Section 7.1). We follow with the basic stability
properties (Section 7.2): renaming, substitution, environment extension, etc.
Next comes the first important proof, that of confluence, and its multiple
consequences (Section 7.3). This leads to the properties pertaining to typ-
ing, culminating with subject reduction (Section 7.4). Finally, we discuss
the place of normalization (Section 7.5).

7.1. Setting up the Definitions: Terms,
Cumulativity and Types

7.1.1. Terms

First thing first: the syntax of terms, defined in PCUICAst and reproduced
in Figure 7.1.

It of course contains the term formers introduced in Chapter 3: tRel for
variables, tAbs for abstractions, tApp for application, and tProd for depen-
dent function types. The syntax uses De Bruijn indices for binders – the
integer argument of the tRel term former –, but names are still recorded,
mainly for printing purposes, directly in the binders – the aname argument
of tProp and tAbs. There are also local definitions, in the form of the tLetIn
constructor, binding the term b of type B in t.

The tSort constructor is for sorts – what we have called universes earlier.
Its Universe.t argument represents its universe level, which can be either

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICAst.v

84 7. Formalized Meta-Theory of PCUIC

Inductive term :=
| tRel (n : ℕ) (* Variable *)
| tVar (i : ident) (* Free named variables (e.g. in a goal) *)
| tEvar (n : ℕ) (l : list term) (* Existential variables *)
| tSort (u : Universe.t) (* Universe *)
| tProd (na : aname) (A B : term) (* Dependent function type *)
| tLambda (na : aname) (A t : term) (* Abstraction *)
| tLetIn (na : aname) (b B t : term) (* Local definition *)
| tApp (u v : term) (* Application *)
| tConst (k : kername) (ui : Instance.t) (* Constant *)
| tInd (ind : inductive) (ui : Instance.t) (* Inductive type *)
| tConstruct (ind : inductive) (n : ℕ) (ui : Instance.t) (* Constructor *)
| tCase (indn : case_info) (p : predicate term)

(c : term) (brs : list (branch term)) (* Pattern-matching *)
| tProj (p : projection) (c : term) (* Primitive projection *)
| tFix (mfix : mfixpoint term) (idx : ℕ) (* Fixpoint *)
| tCoFix (mfix : mfixpoint term) (idx : ℕ). (* Co-Fixpoint *)

Figure 7.1. The Abstract Syntax Tree of terms in MetaCoq (term)

1: The only differences are that the latter
uses an n-ary application rather than a bi-
nary one, and casts that inform the kernel
as to which cumulativity algorithm to use,
but which is left out since we implement
only one such algorithm.

Prop or an algebraic expression based on universe variables, in order to
handle typical ambiguity.

Next come tVar and tEvar, which correspond respectively to named vari-
ables and existential variables. These are ill-typed in the current notion of
typing, and thus ignored in most of the development. Still, they are kept
to be as faithful as possible to the representation of the Coq kernel. In-
deed, the inductive term corresponds directly to the constr datatype used
there.1

Follow the three term formers tConst, tInd and tConstruct all referring to
previous definitions, stored in a global environment. The first corresponds
to constants, that either have a body – definitions – or do not – axioms. The
next two are respectively for inductive types and inductive constructors.
Co-inductive and record types and constructors are also represented by
these term formers, the information contained in the inductive argument
is used to separate between them. All of these can be universe polymorphic,
in which case they must be instantiated with a list of universes – their
Instance.t argument.

The two subsequent tCase and tProj are destructors for (co-)inductive
types. The latter is a projection, used to destruct record types. The for-
mer represents the pattern-matching construction. Its main components
are the predicate p, the scrutinee c and the branches brs. While it will ap-
pear more clearly when giving the typing rule, let us note already that p
and brs both contain not only the body of the predicate/scrutinee, but also
the context extension over which they live, roughly corresponding to the
variable bounds in the recursors of Section 3.5. Thus, they represent a form
of binding in the “primitive” way of a context extension, rather than using
Π-types or λ-abstraction. This is the new case representation alluded to at
the end of Section 5.2.

Finally, the two very similar tFix and tCoFix are for (co-)fixed-points. These
can be mutual: the mfix argument is a list of definitions, that can refer to
each other.

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICAst.v#L194

7.1. Setting up the Definitions: Terms, Cumulativity and Types 85

2: The “Spec” part comes from the fact
that this is the specification of cumulativ-
ity, by contrast to the algorithmic version
encountered later on.

3: As explained in Section 3.6, this is a
consequence of the models justifying cu-
mulativity.

4: This used to be the case prior to the
uniform introduction of conv_pb: the re-
lation was the one to be used at leaves
to compare universes, which differed be-
tween conversion and cumulativity.

5: Expressed by the is_open_term predi-
cate.

7.1.2. Cumulativity

The next important definition is that of cumulativity, given in PCUICCumu-
lativitySpec.2 It is stated in the declarative untyped fashion, akin to howwe
defined declarative conversion in Figures 3.5b to 3.5d. This time, however,
it is done relatively to both a global environment Σ and a context Γ, as these
contain definitions that cumulativity can unfold.

Cumulativity is defined mutually with conversion, because for instance
when two Π-types are compared for cumulativity, their codomains are re-
cursively compared for cumulativity, but their domains are compared for
conversion instead.3 Since the two relations are extremely similar, they are
actually fused in a single inductive relation, Σ ;;; Γ ⊢ t ≤s[pb] u. This
relation is indexed by a conversion problem pb : conv_pb, which can take
the two values Conv and Cumul, so that cumulativity is actually ≤s[Cumul]
– and conversion is ≤s[Conv]. This has the advantage that a lot of defini-
tions and proofs can be factored using conv_pb. Moreover, using a simple
boolean allows for case reasoning when needed, which would be more com-
plex if the index was e.g. a relation.4

| cumul_Trans : forall t u v,
is_closed_context Γ -> is_open_term Γ u ->
Σ ;;; Γ ⊢ t ≤s[pb] u ->
Σ ;;; Γ ⊢ u ≤s[pb] v ->
Σ ;;; Γ ⊢ t ≤s[pb] v

| cumul_Sym : forall t u,
Σ ;;; Γ ⊢ t ≤s[Conv] u ->
Σ ;;; Γ ⊢ u ≤s[pb] t

| cumul_Refl : forall t,
Σ ;;; Γ ⊢ t ≤s[pb] t Figure 7.2a. Pre-order rules (cumul-

Spec0)

The first set of rules are the pre-order rules of Figure 7.2a: transitivity, sym-
metry and reflexivity. Note that symmetry restricts the conversion problem,
since only conversion should be symmetric. Using this rule twice shows that
conversion is included inside cumulativity. Another important thing to note
is that transitivity is somewhat restricted: the middle term is required to be
well-scoped,5 i.e. all its variables refer correctly to either a binder or to the
context Γ. This is key when proving the equivalence between this notion
of cumulativity and the algorithmic version that appears later on. Indeed,
this equivalence relies on confluence, which is only true on well-scoped
terms in PCUIC. Thus, we need to know that declarative cumulativity only
ever goes through well-scoped terms, which is exactly what this condition
enforces.

| cumul_Prod : forall na na' a a' b b',
eq_binder_annot na na' ->
Σ ;;; Γ ⊢ a ≤s[Conv] a' ->
Σ ;;; Γ ,, vass na a ⊢ b ≤s[pb] b' ->
Σ ;;; Γ ⊢ tProd na a b ≤s[pb] tProd na' a' b' Figure 7.2b. Example of congruence rule

(cumulSpec0)

Next come the rules of congruence. There are actually two kinds of them.
The first are the “standard” ones, similar to those of Figure 3.5d. An example
is given in Figure 7.2b. More interesting are the rules of Figure 7.2c, which
implement “real” cumulativity. Rule cumul_Sort directly implements sub-
typing between universes, while rules cumul_Ind and cumul_Construct

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Syntax/PCUICOnFreeVars.v#L253
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICCumulativitySpec.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICCumulativitySpec.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICCumulativitySpec.v#L29
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICCumulativitySpec.v#L29
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICCumulativitySpec.v#L29

86 7. Formalized Meta-Theory of PCUIC

Figure 7.2c. Cumulativity rules (cumul-
Spec0)

| cumul_Ind : forall i u u' args args',
cumul_Ind_univ Σ pb i #|args| u u' ->
All2 (fun t u => Σ ;;; Γ ⊢ t ≤s[Conv] u) args args' ->
Σ ;;; Γ ⊢ mkApps (tInd i u) args ≤s[pb] mkApps (tInd i u') args'

| cumul_Construct : forall i k u u' args args',
cumul_Construct_univ Σ pb i k #|args| u u' ->
All2 (fun t u => Σ ;;; Γ ⊢ t ≤s[Conv] u) args args' ->
Σ ;;; Γ ⊢ mkApps (tConstruct i k u) args

≤s[pb] mkApps (tConstruct i k u') args'
| cumul_Sort : forall s s',

compare_universe pb Σ s s' ->
Σ ;;; Γ ⊢ tSort s ≤s[pb] tSort s'

| cumul_Const : forall c u u',
R_universe_instance (compare_universe Conv Σ) u u' ->
Σ ;;; Γ ⊢ tConst c u ≤s[pb] tConst c u'

| cumul_beta : forall na t b a,
Σ ;;; Γ ⊢ tApp (tLambda na t b) a ≤s[pb] b {0 := a}

| cumul_iota : forall ci c u args p brs br,
nth_error brs c = Some br ->
#|args| = (ci.(ci_npar) + context_assumptions br.(bcontext))%nat ->
Σ ;;; Γ ⊢ tCase ci p (mkApps (tConstruct ci.(ci_ind) c u) args) brs ≤s[pb]

iota_red ci.(ci_npar) p args br
| cumul_proj : forall p args u arg,
nth_error args (p.(proj_npars) + p.(proj_arg)) = Some arg ->
Σ ;;; Γ ⊢ tProj (i, pars, narg) (mkApps (tConstruct i 0 u) args) ≤s[pb] arg

Figure 7.2d. Computation rules for destructors (cumulSpec0)

[TS17]: Timany et al. (2017), Consistency
of the Predicative Calculus of Cumulative
Inductive Constructions (pCuIC)

6: A list of universe levels, corresponding
to its polymorphic universe variables.

implement cumulativity of inductive types [TS17]. The latter two apply re-
spectively to fully applied inductive types and inductive constructors, that
can be considered equal if their arguments are one-to-one convertible, and
their universe levels are correctly related. This means that e.g. the nil con-
structor of polymorphic lists always satisfies that nil@{u} A is convertible
to nil@{u'} A, irrespective of the universe levels u and u'.

Last are the rules for computation. The three rules of Figure 7.2d are for
destructors, i.e. applied functions, pattern-matching on a constructor, and
projections. The β rule for functions directly uses substitution: b{0 := a}
denotes the substitution of a for the variable of De Bruijn index 0 in b. Sim-
ilarly, the iota_red function computes the substitution of the branch br
by the arguments of the constructor args. Finally, the rule for projections
simply selects the right field of the record.

The next three rules deal with definitions (Figure 7.2e). Rule cumul_zeta
directly reduces a let-binder into a substitution, while definitions are un-
folded using cumul_rel and cumul_delta, respectively those of the local
context or the global environment. In the latter case, the definition must be
instantiated with a universe instance,6 which is denoted @[u].

The last rules (Figure 7.2f) pertain to the reduction of (co-)fixed-points. In
all cases, they are unfolded in a guarded fashion, in order to avoid a non-
terminating behaviour. On fixed-points, this guard is that they have to be
applied to a constructor, and dually co-fixed-points are unfolded when they
are forced, either by a pattern-matching or a projection. In both cases, this

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICCumulativitySpec.v#L29
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICCumulativitySpec.v#L29
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICCumulativitySpec.v#L29

7.1. Setting up the Definitions: Terms, Cumulativity and Types 87

| cumul_zeta : forall na b t b',
Σ ;;; Γ ⊢ tLetIn na b t b' ≤s[pb] b' {0 := b}

| cumul_rel i body :
option_map decl_body (nth_error Γ i) = Some (Some body) ->
Σ ;;; Γ ⊢ tRel i ≤s[pb] lift0 (S i) body

| cumul_delta : forall c decl body (isdecl : declared_constant Σ c decl) u,
decl.(cst_body) = Some body ->
Σ ;;; Γ ⊢ tConst c u ≤s[pb] body@[u]

Figure 7.2e. Computation rules for definitions (cumulSpec0)

(** Fix unfolding, with guard *)
| cumul_fix : forall mfix idx args narg fn,
unfold_fix mfix idx = Some (narg, fn) ->
is_constructor narg args = true ->
Σ ;;; Γ ⊢ mkApps (tFix mfix idx) args ≤s[pb] mkApps fn args

| cumul_cofix_case : forall ip p mfix idx args narg fn brs,
unfold_cofix mfix idx = Some (narg, fn) ->
Σ ;;; Γ ⊢ tCase ip p (mkApps (tCoFix mfix idx) args) brs

≤s[pb] tCase ip p (mkApps fn args) brs
| cumul_cofix_proj : forall p mfix idx args narg fn,
unfold_cofix mfix idx = Some (narg, fn) ->
Σ ;;; Γ ⊢ tProj p (mkApps (tCoFix mfix idx) args) Figure 7.2f. Computation rules for fixed-

points (cumulSpec0)

7: This not only includes computing the
maximum of two algebraic universes ex-
pressions, but also handling the impred-
icativity of the sort Prop.

ensures that the unfolded (co-)fixed-point can reduce further, either by con-
suming the constructor of its recursive argument, or by producing a con-
structor to be consumed by the destructor that forced the unfolding.

7.1.3. Typing

With the cumulativity relation defined, we can turn to typing, defined in
PCUICTyping. Similarly to cumulativity, typing is an inductively defined
relation Σ ;;; Γ |- t : T, relative to a global environment Σ and a local
context Γ. The rules correspond roughly to ones we already went over in
Chapter 3.

The first set of typing rules, given in Figure 7.3a, pertain to the purely func-
tional fragment. There are not many differences there with respect to Fig-
ure 3.2. Rule type_Rel looks up for the type of a variable in the context,
and ensures that said context is well-formed: the wf_local predicate corre-
sponds to ⊢ Γ, but here as everything else it is relative to a global environ-
ment. Rule type_Sort uses the super function to compute the successor of
an algebraic universe, and similarly Rule type_Prod uses sort_of product
to compute the universe level of a Π-type.7 Context extension with an as-
sumption, i.e. a variable without a body, is written Γ ,, vass na A, and
used as expected in Rules type_Prod and type_Lambda. Finally, type_App
is for application. It contains an assumption that the product is well-formed,
which is not strictly speaking needed once we prove validity, but is useful
in some cases to provide a needed induction hypothesis.

The rule for local definitions, given in Figure 7.3b, is similar to the one for
λ-abstractions, with the only difference that the body too is typed, and that
the context is extended with a definition, i.e. a variable with a body, which
is written Γ,, vdef na b B.

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICCumulativitySpec.v#L29
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICCumulativitySpec.v#L29
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L188
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L284

88 7. Formalized Meta-Theory of PCUIC

Figure 7.3a. Functional fragment (typ-
ing)

| type_Rel : forall n decl,
wf_local Σ Γ ->
nth_error Γ n = Some decl ->
Σ ;;; Γ |- tRel n : lift0 (S n) decl.(decl_type)

| type_Sort : forall s,
wf_local Σ Γ ->
wf_universe Σ s ->
Σ ;;; Γ |- tSort s : tSort (super s)

| type_Prod : forall na A B s1 s2,
Σ ;;; Γ |- A : tSort s1 ->
Σ ;;; Γ ,, vass na A |- B : tSort s2 ->
Σ ;;; Γ |- tProd na A B : tSort (sort_of_product s1 s2)

| type_Lambda : forall na A t s1 B,
Σ ;;; Γ |- A : tSort s1 ->
Σ ;;; Γ ,, vass na A |- t : B ->
Σ ;;; Γ |- tLambda na A t : tProd na A B

| type_App : forall t na A B s u,
Σ ;;; Γ |- tProd na A B : tSort s ->
Σ ;;; Γ |- t : tProd na A B ->
Σ ;;; Γ |- u : A ->
Σ ;;; Γ |- tApp t u : B{0 := u}

Figure 7.3b. Local definitions (typing)

| type_LetIn : forall na b B t s1 A,
Σ ;;; Γ |- B : tSort s1 ->
Σ ;;; Γ |- b : B ->
Σ ;;; Γ ,, vdef na b B |- t : A ->
Σ ;;; Γ |- tLetIn na b B t : tLetIn na b B A

8: This is where PCUIC enforces compu-
tational irrelevance of proofs, by impos-
ing the so-called “singleton elimination”
criterion, which ensures that only induc-
tive types of a certain specific shape – sub-
singletons – can be matched on to build
proof relevant content, so that that con-
tent cannot actually depend on the value
of a proof.

Next (Figure 7.3c) are the three rules performing look-ups in the global envi-
ronment, respectively constants – type_Const –, inductive types – type_Ind
– and inductive constructors – type_Construct. In all cases the term should
be declared in the global environment, the context well-formed – since
these are leaves of a term –, and the universe instance given should re-
spect the constraints coming from the entry in the environment – this is
the consistent_instance_ext predicate.

The rules of Figure 7.3d are the ones for the destructors of (co-)inductive
types. Rule type_Case is somewhat similar to Rule BoolInd. First, the scru-
tinee should be of an inductive type, declared in the global environment.
Next, the predicate and branches should all be well-typed in the appropri-
ate context – obtained by combining the information stored in p or brs,
with that retrieved from the entry in the environment corresponding to
the scrutinee’s type. Finally, case_side_conditions handles universe in-
stances, checks that the elimination is allowed8…The second rule, type_Proj,
is somewhat similar, albeit a bit simpler: the scrutinee should still be some
applied co-inductive/record type, and the type is constructed by substitu-
tion from the projection information.

The last typing rules for terms are those for (co-)fixed-points, given in Fig-
ure 7.3e. They are almost identical, the main part amounts to checking
that the types and bodies of all the mutual definitions are well-typed. The
wf_fixpoint and wf_cofixpoint predicates both check that the defini-
tions are on the same block of mutually-defined (co-)inductive types, and
that these are of the right kind – inductive for tFix and co-inductive for
tCoFix. Finally, the fix_guard and cofix_guard predicates correspond to

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L188
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L188
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L188
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L159
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L118
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L145

7.1. Setting up the Definitions: Terms, Cumulativity and Types 89

| type_Const : forall cst u decl,
wf_local Σ Γ ->
declared_constant Σ cst decl ->
consistent_instance_ext Σ decl.(cst_universes) u ->
Σ ;;; Γ |- tConst cst u : decl.(cst_type)@[u]

| type_Ind : forall ind u mdecl idecl,
wf_local Σ Γ ->
declared_inductive Σ ind mdecl idecl ->
consistent_instance_ext Σ mdecl.(ind_universes) u ->
Σ ;;; Γ |- tInd ind u : idecl.(ind_type)@[u]

| type_Construct : forall ind i u mdecl idecl cdecl,
wf_local Σ Γ ->
declared_constructor Σ (ind, i) mdecl idecl cdecl ->
consistent_instance_ext Σ mdecl.(ind_universes) u ->
Σ ;;; Γ |- tConstruct ind i u : type_of_constructor mdecl cdecl (ind, i) u

Figure 7.3c. Globally defined terms (typing)

| type_Case : forall ci p c brs indices ps mdecl idecl,
let predctx := case_predicate_context ci.(ci_ind) mdecl idecl p in
let ptm := it_mkLambda_or_LetIn predctx p.(preturn) in
declared_inductive Σ ci.(ci_ind) mdecl idecl ->
Σ ;;; Γ ,,, predctx |- p.(preturn) : tSort ps ->
Σ ;;; Γ |- c : mkApps (tInd ci.(ci_ind) p.(puinst)) (p.(pparams) ++ indices) ->
case_side_conditions (fun Σ Γ => wf_local Σ Γ) typing Σ Γ ci p ps

mdecl idecl indices predctx ->
case_branch_typing (fun Σ Γ => wf_local Σ Γ) typing Σ Γ ci p ps

mdecl idecl ptm brs ->
Σ ;;; Γ |- tCase ci p c brs : mkApps ptm (indices ++ [c])

| type_Proj : forall p c u mdecl idecl cdecl pdecl args,
declared_projection Σ p mdecl idecl cdecl pdecl ->
Σ ;;; Γ |- c : mkApps (tInd p.(proj_ind) u) args ->
#|args| = ind_npars mdecl ->
Σ ;;; Γ |- tProj p c : subst0 (c :: List.rev args) (snd pdecl)@[u]

Figure 7.3d. (Co-)inductive destructors (typing)

| type_Fix : forall mfix n decl,
wf_local Σ Γ ->
fix_guard Σ Γ mfix ->
nth_error mfix n = Some decl ->
All (fun d => {s & Σ ;;; Γ |- d.(dtype) : tSort s}) mfix ->
All (fun d => (Σ ;;; Γ ,,, fix_context mfix |- d.(dbody) :

lift0 #|fix_context mfix| d.(dtype))) mfix ->
wf_fixpoint Σ mfix ->
Σ ;;; Γ |- tFix mfix n : decl.(dtype)

| type_CoFix : forall mfix n decl,
wf_local Σ Γ ->
cofix_guard Σ Γ mfix ->
nth_error mfix n = Some decl ->
All (fun d => {s & Σ ;;; Γ |- d.(dtype) : tSort s}) mfix ->
All (fun d => Σ ;;; Γ ,,, fix_context mfix |- d.(dbody) :

lift0 #|fix_context mfix| d.(dtype)) mfix ->
wf_cofixpoint Σ mfix ->
Σ ;;; Γ |- tCoFix mfix n : decl.(dtype)

Figure 7.3e. (Co-)fixed-points (typing)

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L188
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L188
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L188

90 7. Formalized Meta-Theory of PCUIC

Figure 7.3f. Cumulativity (typing)

| type_Cumul : forall t A B s,
Σ ;;; Γ |- t : A ->
Σ ;;; Γ |- B : tSort s ->
Σ ;;; Γ |- A <=s B ->
Σ ;;; Γ |- t : B

9: Often replaced by wf_ext, an exten-
sion that in addition takes into account
the universes of the current definition.

10: PCUICWeakeningConv and
PCUICWeakeningTyp.

11: PCUICWeakeningEnvConv and
PCUICWeakeningEnvTyp.

12: PCUICInstConv and PCUICSubstitu-
tion
13: PCUICUnivSubstitutionConv and
PCUICUnivSubstitutionTyp

14: PCUICClosedTyp.

[Aba+91]: Abadi et al. (1991), Explicit sub-
stitutions
[STS15]: Schäfer et al. (2015), Autosubst:
Reasoning with de Bruijn Terms and Paral-
lel Substitutions

the guard condition, ensuring that the definitions do not endanger normal-
ization. We come back to those in Section 7.5.

The final rule (Figure 7.3f) is that which uses cumulativity as just defined
to change the type of the term, e.g. the equivalent of Rule Cum.

From the definition of typing, twomore pervasively used definitions follow.
We have already encountered wf_local, asserting that a local context is
well-formed. Its sibling predicate wf9 asserts that the global environment
is well-formed. It ensures not only that all definitions are properly typed,
but also of the validity of various information related to inductive types – in
particular the positivity criterion which ensures that inductive definitions
are well-founded –, and universe polymorphism.

7.2. The Easy Properties: Stabilities

With the main definitions set up, we can turn to the properties that we
collectively called stabilities in Section 3.4. These assert that cumulativity
and typing as just defined are stable by various ubiquitous operations: ex-
tension of the local context10 and global environment,11 and substitution,
not only for terms,12 but also for universe variables.13

One last property falling in the section of low-hanging fruits as well is the
fact that well-typed terms are well-scoped.14 This well-scoping conditions
appears in the transitivity rule for cumulativity (Figure 7.2a) and is a hy-
pothesis for many lemmas.

All of these are proven by induction on the typing derivation. While the
proof by themselves are not very surprising, the formalization of the defi-
nitions deserves a few comments.

The first point to note is that while the weakening and substitution oper-
ations are defined directly by induction on the syntax of terms, the proofs
are not done directly on those definitions. Rather, MetaCoq uses notions
of renaming and instantiation inspired by the σ-calculus [Aba+91; STS15],
as functions from natural numbers to natural numbers for renamings, and
to terms for instantiations. Weakening and substitution then correspond
respectively to a specific form of renaming and of instantiation, and the sta-
bility for the former those follows from more general versions for the latter.
For instance, weakening is but a consequence of general stability by (un-
conditional) renaming, as presented in Property 3.1. This approach makes
it easier to handle the complex binding structures present in the syntax of
PCUIC, which require parallel substitution or lifting by a whole context at
once, operations that are easier to handle in the general framework of the
σ-calculus.

More interestingly and novel, the same approach is taken also for well-
scoping:MetaCoq generalizes that predicate into away of lifting any boolean

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L188
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICPCUICTyping.v#L444
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Conversion/PCUICWeakeningConv.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Typing/PCUICWeakeningTyp.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Conversion/PCUICWeakeningEnvConv.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Typing/PCUICWeakeningEnvTyp.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Conversion/PCUICInstConv.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICSubstitution.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICSubstitution.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Conversion/PCUICUnivSubstitutionConv.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Typing/PCUICUnivSubstitutionTyp.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICClosedTyp.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L188
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICPCUICTyping.v#L284
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICPCUICTyping.v#L439

7.3. Confluence 91

15: This is on_free_vars.
function on natural numbers – seen as a property of variables – to a boolean
function on terms.15 This makes it easy to relate the σ-calculus to well-
scoping assumptions, e.g. to show that if two substitutions σ and σ' agree
on the free variables of a term t, then the application of σ and σ' to t are
equal.

Inductive subslet {cf:checker_flags} Σ (Γ : context)
: list term -> context -> Type :=

| emptyslet : subslet Σ Γ [] []
| cons_let_ass Δ s na t T : subslet Σ Γ s Δ ->

Σ ;;; Γ |- t : subst0 s T ->
subslet Σ Γ (t :: s) (Δ ,, vass na T)

| cons_let_def Δ s na t T :
subslet Σ Γ s Δ ->
Σ ;;; Γ |- subst0 s t : subst0 s T ->
subslet Σ Γ (subst0 s t :: s) (Δ ,, vdef na t T). Figure 7.4. Well-formed substitution

(subslet)

A last point of interest is the definition of a well-formed substitution, a pred-
icate called subslet. Indeed, the usual typing judgment for substitutions is
of the form Δ ⊢ 𝜎 : Γ, meaning that 𝜎 maps each assumption (𝑥: 𝐴) ∈ Γ to
a term 𝑡 such that Δ ⊢ 𝑡 : 𝑇 [𝜎]. But in our setting we must account for vari-
ables that can be defined in Δ. This leads to the definition of a well-formed
substitution as in Figure 7.4. A similar definition, called well_subst, is also
available for instantiations.

7.3. Things Get Serious: Confluence

Inductive red1 (Σ : global_env) (Γ : context) : term -> term -> Type :=
(** Reductions *)
| red_beta na t b a :
Σ ;;; Γ |- tApp (tLambda na t b) a ~> b {0 := a}

| red_zeta na b t b' :
Σ ;;; Γ |- tLetIn na b t b' ~> b' {0 := b}

…
(** Congruences*)
| app_red_l M1 N1 M2 : Σ ;;; Γ |- M1 ~> N1 -> Σ ;;; Γ |- tApp M1 M2 ~> tApp N1 M2
| app_red_r M2 N2 M1 : Σ ;;; Γ |- M2 ~> N2 -> Σ ;;; Γ |- tApp M1 M2 ~> tApp M1 N2
…
where " Σ ;;; Γ |- t ~> u " := (red1 Σ Γ t u).

Definition red Σ Γ := clos_refl_trans (fun t u : term => Σ;;; Γ |- t ~> u).

Figure 7.5. One-step reduction and reduction

As in Section 3.4, the next step is to define reduction and establish its proper-
ties. An excerpt of the definitions is given in Figure 7.5: reduction is red, de-
fined as as the reflexive, transitive closure of one-step reduction red1. The
former is written Σ ;;; Γ |- t ~>* u, and the latter Σ ;;; Γ |- t ~> u.

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Syntax/PCUICOnFreeVars.v#L71
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICSubstitution.v#L44
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICSubstitution.v#L44
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Syntax/PCUICInstDef.v#L65
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICReduction.v#L303
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICReduction.v#L18

92 7. Formalized Meta-Theory of PCUIC

[Tak95]: Takahashi (1995), Parallel Reduc-
tions in λ-Calculus

𝑡 ⇛ 𝑡′ 𝑢 ⇛ 𝑢′
𝑡 𝑢 ⇛ 𝑡′ 𝑢′

𝑡 ⇛ 𝑡′ 𝑢 ⇛ 𝑢′
(λ 𝑥: 𝐴. 𝑡) 𝑢 ⇛ 𝑡′[𝑥 ≔ 𝑢′]

Figure 7.6. Parallel reduction for applica-
tion

16: Which says that if 𝑡 →1 𝑡1 and 𝑡 →1
𝑡2 then there exists 𝑡′ such that 𝑡1 →⋆ 𝑡′
and 𝑡2 →⋆ 𝑡′.

17: For instance ρ ((λ 𝑥: 𝐴. 𝑡) 𝑢) is
ρ (𝑡)[𝑥 ≔ ρ (𝑢)].

𝑡

𝑡′ ρ (𝑡)
𝑡

𝑡1 𝑡2

ρ (𝑡)
Figure 7.7. The triangle and diamond
properties, as diagrams

7.3.1. Parallel reduction

The proof of confluence follows the standard Tait-Martin-Löf approach as
exposed by Takahashi [Tak95]. It relies on a notion of parallel reduction
⇛ , which can reduce multiple redexes present in a term 𝑡 in parallel. As
an example, the rules for application are given in Figure 7.6. The generic
congruence rule allows reduction to happen in parallel in both the function
and argument. Moreover, if the function is an abstraction, a β step can also
be fired simultaneously with those. Note that this does not allow reducing
further redexes that would be produced by the substitution. For instance,
we do not have

(λ 𝑓 : 𝐍 → 𝐍.𝑓 0) (λ 𝑥: 𝐍.𝑥) ⇛ 0
because the redex (λ 𝑥: 𝐍.𝑥) 0 only appears after a first step of substitu-
tion.

Parallel reduction has two interesting properties. First, it is related to stan-
dard reduction.

Lemma 7.1. Parallel reduction and reduction

We have →1 ⊂ ⇛ ⊂ →⋆ .

This implies that if parallel reduction is confluent, then so is reduction.

But the interesting characteristic of parallel reduction, which reduction
does not satisfy, is the diamond property, a strong version of local conflu-
ence,16 which contrarily to it implies confluence even in the absence of nor-
malization. Thanks to Lemma 7.1 above, in order to establish confluence of
reduction, it suffices to show this diamond property.

The proof idea goes as follows. First, show that parallel reduction is substi-
tutive, in the following sense.

Lemma 7.2. Parallel reduction is substitutive

If 𝑡 ⇛ 𝑡′ and 𝑢 ⇛ 𝑢′ then 𝑡[𝑥 ≔ 𝑢] ⇛ 𝑡′[𝑥 ≔ 𝑢′].

This allows to define a best parallel reduct ρ , which reduces all possible
redexes in parallel,17 and to show that it is really a best reduct.

Lemma 7.3. Triangle property

Given a term 𝑡 , if 𝑡 ⇛ 𝑡′ then 𝑡′ ⇛ ρ (𝑡).

This is enough to get the diamond property, because any two parallel reducts
of a term 𝑡 both reduce to ρ (𝑡) in one step. This basically amounts to firing
in both reducts all the redexes that could have been triggered but have not
been.

Lemma 7.4. Diamond property

Given a term 𝑡 and 𝑡1, 𝑡2 such that 𝑡 ⇛ 𝑡1 and 𝑡 ⇛ 𝑡2, there exists 𝑡′
such that 𝑡1 ⇛ 𝑡′ and 𝑡2 ⇛ 𝑡′.

From this, it follows by a bit of diagram chasing that parallel reduction is
confluent, and thus that reduction is.

7.4. The Road to Subject Reduction 93

18: And the technicality of defining ρ in a
terminating fashion, which is done using
the Equations plugin [SM19].

[SM19]: Sozeau et al. (2019), Equations
Reloaded: High-Level Dependently-Typed
Functional Programming and Proving in
Coq

19: The generalization of α-equality to
handle cumulativity.

20: Meaning that the terms can differ
only on binder names, but that their
universe must be syntactically the same
rather than related using the constraints
present in the environment.

Theorem 7.5. Confluence of reduction

Reduction is confluent, that is if 𝑡 →⋆ 𝑡1 and 𝑡 →⋆ 𝑡2 then there exists
𝑡′ such that 𝑡1 →⋆ 𝑡′ and 𝑡2 →⋆ 𝑡′.

Note that it can directly be shown without resorting to parallel reduction
that reduction is locally confluent. However, in the absence of normaliza-
tion to apply Newman’s lemma, this is not enough to ensure confluence.
But, while we can hope that normalization holds for well-typed term, it is
clearly false on untyped terms. Yet, it is crucial to get confluence on those,
as otherwise we would not be able to establish injectivity of type construc-
tors and thus subject reduction with our untyped notion of cumulativity.
Thus, this detour through parallel reduction is really unavoidable.

7.3.2. Formalizing Takahashi’s proof

The previous section sets down a quite precise plan, that we can almost di-
rectly follow in MetaCoq. There is one important subtlety though: because
of local definitions, reduction depends on contexts, so these must be taken
into account in parallel reduction. But bodies of definitions should also be
reduced by parallel reduction, and so the actual relation is between pairs
of a context and a term, something like Γ, 𝑡 ⇛ Γ′, 𝑡′.
Apart from this difficulty18 the plan can be followed quite closely. Paral-
lel reduction is defined as pred1 in PCUICParallelReduction. Then the dia-
mond property is proven in PCUICParallelReductionConfluence – ρ is rho,
and the diamond property itself is pred1_diamond. Finally, PCUICConflu-
ence goes back from this to properties of reduction, concluding with its
confluence (red_confluence).

7.4. Reaping the Fruits: the Road to Subject
Reduction

With confluence proven, it is time to reap the fruits. First, declarative cu-
mulativity, as used to define typing, can be related to algorithmic cumula-
tivity. This entails many useful consequences, including injectivity of type
constructors. A series of important properties then follow, culminating with
subject reduction.

7.4.1. Algorithmic cumulativity

The first use of confluence is to relate declarative cumulativity as used to
define typing to algorithmic cumulativity – cumulAlgo – defined as reduc-
tion to terms related by the α-pre-order ≤α.19 But in the setting of PCUIC
this relation, called leq_term in the formalization, is far from being trivial
to define! It needs to handle algebraic universe levels, but also polymorphic
inductive types.Moreover, it is parameterized over the relation used to com-
pare universes, so that it can also be used to express “pure” α-equality20

when instantiated with equality rather than universe comparison.

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICParallelReduction.v#L241
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICParallelReduction.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICParallelReductionConfluence.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICParallelReductionConfluence.v#L697
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICParallelReductionConfluence.v#L4421
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICConfluence.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICConfluence.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICConfluence.v#L3959
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICCumulativity.v#L31
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICEquality.v#L382

94 7. Formalized Meta-Theory of PCUIC

21: Two features present in Coq but not
yet in MetaCoq, exactly due to this kind
of difficulties.

22: That for subject reduction needsmore
than 1500 lines for the main induction!

23: This is part of the case_side_condi-
tions.
24: See the cumul_cofix_case construc-
tor in Figure 7.2f.

To show that algorithmic conversion is equivalent to declarative conversion,
confluence is the major ingredient, but it is not enough. Instead, we also
need to show that reduction interacts well with this α-pre-order.

Lemma 7.6. The α-pre-order is a simulation (red1_eq_term_upto_univ_-
l)

𝑡 𝑡′

𝑢 𝑢′

←→

1

≤α
←→

1
≤α

Figure 7.8. Simulation, as a diagram

If 𝑡 ≤α 𝑡′ and Γ ⊢ 𝑡 →1 𝑢 then there exists some 𝑢′ such that Γ ⊢
𝑡′ →1 𝑢′ and 𝑢 ≤α 𝑢′.

While the proof is still relatively straightforward since 𝑡 and 𝑡′ have the
same structure, it becomes much more challenging if we wish to integrate
extensionality rules such as η-equality or strict propositions21 into ≤α.

Combining this simulation property with confluence, transitivity of algo-
rithmic cumulativity follows, and finally its equivalence with declarative
cumulativity.

Theorem 7.7. Equivalence of the presentations of cumulativity

Algorithmic and declarative cumulativity are equivalent.

This equivalence is the main theorem of PCUICConversion – one direction
is cumulSpec_cumulAlgo, and the other is cumulAlgo_cumulSpec. That
central file also proves multiple variants of injectivity of type constructors.
For instance, injectivity of function types is ws_cumul_pb_Prod_Prod_inv,
and the stronger formused in completeness of bidirectional typing (Lemma 4.2)
is ws_cumul_pb_Prod_r_inv.

7.4.2. Reaping the fruits

With injectivity settled, we can get to the main properties of typing. The
easiest is validity, asserting that if Γ ⊢ 𝑡 : 𝑇 then 𝑇 is a well-formed type
in Γ. The second is that typing is insensible to names (typing_alpha): if
two terms differ only in variable names and one is typable, then so is the
other. And, finally, comes subject_reduction.

While the main proofs of these theorems are far from simple,22 an impor-
tant part of the proof effort is actually required ahead of them in PCUICIn-
ductives and PCUICInductiveInversion, in order to show that the various
contexts, substitutions, applications, etc. that appear in conversion and typ-
ing for inductive types behave as expected.

Regarding subject reduction, a caveat applies. Because the “positive” pre-
sentation of co-fixed-points does not preserve types, as explained in Sec-
tion 3.6.6, only the “negative” presentation based on projections is allowed.
In practice, this means that the typing rule type_case of Figure 7.3d forbids
the scrutinee from being of a co-inductive type.23 Hence, while reduction
and conversion take this presentation into account,24 thus showing at least
that it is confluent, it can never appear in a well-typed term.

An alternative solution, which would allow an easier transition away from
today’s positive co-inductive types, is to see co-inductive scrutinees as ef-
fectful terms and restricts predicates allowed for dependent elimination to

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L159
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L159
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICCumulativitySpec.v#L158
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICConfluence.v#L838
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICConfluence.v#L838
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICConversion.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICConversion.v#L3680
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICConversion.v#L190
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICConversion.v#L718
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICConversion.v#L686
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICValidity.v#L453
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICAlpha.v#L1009
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICSR.v#L3072
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICInductives.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICInductives.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICInductiveInversion.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L241

7.5. Normalization 95

be linear, following Pédrot and Tabareau [PT17] [PT17]: Pédrot et al. (2017), An Effectful
Way to Eliminate Addiction to Dependence

. This approach is not for-
malized in MetaCoq – yet –, but the project provides a natural setting to
explore this kind of questions in all their gritty details before working to-
wards an actual implementation in Coq.

7.5. Gödel’s Thorn in the Side: Normalization

One last important property remains: normalization. In PCUIC, the key con-
straint to ensure it is the guard condition, to which (co-)fixed-points are
subject in order to ensure that they are well-founded – see Section 3.6.5.
However, due to Gödel’s second incompleteness theorem, if PCUIC is con-
sistent then it cannot prove its own consistency. But if normalization were
provable, then so would be consistency. There is therefore no hope to give
a guard condition and prove that it entails normalization.

7.5.1. An abstract guard condition

Inductive FixCoFix : Type := Fix | CoFix.

Axiom guard : FixCoFix -> global_env_ext -> context
-> mfixpoint term -> Prop.

Definition fix_guard := guard Fix.
Definition cofix_guard := guard CoFix.

Figure 7.9. The guard axiom

Instead, MetaCoq takes a different approach. The existence of a guard con-
dition is assumed in an abstract, axiomatic fashion – see Figure 7.9 – and
used in typing – see Figure 7.3e. Similarly, PCUICGuardCondition assumes
properties of this axiomatic guard: it should be stable by universe and term
substitution, extension of the global environment, cumulativity of the local
context insensible to names, and, most importantly, stable by reduction.

These abstract properties are enough to handle the whole development out-
lined above. In other words, given any notion of guard condition that sat-
isfies the criteria of PCUICGuardCondition, typing satisfies injectivity of
type constructors, validity, subject reduction… Thus, our abstract approach
provides a precise characterization of the properties the guard condition
needs to satisfy in order for typing to be well-behaved.

In particular, since the trivial guard condition that is always true fulfils
the requirements, none of the aforementioned properties rely on normal-
ization – or consistency of the theory. Thus, PCUIC is a safe programming
language, unconditionally.

7.5.2. The normalization axiom

But of course we need more. In particular, if we wish to define a convertibil-
ity check inside Coq, which only allows to define terminating functions, we
must know that reduction is terminating. Once again, we axiomatize the
necessary axiom of (strong) normalization, as given in Figure 7.10. Note

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICTyping.v#L54
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICGuardCondition.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICGuardCondition.v

96 7. Formalized Meta-Theory of PCUIC

Figure 7.10. The normalization axiom

Axiom normalisation :
wf_ext Σ ->
forall Γ t,

welltyped Σ Γ t ->
Acc (cored Σ Γ) t.

25: Which can be seen as a constructive
witness of canonicity!

26: Corresponding to the MetaCoq term
tProd b (tSort Prop_univ) (tRel 0).

that this axiom takes exactly the form we gave to normalization in Prop-
erty 3.14, as the accessibility of any well-typed term for co-reduction. This
is done under the assumption that the global context is well-formed, other-
wise it could contain e.g. non-positive inductive types which could be used
to define non-terminating terms.

Using this axiom, it is possible to prove consistency of PCUIC, as shown
in PCUICConsistency. The rough idea of the proof is that given for Prop-
erty 3.15, i.e. to deduce consistency from canonicity. However, instead of
proving progress directly we rely on a proven-complete function comput-
ing weak-head normal forms implemented as part of the type-checker.25

Assuming an inhabitant t of Π 𝑏: Prop. 𝑏26 in any axiom-free global envi-
ronment Σ, the proof extends Σ with the empty inductive type ⊥, use t to
construct a weak-head normal inhabitant of that type, and from this finally
derive a contradiction.

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICSN.v#L36
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/safechecker/theories/PCUICConsistency.v

1: Called All_local_env.

2: Taken from McBride [McB18], see its
exposition in Section 4.1.1.

[McB18]: McBride (2018), Basics of Bidi-
rectionalism
3: Which is an input, and thus should not
be re-checked.

Building a Certified Kernel 8.
8.1 Bidirectional Typing,

Formalized 97
8.1.1 Definitions 97
8.1.2 Equivalence with undirected

typing 98
8.1.3 Properties of bidirectional

typing 99

8.2 Before Typing 99
8.2.1 Abstract environment 100
8.2.2 Cumulativity checking 100

8.3 Sound and Complete
Inference 101

8.4 Beyond Typing: Envi-
ronment Checking and
Re-Typing 104

8.4.1 Re-Typing 104
8.4.2 Environment Checking 104

With the meta-theory set down, we can turn to building a kernel – and
proving that it is correct. The first step (Section 8.1) is to move from the
declarative specification of Chapter 7 to a bidirectional presentation, closer
to the kernel we wish to implement. Once this specification is set down, we
can get to the kernel itself. Section 8.2 goes over the implementation of the
global environment and the cumulativity check, and Section 8.3 describes
the type-checker. Finally, Section 8.4 describes two extra functions belong-
ing to the safe kernel: re-typing, and checking of global environment.

I personally contributed the formalizations of Section 8.1, the complete-
ness part of Section 8.3 – by modifying the pre-existing proven-sound type-
checker –, and heavily modified re-typing – part of Section 8.4.

8.1. Formalized Bidirectional Typing

We already saw the main theoretical ideas around our approach to bidirec-
tional typing in Part ‘Bidirectional Calculus of Inductive Constructions’, so
let us get to their implementation in the formalization.

8.1.1. Definitions

Before we can get to the definition of typing, we must go through the
small BDEnvironmentTyping, which is dedicated to refining a few defini-
tions on contexts in the bidirectional setting. First, in the case of a defini-
tion Γ,, vdef na b T, wf_local enforces that T is a well-formed type, and
that b has type T. In the bidirectional setting we want to use constrained
inference ▷□ for the first, and checking for the second, but the generic
definition on which wf_local is built1 only allows for a single parameter
– instantiated with typing in the case of wf_local. Similarly, we need a
definition expressing that a context Δ is well-formed over another context
Γ, but which does not enforce Γ to be well-formed a priori – e.g. something
more precise than simply ⊢ Γ, Δ. This allows to stay faithful to McBride’s
discipline2 when typing context extensions, by only demanding that the
extension is well-formed, but not the initial segment.3

The bidirectional typing judgment is defined in BDTyping, as a set mutual
defined inductive predicates: one for inference, one for checking, and one
for each constrained inference, e.g. respectively sorts, Π-types and induc-
tive types. The definition of the predicates themselves is very close to that
of Figures 4.2a and 4.2b for the functional fragment, the main innovation
being that constrained inference – written Σ ;;; Γ |- t |>Π (na,A,B)
for Π-types – takes the variable name, domain and codomain of the induc-
tive type as three separate arguments, which our pen-and-paper notation
did not make explicit. The predicates defined in BDEnvironmentTyping are
used in the definition of inference for the tCase node, where we want to
ensure that the context extensions used to type the predicate and branches
are well-formed.

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Bidirectional/BDEnvironmentTyping.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Bidirectional/BDTyping.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Bidirectional/BDEnvironmentTyping.v

98 8. Building a Certified Kernel

4: In particular, a standardization theo-
rem is missing, which would be needed to
show the analogue of Lemma 4.2 for weak-
head reduction.

5: Bidirectional typing implies undi-
rected typing, akin to Theorem 4.1.

Regarding the notions of computation, the definitions of constrained infer-
ence use full reduction rather than weak-head reduction, mainly because
MetaCoq currently lacks a treatment of the latter adequate for our needs.4

As for cumulativity, the algorithmic variant is used in the checking rule,
but this is relatively irrelevant, since the equivalence between both presen-
tations of cumulativity appears much earlier in the development than bidi-
rectional typing.

Maybe more interesting from the formalization point of view is how we
obtain a usable induction principle. This is a common issue in MetaCoq:
while Coq is able to detect that our inductive definitions are well-founded,
the default generation is often unable to derive a sensible induction princi-
ple, and neither are the Scheme specialized commands. This is due to their
nested character, i.e. the presence of lists and records containing recur-
sive instances of the inductive types as arguments to the type constructors.
The bidirectional typing predicate is the paroxysmal example of this, as it
reaches the limit of expressiveness offered by Coq’s inductive types: it is
not only nested, but also mutual. We thus have to prove our desired induc-
tion principle by hand. To do so, we introduce a notion of “generic” typing
object typing_sum, together with a notion of size for such a typing object,
and finally show the induction principle bidir_ind_env by well-founded
induction on that size.

This induction principle is not as strong as we might expect, as it does
not provide the extra induction hypothesis on inputs that would go with
McBride’s discipline. Ideally, we could use this discipline in order to thread
the well-formation invariants, giving stronger induction hypotheses. I did
not try to take this path and prove such a strong induction principle, as it
did not seem so easy: it would effectively correspond to an inline proof of
validity. Instead, the discipline is reflected in the choice of the predicates
proven by induction. For instance, in the case of soundness, the mutually
proven predicate for inference is wf_local Σ Γ -> Σ ;;; Γ |- t : T, and
more generally assumptions are added as pre-condition for all inputs. Still, I
conjecture that such a strong induction principle should be provable, if the
need would arise, and might be nice in order to factor proofs, by showing
once and for all that the rules follow the discipline correctly.

8.1.2. Equivalence with undirected typing

Soundness5 is shown in BDToPCUIC. The main proof is by induction on
the derivation, its key point being to show that well-formation invariants
are preserved, and in particular that all contexts that are constructed are
valid.

There is one particular difficulty linked to the tCase constructor, and the
question of its representation evoked at the very end of Section 5.2. More
precisely, the issue is related to the fact that case nodes store the universe
instance and parameters of the inductive type beingmatched upon, in order
to be able to construct the context in which the predicate and branches are
typed. In undirected typing, the hypothesis on the scrutinee is that it should
be of some type

mkApps (tInd ci.(ci_ind) p.(puinst)) (p.(pparams) ++ indices)

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Bidirectional/BDTyping.v#L256
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Bidirectional/BDTyping.v#L312
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Bidirectional/BDToPCUIC.v

8.2. Before Typing: Environment Querying and Cumulativity Checking 99

6: It is not mode-correct [DK21].

[DK21]: Dunfield et al. (2021), Bidirec-
tional Typing

7: Undirected typing implies bidirec-
tional typing, akin to Theorem 4.3.

8: To relate the reduction used to de-
fined constrained inference and the one
on which most lemmas around conflu-
ence are stated, which is defined directly
on well-scoped terms.

9: Consider for instance 𝑛: 𝐍 ⊢ 0: (λ 𝑥: 𝐍.
𝐍) 𝑛: 𝑛 appears in the type, but neither in
the body of the term nor any types in the
context.

where ci.(ci_ind), p.(puinst) and p.(pparams) are respectively the in-
ductive type being matched upon, its universe instance, and its parameters
– all stored in the case node –, and indices are free. From the point of
view of bidirectional typing, this rule is invalid:6 because indices is free,
this cannot be turned into a checking premise, but it also cannot be directly
turned into inference, or even constrained inference, because it is not free
enough due to the presence of p.(pparams) and p.(puinst). The solution
is still to turn it into an inference premise Σ ;;; Γ |- c |>{ci} (u,args),
and to compare the inferred universe instance u and parameters – the first
part of the list args – to those stored in the node, e.g. p.(puinst) and
p.(pparams). But it requires some work to show that this relation between
the two lists of parameters is enough to use the second part of args, the
inferred indices, in place of indices above.

In the opposite direction, completeness7 is also proven by induction, once
we have used the injectivity properties of PCUICConversion to show that
inference of a type related by cumulativity to a sort, Π- or inductive type
implies constrained inference of the corresponding kind. In order to sim-
plify proofs in the case of projections, soundness is used in conjunction
with validity, but this could probably be avoided, making the two proofs
independent.

8.1.3. Properties of bidirectional typing

As we did in Theorem 4.4, we show that two inferred types have a com-
mon reduct in BDUnique. While the proof requires some playing with well-
scoping predicates,8 it is conceptually much simpler than the direct proof
of PCUICPrincipality, which shows the existence of principal types with-
out going through bidirectional typing. Indeed, due to the difficulty of the
proof, for quite some time only a weaker version was proven. This version
that if 𝑇 and 𝑇 ′ are both types for the same term 𝑡 then there exists a third
𝑇″ which is both a type for 𝑡 and smaller than 𝑇 and 𝑇 ′ for cumulativity.

Finally, BDStrengthening shows strengthening. Its first important property
is that if Γ ⊢ 𝑡 ▷ 𝑇 then 𝑇 can only use variables appearing in either 𝑡 or
in the types of Γ (infering_on_free_vars), which is not true in general in
undirected typing.9 It then goes on with the proof that bidirectional typing
is stable under any renaming, while PCUICRenameTyp only shows stability
of undirected typing under unconditional renaming. Finally, we get to the
proof of strengthening per se, once we have shown that strengthening is
indeed a well-formed renaming.

8.2. Before Typing: Environment Querying
and Cumulativity Checking

Before we can get to typing, we need to have a look at its two main sub-
routines: querying the global environment, and cumulativity check.

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICConversion.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Bidirectional/BDUnique.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICPrincipality.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Bidirectional/BDStrengthening.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Bidirectional/BDStrengthening.v#L487
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICRenameTyp.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/Bidirectional/BDStrengthening.v#L989

100 8. Building a Certified Kernel

[Soz+20]: Sozeau et al. (2020), Coq Coq
Correct! Verification of Type Checking and
Erasure for Coq, in Coq

10: The extension of α-equality to handle
cumulativity.

8.2.1. Abstract environment

The type and cumulativity checking algorithms both need to query the
global environment, for two main purposes: retrieving information about
previous definitions of constants and inductive types, and checking that
(in)equalities between universe expression hold.

While this might seem anecdotal, a surprisingly important amount of time
is spent in the actual checker on the second problem, which requires a
form of shortest-path algorithm on a graph obtained from the universe
constraints, in order to detect the presence of negative cycles. These cor-
respond to violations of the universe stratification. MetaCoq implements
such an algorithm, with a proof that it is correct – i.e. sound and complete
–, meaning that the algorithm answers “yes” exactly when there is a map-
ping from universe levels to integers satisfying all constraints declared in
the environment. More details on this can be found in Sozeau et al. [Soz+20,
Section 3.3].

Sadly, said algorithm is too naive to be actually run on reasonable exam-
ples: it is currently the main performance bottleneck of the extracted type-
checker. Similarly, the representation of the global environment as a list
of definitions is too naive to allow for efficient lookups – Coq uses hash
maps instead. While we hope to replace that naive implementation with a
more efficient but still certified one, for the moment it is convenient to be
able to plug an uncertified but efficient implementation into the extracted
type-checker. To do so, we rely on abstract interfaces for the global environ-
ment, containing all the possible queries we need to perform, presented in
PCUICWfEnv. The naive implementation is shown to be a valid implemen-
tation of that interface in PCUICWfEnvImpl.

8.2.2. Cumulativity checking

The most important sub-routine of the type-checker is the test of cumula-
tivity between two terms. The naive way to perform this, since we assume
normalization, would be to brutally normalize terms, and compare normal
forms up to leq_term.10 But this strategy does not scale as soon as def-
initions are present, because it eagerly unfolds all of these, resulting in a
very inefficient test. MetaCoq implements a more practical strategy, which
coarsely does the following:

1. reduce both terms being compared to weak-head normal form with-
out unfolding any definition;

2. if the two heads match, recursively compare sub-terms;
3. if the two heads do not match, or if the recursive sub-term compari-

son failed, check if an unfolding is possible which would unblock one
of the terms, and if yes, unfold it and go back to the first step.

This means that the cumulativity test must itself resort to a weak-head
reduction function.

The difficulty with those functions is that they do not operate by a sim-
ple structural induction on terms. Rather, they are defined using a complex
abstract machine, operating on terms decomposed into a sub-term and a
stack. The termination of that abstractmachine is shown using a dependent

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/safechecker/theories/PCUICWfEnv.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/safechecker/theories/PCUICWfEnvImpl.v

8.3. Sound and Complete Inference 101

11: In files PCUICSafeReduce for the
implementation of weak-head reduction,
and PCUICSafeConversion for the cumu-
lativity checker.

12: It was only proven sound at the time.
Jakob Botch Nielsen wrote most of the
completeness proof.

[Win20]: Winterhalter (2020), Formalisa-
tion and meta-theory of type theory

13: Technically, ‖𝑇 ‖ is defined as a record
of type Prop with a single field of type 𝑇 .

14: Given a type of errors 𝐸, the functor
associated with that monad is 𝑇 ↦ 𝑇 +𝐸,
its unit is the left injection, and its bind
𝑥 >>= 𝑓 either propagates 𝑥 if it is an
error, or applies 𝑓 otherwise.

15: For instance, if we are typing some
tProd na A B and the call to typing for
A fails, we must transform a proof that
A cannot be well-typed into a proof that
tProd na A B as a whole cannot either.

16: Which is decidable thanks to our
Church-style syntax.

lexicographic pre-order, which handles both the well-founded reduction or-
der given by normalization, a structural order on sub-terms and stacks cor-
responding to a given term, and the different phases of the algorithm. A
detailed description of this algorithm and its formalization11 is given by
Théo Winterhalter, who implemented it,12 in his PhD thesis [Win20, Chap-
ters 21-24].

An interesting point that the test of cumulativity and that of typing have in
common, is the way they handle their propositional content. First, because
we want to avoid issues linked with proof-irrelevance, in most of the for-
malization definitions are in Type, including the reduction, conversion and
typing relation. But in the verified kernel we want to enforce the separation
between propositional and relevant content. Thus, we use explicit squash-
ing —written ‖𝑇 ‖ – to cast a type into a proposition.13 Themain elimination
of propositional content into the relevant world we rely on that of accessi-
bility, so that we can define reduction and cumulativity by well-founded
induction. As customary in dependently typed code, we also use elimina-
tion of falsity in inaccessible branches.

Second, we write code using the Equations plugin, which lets us write the
relevant part of the definition in direct style, but to leave proofs to be filled-
in using the proof-mode. The definitions are given in monadic style, relying
on what looks like the error monad:14 the cumulativity- and type-checker
return a valid output, or an error message. However, since we wish the func-
tions to be correct by constructions, they must also return a proof, either a
witness for the positive answer, or a proof of impossibility in the negative
case. This means that the bind of the monad must actually perform a proof
when re-raising the error, in order to propagate the impossibility witness.15

At function definition, this is hidden by notations, so it feels like we are ac-
tually using a monad, but under the hood proof obligations are generated
each time we use a bind.

8.3. Sound and Complete Inference

Given the work already done in Section 8.1, the definition of a type check-
ing algorithmPCUICTypeChecker itself is rather straightforward: it follows
closely the structure laid out by the mutually defined bidirectional judg-
ments, and poses no termination issue as cumulativity does, since it op-
erates by induction on the structure of the term. Actually, rather than a
type-checker, the main function we define is infer, which performs type
inference,16 from which we can easily define type-checking.

In more details, the function takes as inputs:

1. an abstract environment implementation;
2. a global environment implemented using that implementation;
3. a context, and a squashed proof that it is well-formed;
4. a term

and it returns either a type and a (squashed) proof that the term infers that
type, or an error and a proof that the term cannot infer any type, using the
inductive type presented in Figure 8.1. Thus, the function is sound and com-
plete by construction. In fact, we cannot separate the definition from the

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/safechecker/theories/PCUICSafeReduce.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/safechecker/theories/PCUICSafeConversion.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/safechecker/theories/PCUICTypeChecker.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICSafeChecker.v#L1323

102 8. Building a Certified Kernel

Figure 8.1. The “error monad” used for
infer’s return type

Inductive typing_result_comp (A : Type) : Type :=
| Checked_comp : A -> typing_result_comp A
| TypeError_comp : type_error -> (A -> False) ->

typing_result_comp A.

17: Defined beforehand in an “open re-
cursion” flavour, e. g. as a function taking
infer as argument.

18: For instance, raise e is syntactic
sugar for TypeError_comp e _.

soundness proof, since the conversion checker expects a well-typed term
as input in order to be terminating when it is called.

Figure 8.2 gives – an excerpt of – the algorithm. For a variable tRel n, it
checks that the variable is bound in Γ, returns its type when it is, and fails
otherwise. In the case of a sort tSort u, it checks that the universe is well-
formed in the current environment, and returns a sort at the next level
when it is. In that of a dependent function type tProd na A B, it com-
putes the sort of A and B – in the context extended by na:A – using the
infer_type sub-routine,17 and builds from those the sort of the product
using sort_of_product. Functions are similar. The cases of tLetIn and
tApp clearly show the bidirectional structure. For instance, in tApp t u,
one needs to infer the type ty of t, then reduce it to some tProd na A B
using the reduce_to_prod function, and finally check that u has type A.
All underscores _ in the terms denote proof obligations, that are filled later
on in tactic mode. Although they are hidden, the monadic notations ;;
and raise also contain underscores for the propagation of completeness
information.18

Interestingly, the proofs of completeness use uniqueness of inferred types
a lot. To see why, consider e.g. the case of an application 𝑡 𝑢 where the
recursive call succeeds on 𝑡 – say it infers a product typeΠ 𝑥: 𝐴. 𝐵 – but the
one on 𝑢 fails – giving us a proof 𝑝 that 𝑢 ◁ 𝐴 is absurd.Wewant to raise an
error, and thus need to prove that 𝑡 𝑢 ▷ 𝑇 for any 𝑇 is absurd. An inversion
on that last hypothesis gives some 𝐴′ and 𝐵′ such that 𝑡 ▷Π Π 𝑥: 𝐴′. 𝐵′
and 𝑢 ◁ 𝐴′. But this second property cannot be directly fed 𝑝, because
the type against which 𝑢 checks is different! We thus need to use the two
inference judgments and uniqueness to conclude that in fact 𝐴 ≅ 𝐴′, and
thus that 𝑢 ◁ 𝐴, which this time we can the use to derive a contradiction
from 𝑝.

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICSafeChecker.v#L1323

8.3. Sound and Complete Inference 103

Equations infer
(Γ : context)
(HΓ : forall Σ (wfΣ : abstract_env_ext_rel X Σ), || wf_local Σ Γ ||)
(t : term)
: typing_result_comp ({ A : term &

forall Σ (wfΣ : abstract_env_ext_rel X Σ), || Σ ;;; Γ |- t |> A || })
by struct t :=

infer Γ HΓ (tRel n)
with inspect (nth_error Γ n) := {
| exist (Some c) e => ret ((lift0 (S n)) (decl_type c); _) ;
| exist None e => raise (UnboundRel n)
} ;

infer Γ HΓ (tVar n) := raise (UnboundVar n) ;

infer Γ HΓ (tEvar ev _) := raise (UnboundEvar ev) ;

infer Γ HΓ (tSort u) with inspect (abstract_env_wf_universeb _ X u) := {
| exist true _ := ret (tSort (Universe.super u);_) ;
| exist false _ := raise

(Msg ("Sort contains an undeclared level " ^ string_of_sort u))
} ;

infer Γ HΓ (tProd na A B) :=
s1 <- infer_type infer Γ HΓ A ;;
s2 <- infer_type infer (Γ,,vass na A) _ B ;;
Checked_comp (tSort (Universe.sort_of_product s1.π1 s2.π1);_) ;

infer Γ HΓ (tLambda na A t) :=
infer_type infer Γ HΓ A ;;
B <- infer (Γ ,, vass na A) _ t ;;
ret (tProd na A B.π1; _);

infer Γ HΓ (tLetIn n b b_ty b') :=
infer_type infer Γ HΓ b_ty ;;
bdcheck infer Γ HΓ b b_ty _ ;;
b'_ty <- infer (Γ ,, vdef n b b_ty) _ b' ;;
ret (tLetIn n b b_ty b'_ty.π1; _) ;

infer Γ HΓ (tApp t u) :=
ty <- infer Γ HΓ t ;;
pi <- reduce_to_prod (X_type := X_type) Γ ty.π1 _ ;;
bdcheck infer Γ HΓ u pi.π2.π1 _ ;;
ret (subst10 u pi.π2.π2.π1; _) ;

…

Figure 8.2. Definition of infer (excerpt)

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/pcuic/theories/PCUICSafeChecker.v#L1323

104 8. Building a Certified Kernel

8.4. Beyond Typing: Environment Checking
and Re-Typing

There are two more functions defined in MetaCoq that are very close to
the type-checker.

8.4.1. Re-Typing

The first, which is defined in PCUICSafeRetyping, aims at computing a type
for a term which is known to be well-typed. While this seems tautological,
it is not: the aim is to extract relevant content out of propositional one.
This is useful in practice in e.g. the extraction procedure, which maintains
the invariant that it operates on well-typed terms, but at times needs to
actually compute types to decide whether terms should be erased.

This is also different from standard inference, because knowing a priori that
the term under consideration is well-typed allows to skip a lot of checks.
For instance, to re-type an application 𝑡 𝑢, it suffices to infer a product type
Π 𝑥: 𝐴. 𝐵 for 𝑡 , and to return 𝐵[𝑥 ≔𝑢], since we know that 𝑢 has type 𝐴.

In order to be useful, this re-typing procedure needs to compute a principal
type, and thus its definition was quite complex prior to the formalization of
bidirectional typing, effectively inlining a proof of uniqueness of types. In-
stead, bidirectional typing simplifies greatly both the definition of re-typing
and its proof of correctness, by clarifying its specification: instead of com-
puting a principal type out of any type, the function should compute an
unsquashed inferred type out of a squashed one.

8.4.2. Environment Checking

The second thing we need to handle is the verification that a whole global
environment is well-formed.While themain thing to check is that all defini-
tions are well-typed, there are quite a fewmore things to be done: checking
universes constraints, that inductive definitions are strictly positive, that
the variance information used by universe polymorphism is valid…All these
are covered in PCUICSafeChecker.

https://github.com/MevenBertrand/metacoq/blob/phd-thesis/safechecker/theories/PCUICSafeRetyping.v
https://github.com/MevenBertrand/metacoq/blob/phd-thesis/safechecker/theories/PCUICSafeChecker.v

Bidirectional Elaboration for
Gradual Typing

107

[ST06]: Siek et al. (2006), Gradual Typing
for Functional Languages
[Sie+15]: Siek et al. (2015), Refined Criteria
for Gradual Typing

[Ou+04]: Ou et al. (2004), Dynamic Typing
with Dependent Types
[WF09]: Wadler et al. (2009), Well-Typed
Programs Can’t Be Blamed
[KF10]: Knowles et al. (2010), Hybrid type
checking
[TT15]: Tanter et al. (2015), Gradual Certi-
fied Programming in Coq
[LT17]: Lehmann et al. (2017), Gradual Re-
finement Types
[DTT18]: Dagand et al. (2018), Founda-
tions of Dependent Interoperability

1: This is because Rule Conv can be ap-
plied any number of times, which is sen-
sible only if these successive application
amount to just one.

[Len+22]: Lennon-Bertrand et al. (2022),
Gradualizing the Calculus of Inductive Con-
structions

We have already seen in Part ‘A Certified Kernel for Coq, in Coq’ how the
structure of bidirectional typing can help with proofs on CIC/PCUIC. But
this is far from being the only advantage of the approach. Indeed, the extra
control provided on the conversion rule can be instrumental. In this part,
we go over one situation where this is the case: the extension of CIC to
incorporate gradual features.

Gradual typing arose as an approach to selectively and soundly relax static
type checking by endowing programmers with imprecise static types [ST06;
Sie+15]. Optimistically well-typed programs are safeguarded by runtime
checks that detect violations of statically-expressed assumptions. A gradual
version of typed lambda calculus is flexible enough to embed the untyped
lambda calculus [Sie+15]. This means that gradually-typed languages tend
to accommodate at least two kinds of effects: non-termination and runtime
errors.

Originally formulated in terms of simple types, the extension of gradual typ-
ing to awide variety of typing disciplines has been an extremely active topic
of research, both in theory and in practice. As part of this quest towards
more sophisticated type disciplines, gradual typingwas bound tomeet with
full-blown dependent types. This encounter saw various premises in a vari-
ety of approaches to integrate (some form of) dynamic checking with (some
form of) dependent types [Ou+04; WF09; KF10; TT15; LT17; DTT18]. Natu-
rally, the highly-expressive setting of dependent types, in which terms and
types are not distinct and computation happens as part of typing, raises a
lot of subtle challenges for gradualization.

Of those challenges, one of the first is the place of computation. In the
gradual setting, in order to optimistically compare types, conversion is re-
placed by consistency, a relation akin to unification. This relation is natu-
rally non-transitive, meaning that the usual, undirected setting is not suited
for gradualization.1 Moreover, the semantics of gradual languages is usu-
ally explained through an elaboration phase to a second language, respon-
sible for the runtime checks ensuring safety of evaluation. This elabora-
tion is naturally described in a bidirectional system, which furthermore
provides enough constraints on the typing derivation so that replacing con-
version with consistency is reasonable. Finally, the identification of the role
of reduction for constrained inference clarifies how the latter should be ex-
tended to incorporate imprecise types. In fact, I told the story upside down:
it is the pressing need for bidirectional typing in the context of gradual
typing that led me to its investigation!

In this part, we go over a collaboration with Kenji Maillard, Éric Tanter
and Nicolas Tabareau to address the challenge of gradualizing a full-blown
dependently-typed language: CIC [Len+22]. Chapter 9 gives an overview
of the challenges and trade-offs involved in gradual dependent types, cul-
minating with the Fire Triangle of Graduality, which identifies an irrecon-
cilable tension between the properties one should demand of such a type
system. It ends with a broad picture of our proposed solution to those diffi-
culties, the Gradual Calculus of Inductive Constructions (GCIC). Chapter 10
describes precisely this GCIC, via a relation representing type-based, bidi-
rectional elaboration, which represents my main technical contribution to
Lennon-Bertrand et al. [Len+22]. Finally, Chapter 11 gives an overview of
the rest of our work in the area: models used to establish properties of
the target language of the elaboration procedure, and the thorny question

108

[Len+22]: Lennon-Bertrand et al. (2022),
Gradualizing the Calculus of Inductive Con-
structions
[Mai+22]: Maillard et al. (2022), A Reason-
ably Gradual Type Theory

of indexed inductive types and consistent reasoning about gradual pro-
grams. Due to their absence of direct relation to bidirectional typing and
my lower involvement in their technical development, this chapter does
not go into full details, but they are of course present in the publications –
either Lennon-Bertrand et al. [Len+22], or Maillard et al. [Mai+22].

[MT21]: Mahboubi et al. (2021), Mathe-
matical Components

Gradual Typing Meets
Dependent Types 9.

9.0.1 Smoother development with
indexed types 109

9.0.2 Defining general recursive
functions 110

9.0.3 Large elimination, gradually . 110
9.0.4 Gradually refining specifica-

tions 111
9.0.5 Gradual programs or proofs? . 112
9.0.6 Fundamental trade-offs 112

9.1 Safety and Normalization . 112
9.2 Non-Gradual Approaches . 113
9.2.1 Axioms 113
9.2.2 Exceptions 114

9.3 Gradual Simple Types . . . 115
9.3.1 Static semantics 115
9.3.2 Dynamic semantics 115
9.3.3 Conservativity 116
9.3.4 Gradual guarantees 116
9.3.5 Graduality 117

9.4 Graduality and Dependent
Types 119

9.4.1 Unknown term and error type 119
9.4.2 Revisiting safety 119
9.4.3 Relaxing conversion 120
9.4.4 Dealing with neutrals 120
9.4.5 DGG vs graduality 120
9.4.6 Observational refinement . . . 121

9.5 Fire Triangle of Graduality 122
9.5.1 Preliminary: regular reduction 122
9.5.2 Gradualizing STLC 122
9.5.3 Gradualizing CIC 123
9.5.4 The Fire Triangle in practice . 124

9.6 GCIC: An Overview 124
9.6.1 Three in one 124
9.6.2 Typing, conversion and

bidirectional elaboration . . . 127
9.6.3 Precisions and properties . . . 128

Before diving into what GCIC is about, let me first say what it is not about.
The aim is not to put forth a unique design or solution, but rather to ex-
plore the space of possibilities. Nor is it about a concrete implementation
of gradual CIC and an evaluation of its applicability; these are challeng-
ing perspectives of their own, which first require the theoretical landscape
to be unveiled. Rather, I believe that studying the gradualization of a full-
blown dependent type theory like CIC is in and of itself a valuable scien-
tific endeavour, which is very likely to inform the gradual typing research
community in its drive towards supporting ever more challenging typing
disciplines.

This being said, we can still highlight some practical motivating scenarios
for gradualizing CIC, anticipating what could be achieved in a hypothetical
gradual version of e.g. Coq.

9.0.1. Smoother development with indexed types

Dependent type systems such as CIC, which underpin languages and proof
assistants such as Coq, Agda and Idris, among others, are very powerful
system to program in, but at the same time extremely demanding. Mixing
programs and their specifications is attractive, but challenging.

Consider the example of the vector type 𝐕𝐞 (𝐴, 𝑛) as defined in Section 3.5.
In Coq, its definition is the following:

Inductive vec (A : Type) : ℕ -> Type :=
| nil : vec A 0
| cons : A -> forall n : ℕ, vec A n -> vec A (S n).

Indexing the inductive type by its length allows us to define a total head
function, which can only be applied to non-empty vectors:

head : forall A n, vec A (S n) -> A

Developing functions over such structures can be tricky. For instance, what
type should the filter function be given?

filter : forall A n (p : A -> 𝔹), vec A n -> vec A …

The size of the resulting list depends on how many elements in the list ac-
tually match the given predicate p! Dealing with this level of intricate spec-
ification can (and does) scare programmers away from mixing programs
and specifications. The truth is that many libraries, such as the Mathemat-
ical Components library [MT21], give up on mixing programs and specifi-
cations even for simple structures such as these, which are instead dealt
with as ML-like lists with extrinsically-established properties. This tells a
lot about the current intricacies of dependently-typed programming.

Instead of avoiding the obstacle altogether, gradual dependent types pro-
vide a uniform and flexible mechanism to a tailored adoption of dependen-
cies. For instance, one could give filter the following gradual type, which
makes use of the unknown term ? in an index position:

110 9. Gradual Typing Meets Dependent Types

1: For instance {-# TERMINATING #-} in
Agda or Unset Guard Checking in Coq.

[ST06]: Siek et al. (2006), Gradual Typing
for Functional Languages
[ETG19]: Eremondi et al. (2019), Approx-
imate Normalization for Gradual Depen-
dent Types

2: With ?> a boolean comparison opera-
tor.

filter : forall A n (f : A -> 𝔹), vec A n -> vec A ?

This imprecise type means that uses of filter will be optimistically ac-
cepted by the type-checker, although subject to associated checks during
reduction. For instance,

head ℕ ? (filter ℕ 4 even [0 ; 1 ; 2 ; 3])

type-checks, and successfully evaluates to 0, while

head ℕ ? (filter ℕ 2 even [1 ; 3])

type-checks but fails during reduction, upon the discovery that the assump-
tion of non-emptiness of the argument to head is in fact incorrect.

9.0.2. Defining general recursive functions

Another challenge of working in CIC is to convince the type-checker that re-
cursive definitions are well-founded. This can either require tight syntactic
restrictions, or sophisticated arguments involving accessibility predicates.
At any given stage of a development, one might not be in a position to fol-
low any of these. In such cases, a workaround is to adopt the “fuel” pattern,
i.e. parametrize a function with a clearly syntactically decreasing argument
in order to please the termination checker, and to use an arbitrary initial
fuel value. In practice, one sometimes requires a simpler way to unplug ter-
mination checking, and for that purpose, many proof assistants support
external commands or parameters to deactivate termination checking.1

Because the use of the unknown type ? allows the definition of fixed point
combinators [ST06; ETG19], one can use this added expressiveness to by-
pass termination checking locally. This just means that the external facili-
ties provided by specific proof assistant implementations now become in-
ternalized in the language.

9.0.3. Large elimination, gradually

One of the argued benefit of dynamically-typed languages, which is ac-
commodated by gradual typing, is the ability to define functions that can
return values of different types depending on their inputs, such as the fol-
lowing:2

Definition foo n m := if (n ?> m) then m + 1 else m ?> 0.

In a gradually-typed language, one can give such a function the type ?, or
even ℕ -> ℕ -> ? in order to enforce proper argument types, and remain
flexible in the treatment of the returned value. Of course, we know very
well that in a dependently-typed language, using large elimination, we can
simply give foo the dependent type:

foo : forall (n m : ℕ), if (n ?> m) then ℕ else 𝔹

Lifting the term-level comparison n ?> m to the type level is extremely ex-
pressive, but hard to work with as well, both for the implementer of the
function and its clients. In a gradual, dependently-typed setting, one can
explore thewhole spectrum of type-level precision for such a function, start-
ing from the least precise to the most precise, for instance:

111

3: One of the important properties we
seek in our GCIC.

[Sie+15]: Siek et al. (2015), Refined Criteria
for Gradual Typing

foo : ?
foo : ℕ -> ℕ -> ?
foo : ℕ -> ℕ -> if ? then ℕ else ?
foo : forall (n m : ℕ), if (n ?> m) then ℕ else ?
foo : forall (n m : ℕ), if (n ?> m) then ℕ else 𝔹

At each stage from top to bottom, there is less flexibility – but more guar-
antees! – for both the implementer of foo and its clients. The gradual guar-
antee3 ensures that if the function is actually faithful to the most precise
type then giving it any of the less precise types above does not introduce
any new failure [Sie+15].

9.0.4. Gradually refining specifications

Let us come back to the filter function from the first example. Its fully-
precise type requires appealing to a type-level function that counts the
number of elements in the list satisfying the predicate – notice the depen-
dency to the input vector v:

filter : forall A n (p : A -> 𝔹) (v : vec A n),
vec A (count A n p v)

Anticipating the need for this function, a gradual specification could adopt
the above signature for filter but leave count unspecified:

Definition count A n (p : A -> 𝔹) (v: vec A n) : ℕ := ?.

This situation does not affect the behaviour of the program compared to
leaving the return type index unknown. More interestingly, one could im-
mediately define the base case, which trivially specifies that there are no
matching elements in an empty vector:

Definition count A n (p : A -> 𝔹) (v : vec A n) : ℕ :=
match v with
| nil _ _ => 0
| cons _ _ _ => ?
end.

This slight increment in precision provides a little more static checking, for
instance: head ℕ ? (filter ℕ 4 even []) does not even type-check, in-
stead of failing during reduction.

Again, the gradual guarantee ensures that such incremental refinements
in precision towards the proper fully-precise version do not introduce spu-
rious errors. Note that this is in stark contrast with the use of axioms –
which will be discussed in more depth in Section 9.2.1. Indeed, replacing
correct code with an axiom can simply break typing! For instance, with the
following definitions:

Axiom to_be_done : ℕ.
Definition count A n (p : A -> 𝔹) (v: vec A n) : ℕ :=
to_be_done.

the definition of filter does not type-check any more, as the axiom at the
type-level is not convertible to any given value.

112 9. Gradual Typing Meets Dependent Types

4: The combination of progress and
preservation.

5: We write 𝑎 :: 𝐴 for a type ascription,
used to “force” the term 𝑎 to inhabit
type 𝐴. We define it as syntactic sugar
for (λ 𝑥: 𝐴. 𝑥) 𝑎 [ST06], so 0 :: ? :: 𝐁 is
(0 :: ?) :: 𝐁. In other systems, it is taken as
a primitive notion [GCT16].

[ST06]: Siek et al. (2006), Gradual Typing
for Functional Languages

[GCT16]: Garcia et al. (2016), Abstracting
Gradual Typing

6: Hereafter abbreviated as STLC.

7: The gradual counterpart to STLC.

9.0.5. Gradual programs or proofs?

When adapting the ideas of gradual typing to a dependent type theory,
one might expect to deal with programs rather than proofs. This observa-
tion is however misleading: from the point of view of the Curry-Howard
correspondence, proofs and programs are intrinsically related, so that grad-
ualizing the latter begs for a gradualization of the former. The examples
above illustrate mixed programs and specifications, which naturally also
appeal to proofs: dealing with indexed types typically requires exhibiting
equality proofs to rewrite terms. Moreover, there are settings in which one
must consider computationally-relevant proofs, such as constructive alge-
bra and analysis, homotopy type theory, etc. In such settings, using axioms
to bypass unwanted proofs breaks reduction, and because typing requires
reduction, the use of axioms can simply prevent typing, as illustrated in the
last example.

9.0.6. Fundamental trade-offs

Before exposing a specific approach to gradualizing CIC, there is a need for
a general analysis of the properties at stake and tensions that arise when
gradualizing a dependent type theory.

Thus, in what follows we start by recalling the two cornerstones properties
of progress and normalization, and explain the need to reconsider them
carefully in a gradual setting (Section 9.1). Next, we show why two obvious
approaches based respectively on axioms (Section 9.2.1), and exceptions
(Section 9.2.2) are unsatisfying. We then turn to the gradual approach, re-
calling its essential properties in the simply-typed setting (Section 9.3), and
revisiting them in the context of a dependent type theory (Section 9.4). This
finally leads us to establish a fundamental impossibility in the gradualiza-
tion of CIC, which means that at least one of the desired properties has to
be sacrificed (Section 9.5). With all set up, we can finally present our grad-
ual, dependently typed system, GCIC, and its main characteristics (Sec-
tion 9.6).

9.1. Safety and Normalization, Endangered

In the gradual setting, the two cornerstone properties of CIC exposed in
Section 3.4, safety4 and normalization, must be considered with care.

First, any closed term can be ascribed the unknown type ? and then any
other type: for instance, 0 :: ? :: 𝐁 is a well-typed closed term of type 𝐁.5

However, such a term cannot possibly reduce to either tt or ff, so some
concessions must be made with respect to safety – at the very least, the
notion of canonical forms must be extended.

Second, normalization is endangered. The quintessential example of non-
termination in the untyped lambda calculus is the term Ω, defined as 𝛿 𝛿
where 𝛿 is λ 𝑥. (𝑥 𝑥). In the simply-typed lambda calculus6, as in CIC, self-
applications like 𝛿 𝛿 and 𝑥 𝑥 are ill-typed. However, when introducing grad-
ual types, one usually expects to accommodate such idioms, and therefore
in a standard gradually-typed calculus such as GTLC7 [ST06], a variant of

9.2. Non-Gradual Approaches 113

[Sie+15]: Siek et al. (2015), Refined Criteria
for Gradual Typing

Ω that uses (λ 𝑥: ?. 𝑥 𝑥) as 𝛿 is well-typed and diverges – i.e. reduces in-
definitely. The reason is that the domain type of 𝛿 , the unknown type ?, is
consistent with the type of 𝛿 itself, ? → ?, meaning that we wish to opti-
mistically accept the application as plausibly valid. But at runtime, nothing
prevents reduction from going on forever. Therefore, if one aims at ensur-
ing normalization in a gradual setting, some care must be taken to restrict
expressiveness.

9.2. Non-Gradual Approaches

9.2.1. Axioms

Let us first address the elephant in the room: why would one want to grad-
ualize CIC instead of simply postulating an axiom for any term – be it a
program or a proof – that one does not feel like providing (yet)?

Indeed, we can augment CIC with a wildcard axiom ax :Π𝐴:□. 𝐴. The
resulting system, called CIC+ax , has an obvious practical benefit: we can
use ax𝐴 as a wildcard whenever we are asked to exhibit an inhabitant
of some type 𝐴 and we do not (yet) want to. This is exactly what admitted
definitions are in Coq, for instance, and they do play an important practical
role during any Coq development.

However, we cannot use the axiom ax𝐴 in any meaningful way at the type
level. For instance, going back to the examples of Section 9.0.1, one might
be tempted to give to the filter function on vectors the type

forall A n (p : A -> 𝔹), vec A n -> vec A (ax ℕ)

in order to avoid the complications related to specifying the size of the
vector produced by filter. The problem is that the term:

head ℕ (ax ℕ) (filter ℕ 4 even [0 ; 1 ; 2 ; 3])

is ill-typed since the type of the filtering expression, vec A (ax ℕ), is not
convertible to vec A (S (ax ℕ)), as required by head ℕ (ax ℕ) in its do-
main type.

Thus, the axiomatic approach is not useful for making dependently-typed
programming any more pleasing. That is, using axioms goes in total op-
position to the gradual guarantee – characteristic of gradual languages
[Sie+15] – when it comes to the smoothness of the static-to-dynamic check-
ing spectrum: given a well-typed term, making it “less precise” by using
axioms for some sub-terms actually results in programs that do not type-
check or reduce any more.

Because CIC+ax amounts to working in CIC with an initial context ex-
tended with ax , this theory satisfies normalization as much as CIC, so
conversion remains decidable. However, CIC+ax lacks a satisfying notion
of safety, because there is an infinite number of stuck terms that inhabit
any type A. For instance, in 𝐁, we not only have the normal forms tt, ff,
and ax 𝐁, but also plenty of terms stuck on an elimination of ax , such as
ax (𝐍 → 𝐁) 1 or ind𝐍(ax𝐍; 𝑃; 𝑏0, 𝑏S).

114 9. Gradual Typing Meets Dependent Types

[PT18]: Pédrot et al. (2018), Failure is Not
an Option An Exceptional Type Theory

[PT18]: Pédrot et al. (2018), Failure is Not
an Option An Exceptional Type Theory

[Péd+19]: Pédrot et al. (2019), A Reason-
ably Exceptional Type Theory

[PT20]: Pédrot et al. (2020), The Fire Tri-
angle: How to Mix Substitution, Dependent
Elimination, and Effects

8: That is, a term former such as ind.

9.2.2. Exceptions

Pédrot and Tabareau [PT18] present the exceptional type theory ExTT, demon-
strating that it is possible to extend a type theory with a wildcard term
while enjoying a satisfying notion of safety, which coincides with that of
programming languages with exceptions.

ExTT is essentially CIC+raise , that is, it extends CIC with an exceptional
term raise𝐴 that can inhabit any type 𝐴. But instead of being treated
as a computational black box like ax𝐴, raise𝐴 is endowed with compu-
tational content emulating exceptions in programming languages, which
propagate instead of being stuck. For instance, in ExTT the following con-
version holds:

ind𝐁(raise𝐁 ; 𝐍; 0, 1) ≅ raise𝐍

Notably, such exceptions are call-by-name exceptions, so one can only dis-
criminate exceptions on positive types – i.e. inductive types –, not on neg-
ative types – i.e. function types. In particular, in ExTT, raise𝐴→𝐵 reduces
to λ 𝑥: 𝐴. raise𝐵 . So raise𝐴 is a normal form of 𝐴 only if 𝐴 is a positive
type.

ExTT has a number of interesting properties. It is normalizing and safe,
taking raise𝐴 into account as usual in programming languages, where ex-
ceptions are possible outcomes of computation: the canonical forms of a
positive type – e.g. 𝐁 – are either the constructors of that type – e.g. tt and
ff –, or raise at that type – e.g. raise𝐁 . As a consequence, ExTT does not
satisfy full canonicity, but a weaker form of it. In particular, it enjoys (weak)
logical consistency: any closed proof of ⊥ is convertible to raise⊥ , which is
discriminable at ⊥. It has been shown that we can still reason soundly in an
exceptional type theory, either using a parametricity requirement [PT18],
or, more flexibly, a different universe hierarchies [Péd+19].

It is also important to highlight that this weak form of logical consistency
is the most one can expect in a theory with effects. Indeed, Pédrot and
Tabareau [PT20] have shown that it is not possible to define a type theory
with full dependent elimination8 that has observable effects – of which
exceptions are a particular case – and at the same time validates traditional
canonicity. Settling for less, as explained in Section 9.2.1 for the axiomatic
approach, leads to an infinite number of stuck terms, even in the case of
booleans, which contradicts the type safety criterion of gradual languages,
which only allows for runtime type errors.

Unfortunately, while ExTT solves the safety issue of the axiomatic approach,
it still suffers from the same limitation as the axiomatic approach regard-
ing type-level comparison. Indeed, even though we can use raise to inhabit
any type, we cannot use it in any meaningful way at the type level. In such
a system, the following term is ill-typed

head ℕ (raise ℕ) (filter ℕ 4 even [0 ; 1 ; 2 ; 3])

as vec A (raise ℕ) is still not convertible to vec A (S (raise ℕ)). The
reason is that raise ℕ behaves like an extra constructor of type ℕ, so that
S (raise ℕ) is itself a normal form, and normal forms with different head
constructors – S and raise – are not convertible.

9.3. Gradual Simple Types 115

[ST06]: Siek et al. (2006), Gradual Typing
for Functional Languages

[GCT16]: Garcia et al. (2016), Abstracting
Gradual Typing

9: Not to be confused with logical consis-
tency!

[BGT16]: Bañados Schwerter et al. (2016),
Gradual type-and-effect systems

[FT13]: Fennell et al. (2013), Gradual Secu-
rity Typing with References
[TGT18]: Toro et al. (2018), Type-Driven
Gradual Security with References

[TF14]: Thiemann et al. (2014), Gradual
Typing for Annotated Type Systems

[BMT10]: Bierman et al. (2010), Adding
Dynamic Types to C#

10: We write those err.
[ST06]: Siek et al. (2006), Gradual Typing
for Functional Languages

9.3. Gradual Simple Types

Before going onwith our exploration of the fundamental challenges in grad-
ual dependent type theory, let us go over some key concepts and expected
properties, in the context of simple types.

9.3.1. Static semantics

Gradually typed languages introduce the unknown type, written ?, which
is used to indicate the lack of static typing information [ST06]. One can
understand such an unknown type as an abstraction of the set of possible
types that it stands for [GCT16]. This interpretation provides a naive but
natural understanding of the meaning of partially-specified types. For in-
stance 𝐁 → ? denotes the set of all function types with 𝐁 as domain. Given
imprecise types, a gradual type system relaxes all type predicates and func-
tions in order to optimistically account for occurrences of ?. In a simple type
system, the main predicate on types is equality, whose relaxed counterpart
is called consistency9, usually written∼ . For instance, given a function 𝑓 of
type 𝐁 → ?, the expression (𝑓 tt)+1 should be well-typed. Indeed, 𝑓 could
plausibly return a number, given that its codomain is ?, which is consistent
with 𝐍.

Note that there are other ways to consider imprecise types, for instance by
restricting the unknown type to denote base types – in which case ? would
not be consistent with any function type –, or by only allowing imprecision
in certain parts of the syntax of types, such as effects [BGT16], security
labels [FT13; TGT18], annotations [TF14], or only at the top-level [BMT10].
Here, we do not consider these specialized approaches, which have benefits
and challenges of their own, and stick to the mainstream setting of gradual
typing in which the unknown type is consistent with any type and can
occur anywhere in the syntax of types.

9.3.2. Dynamic semantics

Having optimistically relaxed typing based on consistency, a gradual lan-
guage must detect inconsistencies at runtime if it is to satisfy safety, which
therefore has to be formulated in a way that encompasses runtime errors.

For instance, if the function 𝑓 above returns ff, then an error must be raised
to avoid reducing to ff + 1 – a closed stuck term, corresponding to a viola-
tion of safety. The traditional approach to do so is to avoid giving a direct
reduction semantics to gradual programs, and, instead, to elaborate them
to an intermediate language with runtime casts, in which casts between
inconsistent types raise errors10 [ST06].

In such a language, the notion of canonical form used to phrase progress –
and, thus, safety – has to account for these newly introduced errors. Indeed,
err𝐴 is now a valid canonical form at type 𝐴 – at least for some types such
as 𝐁, since, as we explained in Section 9.2.2, call-by-name errors are not
normal forms of function types.

Alternatively – and equivalently from a semantics point of view – one can
define reduction of gradual programs directly on gradual typing derivations

116 9. Gradual Typing Meets Dependent Types

[GCT16]: Garcia et al. (2016), Abstracting
Gradual Typing

[HTF10]: Herman et al. (2010), Space-
efficient gradual typing
[TF08]: Tobin-Hochstadt et al. (2008),
The Design and Implementation of Typed
Scheme
[SW10]: Siek et al. (2010), Threesomes,
with and without Blame
[SGT09]: Siek et al. (2009), Exploring the
Design Space of Higher-Order Casts
[TT20]: Toro et al. (2020), Abstracting grad-
ual references
[Bañ+21]: Bañados Schwerter et al. (2021),
Abstracting Gradual Typing Moving For-
ward: Precise and Space-Efficient

[ST06]: Siek et al. (2006), Gradual Typing
for Functional Languages

[GCT16]: Garcia et al. (2016), Abstracting
Gradual Typing

[Sie+15]: Siek et al. (2015), Refined Criteria
for Gradual Typing

[ST06]: Siek et al. (2006), Gradual Typing
for Functional Languages

11: Denoted ⊑ : 𝐴 ⊑ 𝐵 means that 𝐴 is
more precise than 𝐵, i. e. that 𝐴 contains
more static information than 𝐵.

augmented with evidence about consistency judgments, and report errors
when transitivity of such judgments is unjustified [GCT16]. There aremany
ways to realize each of these approaches, which vary in terms of efficiency
and eagerness of checking [HTF10; TF08; SW10; SGT09; TT20; Bañ+21].

9.3.3. Conservativity

A first important property of a gradual language is that it is a conserva-
tive extension of a related static typing discipline: the gradual and static
systems should coincide on static terms. This property is hereafter called
conservativity, with respect to a given static system. Technically, Siek and
Taha [ST06] prove that typing and reduction of GTLC and STLC coincide
on their common set of terms – i.e. those which are fully precise. An im-
portant aspect of conservativity is that the type formation rules and typing
rules themselves are also preserved, up to the presence of ? as a new type
and the adequate lifting of predicates and functions [GCT16]. While this
aspect is often left implicit, it ensures that the gradual type system does
not behave in ad hoc ways on imprecise terms.

Note that, despite its many issues, CIC+ax (Section 9.2.1) satisfies conser-
vativity (with respect to CIC): all pure – i.e. axiom-free – CIC terms behave
as they would in CIC. More precisely, two CIC terms are convertible in
CIC+ax if and only if they are convertible in CIC. Importantly, this does
not mean that CIC+ax is a conservative extension of CIC as a logic – which
it clearly is not!

9.3.4. Gradual guarantees

The early accounts of gradual typing emphasized consistency as the central
idea. However, Siek et al. [Sie+15] observed that this characterization left
too many possibilities for the impact of type information on program be-
haviour, compared to what was originally intended [ST06]. Consequently,
they brought forth type precision11 as the key notion, from which consis-
tency can be derived: two types 𝐴 and 𝐵 are consistent if and only if there
exists 𝑇 such that 𝑇 ⊑ 𝐴 and 𝑇 ⊑ 𝐵. The unknown type ? is the most
imprecise type of all, i.e. 𝑇 ⊑ ? for any 𝑇 . Precision is a pre-order that
can be used to capture the intended monotonicity of the static-to-dynamic
spectrum afforded by gradual typing. The static and dynamic gradual guar-
antees respectively specify that typing and reduction should be monotone
with respect to precision: losing precision should not introduce new static
or dynamic errors. These properties require precision to be extended from
types to terms. Siek et al. [Sie+15] present a natural extension that is purely
syntactic: a term is more precise than another if they are α-equal, except
for their type annotations, which can be more precise in the former.

The static gradual guarantee (SGG) ensures that imprecision does not alter
typeability.

Property 9.1. Static Gradual Guarantee

If 𝑡 ⊑ 𝑢 and ⊢ 𝑡 : 𝑇 , then ⊢ 𝑢 : 𝑈 for some 𝑈 such that 𝑇 ⊑ 𝑈 .

This SGG captures the intuition that “sprinkling ? over a term“ maintains
its typeability. As such, the notion of precision ⊑ used to formulate the

9.3. Gradual Simple Types 117

[NA18]: New et al. (2018), Graduality from
Embedding-Projection Pairs

12: Observational error-approximation
does not mention the case where C[𝑡]
reduces to tt or ff, but the quantification
over all contexts ensures that, in that
case, C[𝑡′] must reduce to the same
value.

[Sie+15]: Siek et al. (2015), Refined Criteria
for Gradual Typing

[GCT16]: Garcia et al. (2016), Abstracting
Gradual Typing

[ISI17]: Igarashi et al. (2017), On Polymor-
phic Gradual Typing

[NA18]: New et al. (2018), Graduality from
Embedding-Projection Pairs

SGG is inherently syntactic, over as-yet-untyped terms: typeability is the
consequence of the SGG theorem.

The dynamic gradual guarantee (DGG) is the key result that links the syn-
tactic notion of precision to reduction: if 𝑡 ⊑ 𝑡′ and 𝑡 reduces to some value
𝑣 , then 𝑡′ reduces to some value 𝑣 ′ such that 𝑣 ⊑ 𝑣 ′; and if 𝑡 diverges, then
so does 𝑡′. This entails that 𝑡 ⊑ 𝑡′ means that 𝑡 may error more than 𝑡′, but
otherwise they should behave the same. Instead of the original formulation
of the DGG by Siek et al. [Sie+15], New and Ahmed [NA18] appeal to the
semantic notion of observational error-approximation to capture the rela-
tion between two terms that are contextually equivalent, except that one
may fail more:12

Definition 9.2. Observational error-approximation

A term Γ ⊢ 𝑡 : 𝑇 observationally error-approximates a term Γ ⊢ 𝑡′ : 𝑇 ′,
noted 𝑡 ≼ob 𝑡′, if for all boolean-valued observation contexts C: (Γ ⊢
𝑇) ⇒ (⊢ 𝐁) closing over all free variables, either

▶ C[𝑡] and C[𝑡′] both diverge;
▶ otherwise if C[𝑡′] →⋆ err𝐁, then C[𝑡] →⋆ err𝐁.

Two terms 𝑡 and 𝑡′ are observationally equivalent, written 𝑡 ≈ob 𝑡′, if
they are related by observational error-approximation in both direc-
tions.

Using this semantic notion, the DGG simply states that term precision im-
plies observational error-approximation:

Property 9.3. Dynamic Gradual Guarantee

If 𝑡 ⊑ 𝑡′ then 𝑡 ≼ob 𝑡′.

While often implicit, it is important to highlight that the DGG is relative
to both the notion of precision ⊑ and the notion of observations ≼ob .
Indeed, it is possible to study alternative notions of precisions beyond the
natural definition stated by Siek et al. [Sie+15]. For instance, following the
Abstracting Gradual Typing methodology [GCT16], precision follows from
the definition of gradual types through a concretization to sets of static
types. This opens the door to justifying alternative precisions, e.g. by con-
sidering that the unknown type only stands for specific static types, such
as base types. Additionally, variants of precision have been studied in more
challenging typing disciplines where the natural definition seems incom-
patible with the DGG, see e.g. Igarashi, Sekiyama, and Igarashi [ISI17]. As
we will soon see, it can also be necessary in certain situations to consider
another notion of observations.

9.3.5. Graduality

As we have seen, the DGG is relative to a notion of precision, but what
should this relation be? To go beyond a syntactic axiomatic definition of pre-
cision, New and Ahmed [NA18] characterize the good dynamic behaviour
of a gradual language: the runtime checking mechanism used to define it,

118 9. Gradual Typing Meets Dependent Types

13: Recall that :: is a type ascription.

[Sie+15]: Siek et al. (2015), Refined Criteria
for Gradual Typing

[NA18]: New et al. (2018), Graduality from
Embedding-Projection Pairs

14: Not addressed by New and Ahmed
[NA18].

such as casting, should only perform type-checking, and not otherwise af-
fect behaviour.

Specifically, they mandate that precision gives rise to embedding-projection
pairs (ep-pairs): the cast induced by two types related by precision forms
an adjunction, which induces a retraction. In particular, going to a less pre-
cise type and back is the identity: for any term 𝑎 of type 𝐴, and assuming
𝐴 ⊑ 𝐵, 𝑎 :: 𝐵 :: 𝐴13 should be observationally equivalent to 𝑎. For instance,
1 :: ? :: 𝐍 should be equivalent to 1. Dually, when gaining precision, there is
the potential for errors: given a term 𝑏 of type 𝐵, 𝑏 :: 𝐴 :: 𝐵 may fail. By con-
sidering error as the most precise term, this can be stated as 𝑏 :: 𝐴 :: 𝐵 ⊑ 𝑏.
For instance, with the imprecise successor function 𝑓 of type ? → ?, de-
fined as λ 𝑛: ?. S(𝑛) :: ?, we have 𝑓 :: 𝐍 → 𝐁 :: ? → ? ⊑ 𝑓 , because the
ascribed function will fail when applied.

Technically, the adjunction part states that if we have 𝐴 ⊑ 𝐵, a term 𝑎 of
type 𝐴, and a term 𝑏 of type 𝐵, then 𝑎 ⊑ 𝑏 :: 𝐴 if and only if 𝑎 :: 𝐵 ⊑ 𝑏. The
retraction part further states that 𝑎 is not only more precise than 𝑎 :: 𝐵 :: 𝐴 –
which is given by the unit of the adjunction – but is equi-precise to it – noted
𝑡 ⊒⊑ 𝑡 :: 𝐵 :: 𝐴. Because the DGG dictates that precision implies obser-
vational error-approximation, equi-precision implies observational equiva-
lence, and so losing and recovering precision must produce a term that is
observationally equivalent to the original one.

These two approaches to characterizing gradual typing highlight the need
to distinguish syntactic from semantic notions of precision. Indeed, with
the usual syntactic precision from Siek et al. [Sie+15], one cannot derive
the ep-pair property, in particular the equi-precision stated above. This is
why New and Ahmed [NA18] introduce a semantic precision, defined on
well-typed terms. This semantic precision serves as a proxy between syntac-
tic precision and the desired observational error-approximation. However, a
type-based semantic precision cannot be used for the SGG. Indeed, this the-
orem14 requires a notion of precision that predates typing: well-typedness
of the less precise term is the consequence of the theorem. Therefore, a
full study of a gradual language that covers SGG, DGG, and embedding-
projection pairs needs to consider both syntactic and semantic notions of
precision.

Note also that the embedding-projection property does not per se imply the
DGG: one could pick precision to be the universal relation, which trivially
induces ep-pairs, but does not imply observational error-approximation.
Conversely, it appears that, in the simply-typed setting considered in prior
work, the DGG implies the embedding-projection property. In fact, New
and Ahmed [NA18] essentially advocate ep-pairs as an elegant and compo-
sitional proof technique to establish the DGG. But as we uncover later on,
it turns out that in certain settings – and in particular dependent types –
the embedding-projection property imposes more desirable constraints on
the behaviour of casts than the DGG alone.

In regard of these two remarks, in what follows we use the term graduality
for the DGG established with respect to a notion of precision which also
induces embedding-projection pairs.

9.4. Graduality and Dependent Types 119

15: More exactly, there is one such term
per universe.

9.4. Graduality and Dependent Types

Extending the gradual approach to a setting with full dependent types re-
quires reconsidering several aspects.

9.4.1. Newcomers: the unknown term and the error
type

In the simply-typed setting, there is a clear stratification: ? is at the type
level, err is at the term level. Likewise, type precision, with ? as greatest
element, is distinct from term precision, with err as least element. In the
absence of a type/term syntactic distinction as in CIC, this stratification
cannot be kept.

Because types permeate terms, ? is no longer only the unknown type, but it
also acts as an “unknown term”. In particular, this makes it possible to con-
sider unknown indices for types, as in Section 9.0.1. More precisely, there
is a family of unknown terms ?𝐴, indexed by their type 𝐴. The traditional
unknown type is just ?□, the unknown of the universe □.

Dually, because terms permeate types, we also have the “error type”, err□.
We have to deal with errors in types.

Finally, precision must be unified as a single pre-order, with ? at the top
and err at the bottom. The most imprecise term of all15 is ??□ – ? for short.
At the bottom, err𝐴 is the most precise term of type 𝐴.

9.4.2. Revisiting safety

The notion of canonical forms used for safety needs to be extended not only
with errors as in the simply-typed setting, but also with unknown terms.
Indeed, as there is an unknown term ?𝐴 inhabiting any type 𝐴, we have
one new canonical form for each type 𝐴. In particular, ?𝐁 cannot possibly
reduce to either tt, ff, or err𝐁, because doing sowould collapse the precision
order. Therefore, ?𝐁 should propagate computationally, exactly like raise𝐁
in Section 9.2.2 and err𝐁.
The difference between errors and unknown terms is not on their dynamic
behaviour, but rather on their static interpretation. In essence, the unknown
term ?𝐴 is a dual form of exceptions: it propagates, but is optimistically
comparable – i.e. consistent with – any other term of type 𝐴. Conversely,
err𝐴 should not be consistent with any term of type 𝐴. Going back to the
issues we identified with the axiomatic (Section 9.2.1) and exceptional (Sec-
tion 9.2.2) approacheswhen dealingwith type-level comparison, the term

head ℕ (? ℕ) (filter ℕ 4 even [0 ; 1 ; 2 ; 3])

is now well-typed: since S (? ℕ) is consistent with ? ℕ, vec A (? ℕ) can
be deemed consistent with vec A (S (? ℕ)). This newly-brought flexi-
bility is the key to support the different scenarios from the introduction.
So let us now turn to the question of how to integrate consistency in a
dependently-typed setting.

120 9. Gradual Typing Meets Dependent Types

[GCT16]: Garcia et al. (2016), Abstracting
Gradual Typing

16: Concretization, in abstract interpreta-
tion parlance.

[Cas+19]: Castagna et al. (2019), Gradual
Typing: A New Perspective

17: In a dependently-typed programming
language with separate typing and execu-
tion phases, this demand is called the nor-
malization gradual guarantee [ETG19].

[ETG19]: Eremondi et al. (2019), Approx-
imate Normalization for Gradual Depen-
dent Types

9.4.3. Relaxing conversion

In the simply-typed setting, consistency is a relaxing of syntactic type equal-
ity to account for imprecision. In a dependent type theory, there is a more
powerful notion than syntactic equality to compare types, namely conver-
sion. The proper notion to relax in the gradual dependently-typed setting
is therefore conversion, not syntactic equality.

Garcia, Clark, and Tanter [GCT16] give a general framework for gradual
typing that explains how to relax any type predicate to account for impreci-
sion: for a binary type predicate 𝑃 , its consistent lifting ̃𝑃 (𝐴, 𝐵) holds if there
exist static types 𝐴′ and 𝐵′ in the denotation16 of 𝐴 and 𝐵, respectively,
such that 𝑃(𝐴′, 𝐵′). As observed by [Cas+19], when applied to equality,
this defines consistency as a unification problem. Therefore, the consistent
lifting of conversion ought to be that two terms 𝑡 and 𝑢 are consistently con-
vertible if they denote some static terms 𝑡′ and 𝑢′ such that 𝑡′ ≅ 𝑢′. This
is essentially higher-order unification, which is an undecidable problem.

It is therefore necessary to adopt some approximation of this relation in or-
der to be able to implement a gradual dependent type theory. There lies an
important challenge: because of the dependency of typing on conversion,
the static gradual guarantee already demands monotonicity of the approx-
imation one chooses. But if this approximation is defined using reduction,
this demand is very close to that of the dynamic gradual guarantee.17 In
practice, this means that the SGG essentially depends on the DGG!

9.4.4. Dealing with neutrals

Previous work on gradual typing usually only considers reduction on closed
terms in order to establish results about the dynamic semantic, such as
the DGG. But in dependent type theory, conversion must operate on open
terms, and in particular neutral terms such as 1 :: 𝑋 :: 𝐍, where 𝑋 is a type
variable, or 𝑥 + 1 where 𝑥 is of type 𝐍 or ?□. Such neutral terms cannot
reduce further, and can occur in both terms and types. Depending on the
upcoming substitution, neutrals can fail, or not. For instance, in 1 :: 𝑋 :: 𝐍,
if ?□ is substituted for 𝑋 , the term should reduce to 1, but it should fail if
𝐁 is substituted instead.

Importantly, less precise variants of neutrals can reduce more. For instance,
1 :: ?□ :: 𝐍 and ?𝐍 + 1 are respectively less precise than the neutrals above,
but do evaluate further – respectively to 1 and to ?𝐍. This interaction be-
tween neutrals, reduction, and precision spices up the goal of establishing
DGG and graduality. In particular, this re-enforces the need to consider a
semantic notion of precision, because a too syntactic one is likely not to
be stable by reduction: 1 :: 𝑋 :: 𝐍 ⊑ 1 :: ? :: 𝐍 is obvious syntactically, but
1 :: 𝑋 :: 𝐍 ⊑ 1 is not.

9.4.5. Dynamic Gradual Guarantee vs graduality

In a dependently-typed setting, it is possible to satisfy the DGG while not
satisfying the embedding-projection pairs requirement of graduality.

9.4. Graduality and Dependent Types 121

[NA18]: New et al. (2018), Graduality from
Embedding-Projection Pairs

18: There exist non-gradual dependently-
typed programming languages that ad-
mit divergence, e. g. Dependent Haskell
[Eis16] or Idris [Bra13]. We will also
present one such theory in this article.

[Eis16]: Eisenberg (2016), Dependent
Types in Haskell: Theory and Practice

[Bra13]: Brady (2013), Idris, a general-
purpose dependently typed programming
language: Design and implementation

To see why, consider a system in which any term of type 𝐴 that is not
fully-precise immediately reduces to ?𝐴. This system would satisfy conser-
vativity, safety, normalization… and the DGG. Indeed, recall that the DGG
only requires reduction to be monotone with respect to precision, so using
the most imprecise term ? as a universal reduct is surely valid. This col-
lapse of the DGG is impossible in the simply-typed setting because there
is no unknown term: it is only possible when ?𝐴 exists as a term. It is there-
fore possible to satisfy the DGG while being useless when computing with
imprecise terms.

On the contrary, the degenerate system breaks the embedding-projection
requirement of graduality stated by New and Ahmed [NA18]. For instance,
1 :: ?□ :: 𝐍 would be convertible to ?𝐍, which is not observationally equiv-
alent to 1. Therefore, the embedding-projection requirement of graduality
goes beyond the DGG in a way that is critical in a dependent type theory,
where it captures both the smoothness of the static-to-dynamic checking
spectrum, and the proper computational content of valid uses of impreci-
sion.

9.4.6. Observational refinement

Let us come back to the notion of observational error-approximation used
in the simply-typed setting to state the DGG. New and Ahmed [NA18]
justify this notion because in ”gradual typing we are not particularly inter-
ested in when one program diverges more than another, but rather when
it produces more type errors”.

This point of view is adequate in the simply-typed setting because the addi-
tion of ascriptions may only produce more type errors; in particular, adding
ascriptions can never lead to divergence when the original term does not
diverge itself. Thus, in that setting, the definition of observational error-
approximation includes equi-divergence.

The situation in the dependent setting is however more complicated if the
theory admits divergence.18 In a gradual dependent type theory that ad-
mits divergence, a diverging term is more precise than the unknown term
?. Because the unknown term does not diverge, this breaks the left-to-right
implication of equi-divergence. Note that this argument does not rely on
any specific definition of precision, just on the fact that the unknown is a
term, and not just a type.

Additionally, an error at a diverging type 𝑋 may be ascribed to ?□, then
back to 𝑋 . Evaluating this roundtrip requires evaluating 𝑋 itself, which
makes the less precise term diverge. This breaks the right-to-left implica-
tion of equi-divergence.

To summarize, the way to understand these counterexamples is that in a
dependent and non-terminating setting, the motto of graduality ought to
be adjusted: more precise programs produce more type errors or diverge
more. This leads to the following definition of observational refinement.

Definition 9.4. Observational refinement

A term Γ ⊢ 𝑡 : 𝐴 observationally refines a term Γ ⊢ 𝑢 : 𝐴, noted 𝑡 ⊑ob 𝑢,
if for all boolean-valued observation context C :(Γ ⊢ 𝐴) ⇒ (⊢ 𝐁)

122 9. Gradual Typing Meets Dependent Types

closing over all free variables, if C[𝑢] →⋆ err𝐁 or diverges, then either
C[𝑡] →⋆ err𝐁 or C[𝑡] diverges.

The main difference with observational error-approximation is that in this
definition, errors and divergence are collapsed. In particular, equi-refinement
does not imply observational equivalence, because one term might diverge
while the other reduces to an error. Happily, if the gradual dependent the-
ory is strongly normalizing, both notions observational error-approximation
≼ob and observational refinement ⊑ob coincide.

9.5. The Fire Triangle of Graduality

To sum up, we have so far seen four important properties that can be ex-
pected from a gradual type theory: safety, conservativity with respect to a
given static system, graduality, and normalization. Any type theory ought
to satisfy at least safety. Unfortunately, we now show that mixing the three
other properties is impossible for STLC, and a fortiori for CIC.

9.5.1. Preliminary: regular reduction

To derive this general impossibility result by relying only on the proper-
ties and without committing to a specific language or theory, we need to
assume that the reduction system used to decide conversion is ”regular”.
This means that it only looks at the weak-head normal forms of sub-terms
for reduction rules, and does not magically shortcut reduction, for instance
based on the specific syntax of inner terms. As an example, β-reduction is
not allowed to look into the body of the lambda term to decide how to
proceed.

This property is satisfied in all actual systems we know of, but formally
stating it in full generality, in particular without devoting to a particular
syntax, is beyond our current scope. Fortunately, in the following, we rely
only on a much weaker hypothesis, which is a slight strengthening of the
retraction hypothesis of embedding-projection pairs. Recall that retraction
says that when 𝐴 ⊑ 𝐵, any term 𝑡 of type 𝐴 is equi-precise to 𝑡 :: 𝐵 :: 𝐴.

We additionally require that for any context C, if C[𝑡] reduces at least 𝑘
steps, then C[𝑡 :: 𝐵 :: 𝐴] also reduces at least 𝑘 steps. Intuitively, this means
that the reduction of C[𝑡 :: 𝐵 :: 𝐴], while free to decide when to get rid of
the embedding-to-𝐵-projection-to-𝐴, cannot use it to avoid reducing 𝑡 . This
property is true in all gradual languages, where type information at runtime
is used only as a monitor.

9.5.2. Gradualizing STLC

Let us first consider the case of STLC. We show that Ω is necessarily a well-
typed, diverging term in any gradualization of STLC that satisfies the other
properties.

9.5. The Fire Triangle of Graduality 123

Figure 9.1. The Fire Triangle of Gradual-
ity

[Sie+15]: Siek et al. (2015), Refined Criteria
for Gradual Typing

Theorem 9.5. Fire Triangle of Graduality for STLC

Suppose a gradual type theory that satisfies both conservativity with
respect to STLC and graduality. Then it cannot be normalizing.

Proof.
We pose Ω ≔ 𝛿 (𝛿 :: ?) with 𝛿 ≔ λ 𝑥: ?. (𝑥 :: ? → ?) 𝑥 and show that it
must necessarily be a well-typed, diverging term. Because the unknown
type ? is consistent with any type (Section 9.3) and ? → ? is a valid
type (by conservativity), the self-applications in Ω are well-typed, 𝛿 has
type ? → ?, and Ω has type ?. Now, we remark that Ω = C[𝛿] with
C[⋅] ≔ [⋅] (𝛿 :: ?).
We show by induction on 𝑘 that Ω reduces at least 𝑘 steps, the initial
case being trivial. Suppose thatΩ reduces at least 𝑘 steps. Bymaximality
of ? with respect to precision, we have that ? → ? ⊑ ?, so we can
apply the strengthening of graduality applied to 𝛿 , which tells us that
C[𝛿 :: ? :: ? → ?] reduces at least 𝑘 steps, because C[𝛿] reduces at least
𝑘 steps.

But Ω reduces in one step of β-reduction to C[𝛿 :: ? :: ? → ?]. So Ω re-
duces at least 𝑘 + 1 steps.

This means that Ω diverges, which is a violation of normalization.

This result could be extended to all terms of the untyped lambda calculus,
not only Ω, in order to obtain the embedding theorem of GTLC [Sie+15].
Therefore, the embedding theorem is not an independent property, but
rather a consequence of conservativity and graduality. This is why we have
not included it in our overview of the gradual approach in Section 9.3.

9.5.3. Gradualizing CIC

We can now prove the same impossibility theorem for CIC, by reducing it
to the case of STLC. In general, this theorem can be proven for type theories
others than CIC, as soon as they faithfully embed STLC.

Theorem 9.6. Fire Triangle of Graduality for CIC

A gradual dependent type theory cannot simultaneously satisfy conser-
vativity with respect to CIC, graduality and normalization.

Proof.
We show that a gradual dependent type theory satisfying CIC and grad-
uality must contain a diverging term, thus contravening normalization.
The typing rules of CIC contain the typing rules of STLC, using only one
universe□0, and the notions of reduction coincide, so CIC embeds STLC.
This is a well-known result on Pure Type Systems [Bar91] [Bar91]: Barendregt (1991), An Introduc-

tion to Generalized Type Systems
, of which CCω

is one of many examples. This means that conservativity with respect
to CIC implies conservativity with respect to STLC.

Additionally, graduality can be specialized to the simply-typed fragment
of the theory, by setting the unknown type ? to be ?□0 . We can then

124 9. Gradual Typing Meets Dependent Types

[GT20]: Garcia et al. (2020), Gradual Typ-
ing as if Types Mattered

19: In such a case, ? → ? ⋢ ?, so our
argument involving Ω is invalid.

[Ngu+19]: Nguyễn et al. (2019), Size-
Change Termination as a Contract: Dynam-
ically and Statically Enforcing Termination
for Higher-Order Programs

[ETG19]: Eremondi et al. (2019), Approx-
imate Normalization for Gradual Depen-
dent Types

[Bra13]: Brady (2013), Idris, a general-
purpose dependently typed programming
language: Design and implementation

20: The example uses a gain of precision
from the unknown type to𝐍, so it behaves
just the same in GDTL

apply Theorem 9.5, and get a diverging well-typed term, finishing the
proof.

9.5.4. The Fire Triangle in practice

In non-dependent settings, all gradual languages where ? is universal ad-
mit non-termination and therefore compromise normalization. Garcia and
Tanter [GT20] discuss the possibility to gradualize STLC without admit-
ting non-termination, for instance by considering that ? is not universal
and denotes only base types19. Without sacrificing the universal unknown
type, one could design a variant of GTLC that uses some mechanism to
detect divergence, such as termination contracts Nguyễn et al. [Ngu+19].
This would yield a language that certainly satisfies normalization, but it
would break graduality. Indeed, because the contract system is necessarily
under-approximating in order to be sound – and actually imply normaliza-
tion –, there are effectively-terminating programs with imprecise variants
that yield termination contract errors.

To date, the only related work that considers the gradualization of full de-
pendent types with ? as both a term and a type, is the work on GDTL
[ETG19]. GDTL is a programming languagewith a clear separation between
the typing and execution phases, like Idris [Bra13]. GDTL adopts a differ-
ent strategy in each phase: for typing, it uses Approximate Normalization,
which always produces ?𝐴 as a result of going through imprecision and
back. This implies that the system is normalizing – and thus that conver-
sion is decidable –, but it breaks graduality for the same reason as the de-
generate systemwe discussed in Section 9.420. In such a phased setting, the
lack of computational content of Approximate Normalization is not critical,
because it only means that typing becomes overly optimistic. To execute
programs, GDTL relies on standard GTLC-like reduction semantics, which
is computationally precise, but not normalizing.

9.6. GCIC: An Overview

Given the Fire Triangle of Graduality (Theorem 9.6), we know that gradu-
alizing CIC implies making some compromise. Instead of focusing on one
possible solution, we actually develop a common parametrized framework,
GCIC, where the parameters control which of the three properties – nor-
malization, graduality and conservativity – is compromised. This section
gives an informal, non-technical overview of this system, highlighting the
main challenges and results.

9.6.1. Three in one

Two parameters… To explore the spectrum of possibilities opened by
the Fire Triangle of Graduality, we develop a general approach to gradu-
alizing CIC, and use it to define three theories, corresponding to different
resolutions of the triangular tension between normalization, graduality and
conservativity with respect to CIC.

The crux of our approach is to recognize that, while there is not much
to vary within STLC itself to address the tension of the Fire Triangle of

9.6. GCIC: An Overview 125

[Bar91]: Barendregt (1991), An Introduc-
tion to Generalized Type Systems

21: This system is precisely detailed in
Figure 10.2

22: A typical example of a well-typed
CIC term that is ill typed in CIC↑ is
nArrow : 𝐍 → □, where nArrow 𝑛 is
the type of functions that accept 𝑛 argu-
ments. Such dependent arities violate the
universe constraint of CIC↑.

Graduality, there are several variants of CIC that can be considered by
changing the hierarchy of universes and its impact on typing – after all, its
core CCω is but a particular Pure Type System [Bar91]. Thus, we consider
a parametrized version of a gradual CIC, called GCIC, with two parame-
ters21.

The first parameter characterizes how the universe level of a Π-type is de-
termined in typing rules: either as taking the maximum of the levels of the
involved types – as in standard CIC – or as the successor of that maxi-
mum. The latter option yields a variant of CIC that we call CIC↑ – read
“CIC-shift”. CIC↑ is a subset of CIC, with a stricter constraint on universe
levels. In particular CIC↑ loses the closure of universes under dependent
functions that CIC enjoys. As a consequence, some well-typed CIC terms
are not well-typed in CIC↑.22

The second parameter is the dynamic counterpart of the first parameter: its
role is to control universe levels during the reduction of type casts between
Π-types. We only allow this reduction parameter to be loose – i.e. using
maximum – if the typing parameter is also loose. Indeed, letting the typ-
ing parameter be strict – i.e. using successor of the maximum – while the
reduction parameter is loose breaks subject reduction, and hence safety.

… and three meaningful theories. Based on these parameters, we de-
velop the following three variants of GCIC, whose properties are summa-
rized in Figure 9.2 – because GCIC is one common parametrized framework,
we are able to establish most properties for all variants at once.

The first variant, GCICG , is a theory that satisfies both conservativity with
respect to CIC and graduality, but sacrifices normalization. This theory is
a rather direct application of the principles discussed in Section 9.4 by ex-
tending CICwith errors and unknown terms, and replacing conversionwith
consistency. This results in a theory that is not normalizing.

Next, GCIC↑ satisfies both normalization and graduality, and supports con-

servativity, but only with respect to CIC↑. This theory uses the universe hi-
erarchy at the typing level to detect and forbid the potential non-termination
induced by the use of consistency instead of conversion.

Finally, GCICN satisfies both conservativity with respect to CIC and nor-
malization, but does not fully validate graduality. This theory uses the uni-
verse hierarchy at the computational level to detect potential divergence,
eagerly raising errors. Such runtime failures invalidate the DGG for some
terms, and hence graduality, as well as the SGG, since in our dependent
setting it depends on the DGG.

Safety Normalization Conservativity wrt. Graduality SGG DGG

GCICG ✓ ✗ CIC ✓ ✓ ✓

GCIC↑ ✓ ✓ CIC↑ ✓ ✓ ✓

GCICN ✓ ✓ CIC ✗ ✗ ✗

Figure 9.2. GCIC variants and their properties

126 9. Gradual Typing Meets Dependent Types

[Sie+15]: Siek et al. (2015), Refined Criteria
for Gradual Typing

[Eis16]: Eisenberg (2016), Dependent
Types in Haskell: Theory and Practice

Practical implications of GCIC variants. Regarding our introductory
examples, all three variants of GCIC support the exploration of the type-
level precision spectrum. In particular, we can define filter by giving it
the imprecise type

forall A n (p : A -> 𝔹), vec A n -> vec A (? ℕ)

in order to bypass the difficulty of precisely characterizing the size of the
output vector. Any invalid optimistic assumption is detected during reduc-
tion and reported as an error.

Unsurprisingly, the semantic differences between the three GCIC variants
crisply manifest in the treatment of potential non-termination, more specif-
ically, self application. Let us come back to the term Ω used in the proof
of Theorem 9.6. In all three variants, this term is well-typed. In GCICG , it
reduces forever, as it would in the untyped lambda calculus: GCICG can em-
bed the untyped lambda calculus, just as GTLC [Sie+15]. In GCICN , this
term fails at runtime because of the strict universe check in the reduction
of casts, which breaks graduality because ?□𝑖 → ?□𝑖 ⊑ ?□𝑖 tells us that

the upcast-downcast coming from an ep-pair should not fail. In GCIC↑, Ω
fails in the same way as in GCICN , but this does not break graduality be-
cause of the shifted universe level on Π-types. Indeed, a consequence of
this stricter typing rule is that in GCIC↑, ?□𝑖 → ?□𝑖 ⊑ ?□𝑗 for any 𝑗 > 𝑖,
but ?□𝑖 → ?□𝑖 ⋢ ?□𝑗 . Therefore, the casts performed in Ω do not come
from an ep-pair any more, and can thus legitimately fail. This is described
in full details in Section 10.2.3.

Another scenario where the differences in semantics manifest is functions
with dependent arities. For instance, the well-known C function printf can
be embedded in a well-typed fashion in CIC: it takes as first argument a
format string and computes from it both the type and number of later ar-
guments. In GCICG it can be gradualized as much as one wants, without
surprises. This function, however, brings into light the limitation of GCIC↑:
since the format string can specify an arbitrary number of arguments, we
need as many →, and printf cannot be well-typed in a theory where uni-
verses are not closed under function types. In GCICN , printf is well-typed,
but the same problem will appear dynamically when casting printf to ?
and back to its original type: the result will be a function that works only
on format strings specifying no more arguments than the universe level at
which it has been typed. Note that this constitutes an example of violation
of graduality for GCICN , even of the dynamic gradual guarantee.

Which variant to pick? As explained in the introduction, the aim here
is to shed light on the design space of gradual dependent type theories, not
to advocate for one specific design. The appropriate choice indeed depends
on the specific goals of the language designer, or perhaps more pertinently,
on the specific goals of a given project, at a specific point in time. The key
characteristics of each variant are as follows.

GCICG favours flexibility over decidability of type-checking. While this
might appear heretical in the context of proof assistants, this choice has
been embraced by practical languages such as Dependent Haskell [Eis16],
where both divergence and runtime errors can happen at the type level.

9.6. GCIC: An Overview 127

23: With the possibility to allow □:□,
switch off termination checking, use the
partial/total compiler flags…

24: GHC is a salient representative.

[ST06]: Siek et al. (2006), Gradual Typing
for Functional Languages

25: This is similar to what happens in
practice in proof assistants such as Coq
[Coq22b, Core language], where terms in-
put by the user in the Gallina language
are first elaborated in order to add im-
plicit arguments, coercions, etc. The com-
putation steps required by conversion are
performed on the elaborated terms, never
on the raw input syntax.

[Coq22b]: Coq Development Team (2022),
The Coq proof assistant reference manual

The pragmatic argument is simplicity: by letting programmers be responsi-
ble, there is no need for termination checking techniques and other restric-
tions.

GCIC↑ is theoretically pleasing as it enjoys both normalization and gradu-
ality. In practice, though, the fact that it is not conservative with respect
to full CIC means that one would not be able to simply import existing
libraries as soon as they fall outside the CIC↑ subset. In GCIC↑, the intro-
duction of ? should be done with an appropriate understanding of universe
levels. This might not be a problem for advanced programmers, but would
surely be harder to grasp for beginners.

Finally, GCICN is normalizing and able to import existing libraries without
restrictions, at the expense of some surprises on the graduality front. Pro-
grammers would have to be willing to accept that they cannot just sprinkle
? as they see fit without further consideration, as any dangerous usage of
imprecision will be flagged during conversion.

In the same way that systems like Coq, Agda or Idris support different
ways to customize their semantics regarding termination,23 and of course,
many programming languages implementations supporting some sort of
customization24 one can imagine a flexible realization of GCIC that give
users the control over the two parameters we identify in this work, and
therefore lets them access all three GCIC variants. Considering the inher-
ent tension captured by the Fire Triangle of Graduality, such a pragmatic
approach might be the most judicious choice, making it possible to gather
experience and empirical evidence about the pros and cons of each in a
variety of concrete scenarios.

9.6.2. Typing, conversion and bidirectional elaboration

As explained in Section 9.3, in a gradual language, whenever we reclaim
precision, we might be wrong and need to fail in order to preserve safety.
In a simply-typed setting, the standard approach is to define typing on a
gradual source language, and then to translate terms via a type-directed
elaboration to a target cast calculus, i.e. a language with explicit runtime
type checks. This elaboration inserts casts, needed for a well-behaved re-
duction [ST06]. For instance, in a call-by-value language, the upcast (loss
of precision) ⟨?⇐𝐍⟩ 10 is considered a (tagged) value, and the downcast
(gain of precision) ⟨𝐍⇐?⟩ 𝑣 reduces successfully if 𝑣 is such a tagged nat-
ural number, or to an error otherwise.

We follow a similar approach forGCIC,which is elaborated in a type-directed
manner to a second calculus, named CastCIC (Section 10.1). The interplay
between typing and cast insertion is howevermore subtle in the context of a
dependent type theory. Because typing needs computation, and reduction
is only meaningful in the target language, CastCIC is used as part of the
elaboration in order to compare types (Section 10.2). This means that GCIC
has no typing on its own, independent of its elaboration to CastCIC.25

In order to satisfy conservativity with respect to CIC, ascriptions in GCIC
are required to satisfy consistency. For instance, tt :: ? :: 𝐍 is well-typed by
consistency – used twice –, but tt :: 𝐍 is ill-typed. Such ascriptions in Cast-
CIC are realized by casts. For instance 0 :: ? :: 𝐁 in GCIC elaborates – up to
desugaring and reduction – to ⟨𝐁⇐?□⟩ ⟨?□⇐𝐍⟩ 0 in CastCIC. A major

128 9. Gradual Typing Meets Dependent Types

[ST06]: Siek et al. (2006), Gradual Typing
for Functional Languages
[ST07]: Siek et al. (2007), Gradual Typing
for Objects
[GCT16]: Garcia et al. (2016), Abstracting
Gradual Typing

[ETG19]: Eremondi et al. (2019), Approx-
imate Normalization for Gradual Depen-
dent Types

26: That we call the discrete model.

[Bou18]: Boulier (2018), Extending Type
Theory with Syntactical Models

27: That we call the monotone model

difference between ascriptions in GCIC and casts in CastCIC is that casts
are not required to satisfy consistency: a cast between any two types is
well-typed, although of course it might produce an error.

This is where the bidirectional structure is crucial. First, it is required in or-
der to tame the non-transitive consistency relation. Indeed, in the previous
example of tt :: 𝐍, if one kept a free-standing rule like Rule Conv and simply
replaced conversion by consistency, one could use the rule twice, through
?, and the term would be well-typed. But consistency demands that only
terms with explicitly-ascribed imprecision enjoy its flexibility. This obser-
vation is standard in the gradual typing literature [ST06; ST07; GCT16],
but becomes even more crucial in the context of gradual dependent types
[ETG19]. Moreover, the bidirectional structure is very suited to the descrip-
tion of a type-based elaboration, and directly translates to a deterministic
typing/elaboration algorithm for GCIC.

9.6.3. Precisions and properties

As explained earlier (Section 9.4), we need three different notions of preci-
sion to deal with SGG and graduality.

At the source level – GCIC –, we introduce a notion of syntactic precision,
that captures the intuition of a more imprecise term as ”the same termwith
sub-terms and/or type annotations replaced by ?”, and is defined without
any assumption of typing. In CastCIC, we define a notion of structural pre-
cision, which is mostly syntactic except that, in order to account for cast
insertion during elaboration, it tolerates precision-preserving casts. For in-
stance, ⟨𝐴⇐𝐴⟩ 𝑡 is related to 𝑡 by structural precision.

Armed with these two notions of precision, we prove elaboration graduality
(Theorem 10.23), which is the equivalent of the static gradual guarantee in
our setting: if a term 𝑡 of GCIC elaborates to a term 𝑡′ of CastCIC, then
a term 𝑢 less syntactically precise than 𝑡 in GCIC elaborates to a term 𝑢′
less structurally precise than 𝑡′ in CastCIC. Because DGG is about the be-
haviour of terms during reduction, it is technically stated and proven for
CastCIC. We show in Section 10.4 that DGG can be proven for CastCIC –
in its variants CastCICG and CastCIC↑ – on structural precision.

However, as explained in Section 9.3, we cannot expect to prove gradual-
ity for these CastCIC variants with respect to structural precision directly.
In order to overcome this problem, and to justify the design of CastCIC,
we build two kinds of models for CastCIC. The first26 is a syntactic model
[Bou18] – akin to a program translation or a compilation phase –, and is
used to justify the reduction rules and prove that they are terminating. The
second27 endows types with the structure of an ordered set, or poset. This
makes it possible to reason about the semantic notion of propositional pre-
cision and prove that it gives rise to embedding-projection pairs, thereby
establishing graduality. These models are described in Section 11.1.

1: Written using a dark blue colour.

[PT18]: Pédrot et al. (2018), Failure is Not
an Option An Exceptional Type Theory

From GCIC to CastCIC:
Bidirectional Elaboration 10.

10.1 CastCIC 129
10.1.1 System definition 129
10.1.2 Safety 133

10.2 Bidirectional Elaboration 135
10.2.1 System definition 135
10.2.2 Direct properties 138
10.2.3 Illustration: back to Ω 140

10.3 Simulation 141
10.3.1 Structural precision 142
10.3.2 Catch-up lemmas 144
10.3.3 Simulation 146

10.4 Properties of GCIC 147
10.4.1 Conservativity 148
10.4.2 Elaboration Graduality 149
10.4.3 Dynamic Gradual Guarantee 150

Let us now look in details at the elaboration from the source gradual system
GCIC to the target cast calculus CastCIC. We start with CastCIC, describ-
ing its typing, reduction andmetatheoretical properties (Section 10.1). Next,
we describe GCIC and its bidirectional elaboration to CastCIC, along with
a few direct properties (Section 10.2). This elaboration can be seen as an ex-
tension of the bidirectional presentation of CIC. To illustrate the semantics
of the different GCIC variants, we show how the Ω term (Section 10.2.3)
behaves in them. We finally expose technical properties of the reduction of
CastCIC (Section 10.3) used to prove the most important theorems on elab-
oration: conservativity over CIC or CIC↑, as well as the gradual guarantees
(Section 10.4).

In this whole chapter, we do not treat indexed inductive types, thus the
system should be seen as an extension of CIC−, rather than full-blown CIC.
We come back to this issue in Chapter 11. The original reference [Len+22]

[Len+22]: Lennon-Bertrand et al. (2022),
Gradualizing the Calculus of Inductive Con-
structions

considers the case of general inductive types, here we restrict the presenta-
tion to 𝐋𝐢 to ease readability.

10.1. CastCIC

10.1.1. System definition

Syntax. The syntax of CastCIC1 extends that of CIC− with three new
term constructors: the unknown term ?𝑇 and dynamic error err𝑇 of type 𝑇 ,
as well as the cast ⟨𝑇 ⇐ 𝑆⟩ 𝑡 of a term 𝑡 of type 𝑆 to type 𝑇

TermCastCIC ∋ 𝑡 ≔ ⋯ ∣ ?𝑡 ∣ err𝑡 ∣ ⟨𝑡 ⇐ 𝑡⟩ 𝑡 (Syntax of CastCIC)

with casts associating to the right: ⟨𝑆′ ⇐𝑆⟩ ⟨𝑇 ⇐𝑇 ′⟩ 𝑡 corresponds to the
fully-parenthesized ⟨𝑆′ ⇐𝑆⟩ (⟨𝑇 ⇐𝑇 ′⟩ 𝑡) .We also collapse successive ones:
⟨𝑇″ ⇐ 𝑇 ′ ⇐𝑇⟩ 𝑡 is shorthand for ⟨𝑇″ ⇐𝑇 ′⟩ ⟨𝑇 ′ ⇐𝑇⟩ 𝑡 . The unknown term
and dynamic error both behave as exceptions as defined in ExTT [PT18].
Casts keep track of the use of consistency during elaboration, implement-
ing a form of runtime type-checking, raising the error err𝑇 in case of a type
mismatch. We call static the terms of CastCIC that do not use any of these
new constructors – static CastCIC terms thus correspond to CIC terms.

Universe parameters. CastCIC is parametrized by two functions, de-
scribed in Figure 10.1, to account for the three different variants of GCIC
we consider – see Section 9.6.1 : CastCICG , CastCIC↑ and CastCICN . The

sΠ (𝑖, 𝑗) ≔ max(𝑖, 𝑗) cΠ (𝑖) ≔ 𝑖 (GCICG-CastCICG)

sΠ (𝑖, 𝑗) ≔ max(𝑖, 𝑗) cΠ (𝑖) ≔ 𝑖 − 1 (GCICN -CastCICN)

sΠ (𝑖, 𝑗) ≔ max(𝑖, 𝑗) + 1 cΠ (𝑖) ≔ 𝑖 − 1 (GCIC↑-CastCIC↑)
Figure 10.1. Universe parameters

130 10. From GCIC to CastCIC: Bidirectional Elaboration

Figure 10.2. Typing rules for CastCIC (Ex-
tending those for CIC, replace Rule ΠTy)

ΠTy
Γ ⊢ 𝐴 ▷□ □𝑖 Γ ⊢ 𝐵 ▷□ □𝑗

Γ ⊢ Π 𝑥: 𝐴. 𝐵 ▷ □sΠ (𝑖,𝑗)
Unk

Γ ⊢ 𝑇 ▷□ □𝑖
Γ ⊢ ?𝑇 ▷ 𝑇

Err
Γ ⊢ 𝑇 ▷□ □𝑖
Γ ⊢ err𝑇 ▷ 𝑇 Cast

Γ ⊢ 𝑇 ▷□ □ Γ ⊢ 𝑇 ′ ▷□ □ Γ ⊢ 𝑡 ◁ 𝑇
Γ ⊢ ⟨𝑇 ′ ⇐𝑇⟩ 𝑡 ▷ 𝑇 ′

[SW10]: Siek et al. (2010), Threesomes,
with and without Blame
[NA18]: New et al. (2018), Graduality from
Embedding-Projection Pairs

first function sΠ computes the level of the universe of a dependent function
type, given the levels of its domain and codomain – see the updated Rule
ΠTy in Figure 10.2. The second function cΠ controls the universe level in
the reduction of a cast between ? → ? and ? – see Figures 10.3 and 10.4d.

Typing. The first difference between CastCIC and CIC is Rule ΠTy, given
in Figure 10.2, which uses the sΠ parameter. In CastCICG and CastCICN ,
this rule corresponds to the usual one of CIC, but in CastCIC↑ it is stricter.
All other typing rules are exactly the same as in CIC.

Next, Rules Unk and Err say that both ?𝑇 and err𝑇 infer 𝑇 when 𝑇 is a
type.

Finally, Rule Cast ensures that both the source and target of the cast are
indeed types, and that the cast term indeed has the source type. Note that
in CastCIC, as is sometimes the case in cast calculi [SW10; NA18] no consis-
tency premise is required for a cast to be well-typed. Here, consistency only
plays a role in GCIC, but completely disappears after elaboration. Instead,
CastCIC relies only on standard (algorithmic) conversion.

Figure 10.3. Head constructor and germ

Head ∋ ℎ ≔ □𝑖 ∣ Π ∣ 𝐋𝐢
head (Π 𝑥: 𝐴. 𝐵) ≔ Π head (□𝑖) ≔ □𝑖 head (𝐋𝐢 (𝐴)) ≔ 𝐋𝐢

germ 𝑖□𝑗 ≔ { □𝑗 if 𝑗 < 𝑖
err□𝑖 if 𝑗 ≥ 𝑖 germ 𝑖 𝐋𝐢 ≔ 𝐋𝐢 (?□𝑖)

germ 𝑖 Π ≔ { ?□cΠ (𝑖) → ?□cΠ (𝑖) if cΠ (𝑖) ≥ 0
err□𝑖 if cΠ (𝑖) < 0

Reduction. The typing rules provide little insight on the new primitives;
the interesting part really lie in their reduction behaviour.

Reduction relies on two auxiliary functions relating head constructors ℎ ∈
Head to those terms that start with either Π, □ or and inductive type –
in our running example, 𝐋𝐢 – the set of which we call TypeCastCIC. These
are defined in Figure 10.3. The first is the function head , which returns the
head constructor of a type.

In the other direction, the germ function germ 𝑖ℎ constructs the least pre-
cise type with head ℎ at level 𝑖. In the case where no such type exists —

10.1. CastCIC 131

[GCT16]: Garcia et al. (2016), Abstracting
Gradual Typing

[WF09]: Wadler et al. (2009), Well-Typed
Programs Can’t Be Blamed

[Lev04]: Levy (2004), Call-By-Push-Value:
A Functional/Imperative Synthesis

[ST06]: Siek et al. (2006), Gradual Typing
for Functional Languages

[MM94]:Mac Lane et al. (1994), Sheaves in
Geometry and Logic: A First Introduction to
Topos Theory

2: As all our reduction rules have empty
premises, we spare the needless bar to
make them more readable.

[FF02]: Findler et al. (2002), Contracts for
Higher-Order Functions

e.g. when cΠ (𝑖) < 0 – this least precise type is the error. The germ func-
tion corresponds to an abstraction function in the sense of AGT [GCT16], if
one interprets the head ℎ as the set of all types whose head type construc-
tor is ℎ. Wadler and Findler [WF09] christened the corresponding notion
a ground type, later reused in the gradual typing literature. This terminol-
ogy however clashes with its prior use in denotational semantics [Lev04]:
there a ground type is a first-order datatype. Note also that Siek and Taha
[ST06] call ground types the base types of the language, such as 𝐁 and 𝐍.
We therefore prefer the less overloaded term germ, used by analogy with
the geometrical notion of the germ of a section [MM94]: the germ of a head
constructor represents an equivalence class of types that are locally the
same.

The exact design of the reduction rules is mostly dictated by the models of
CastCIC presented later in Section 11.1. Nevertheless, we nowprovide some
intuition about their meaning. We only present here the rules for top-level
reduction:2 the congruence closure to obtain full reduction is completely
standard. As for weak-head reduction, we give the adequate contextual clo-
sure later on when we prove progress.

Π-Unk: ?Π(𝑥:𝐴). 𝐵 ⇀ λ 𝑥: 𝐴. ?𝐵 Π-Err: errΠ 𝑥:𝐴. 𝐵 ⇀ λ 𝑥: 𝐴. err𝐵
Match-Unk: ind𝐋𝐢 (?𝐋𝐢 (𝐴); 𝑧.𝑃 ; 𝑏𝜀 , 𝑦1.𝑦2.𝑝𝑦2 .𝑏;;) ⇀ ?𝑃[𝑧 ≔ ?𝐋𝐢 (𝐴)]

Match-Err: ind𝐋𝐢 (err𝐋𝐢 (𝐴); 𝑧.𝑃 ; 𝑏𝜀 , 𝑦1.𝑦2.𝑝𝑦2 .𝑏;;) ⇀ err𝑃[𝑧 ≔ err𝐋𝐢 (𝐴)]

List-Unk: ⟨𝐋𝐢 (𝐴′)⇐𝐋𝐢 (𝐴″)⟩ ?𝐋𝐢 (𝐴) ⇀ ?𝐋𝐢 (𝐴′) List-Err: ⟨𝐋𝐢 (𝐴′)⇐𝐋𝐢 (𝐴″)⟩ err𝐋𝐢 (𝐴) ⇀ err𝐋𝐢 (𝐴′)

Down-Unk: ⟨𝑋 ⇐?□⟩ ??□ ⇀ ?𝑋 Down-Err: ⟨𝑋 ⇐?□⟩ err?□ ⇀ err𝑋

Figure 10.4a. Propagation rules for ? and err

The first set of rules, given in Figure 10.4a, specify the exception-like prop-
agation behaviour of both ? and err at function and inductive types. Rules
List-Unk and List-Err similarly propagate ? and err when cast between
the same inductive type, and Rules Down-Unk and Down-Err do the same
from the unknown type to any type 𝑋 .

Π-Π: ⟨Π 𝑦: 𝐴2. 𝐵2 ⇐Π 𝑥: 𝐴1. 𝐵1⟩(λ 𝑥: 𝐴. 𝑡) ⇀ λ 𝑦: 𝐴2. ⟨𝐵2 ⇐𝐵1[𝑥 ≔ ⟨𝐴1 ⇐𝐴2⟩ 𝑦]⟩(𝑡[𝑥 ≔ ⟨𝐴⇐𝐴2⟩ 𝑦])

Univ-Univ: ⟨□𝑖 ⇐□𝑖⟩ 𝐴 ⇀ 𝐴 Nil-Nil: ⟨𝐋𝐢 (𝐴2)⇐𝐋𝐢 (𝐴1)⟩ 𝜀𝐴 ⇀ 𝜀𝐴2

Cons-Cons: ⟨𝐋𝐢 (𝐴2)⇐𝐋𝐢 (𝐴1)⟩ 𝑎 ;;𝐴 𝑙 ⇀ ⟨𝐴2 ⇐𝐴1⟩ 𝑎 ;;𝐴2 ⟨𝐋𝐢 (𝐴2)⇐𝐋𝐢 (𝐴1)⟩ 𝑙

Figure 10.4b. Success rules for casts

Next come the rules of Figure 10.4b, which correspond to success cases
of dynamic checks, where the cast is between types with the same head.
In that case, casts are either completely erased when possible, or propa-
gated. As usual in gradual typing, directly inspired by higher-order con-
tracts [FF02], Rule Π-Π distributes the function cast in two casts, one for
the argument and one for the body; note the substitution in the source
codomain in order to account for dependency. Also, because constructors

132 10. From GCIC to CastCIC: Bidirectional Elaboration

[Sie+15]: Siek et al. (2015), Refined Criteria
for Gradual Typing

3: In a simply-typed language such as
GTLC [Sie+15], where there are no neu-
trals at the type level, casts from a germ or
ground type to the unknown type are usu-
ally interpreted as tagged values [ST06].
Here, these correspond exactly to the
canonical forms of ?□, but we also have to
account for the many neutral forms that
appear in open contexts.

and inductive types are fully applied, this Π-Π rule cannot be blocked be-
cause of a partially-applied constructor or inductive. Regarding inductive
types, the propagation of casts on sub-terms cannot be avoided in the list
type, but if we follow this strategy for simpler inductive types, e.g. 𝐍, the
restriction to reduce only on constructors means that a cast between𝐍 and
𝐍 is blocked until its argument term is a constructor, rather than disappear-
ing right away as for □. This is somewhat non-optimal, but we stick to it
here for simplicity.

Head-Err
𝑇 , 𝑇 ′ ∈ TypeCastCIC head 𝑇 ≠ head 𝑇 ′

⟨𝑇 ′ ⇐𝑇⟩ 𝑡 ⇀ err𝑇 ′

Dom-Err: ⟨𝑇 ⇐ err□⟩ 𝑡 ⇀ err𝑇 Codom-Err
𝑇 ∈ TypeCastCIC

⟨err□⇐𝑇⟩ 𝑡 ⇀ errerr□

Figure 10.4c. Failure rules for casts

On the contrary, Figure 10.4c specifies failures of dynamic checks, either
when the considered types have different heads, or when casting to or from
the error type.

Π-Germ
Π 𝑥: 𝐴. 𝐵 ≠ germ 𝑗Π for 𝑗 ≥ 𝑖

⟨?□𝑖 ⇐Π 𝑥: 𝐴. 𝐵⟩ 𝑓 ⇀ ⟨?□𝑖 ⇐ germ 𝑖 Π⇐Π 𝑥: 𝐴. 𝐵⟩ 𝑓

List-Germ
𝐋𝐢 (𝐴) ≠ germ 𝑗 𝐼 for 𝑗 ≥ 𝑖

⟨?□𝑖 ⇐𝐋𝐢 (𝐴)⟩ 𝑡 ⇀ ⟨?□𝑖 ⇐ germ 𝑖 𝐋𝐢 ⇐𝐋𝐢 (𝐴)⟩ 𝑡

Up-Down
germ 𝑖ℎ ≠ err□𝑖

⟨𝑋 ⇐ ?□𝑖 ⇐germ 𝑖ℎ⟩ 𝑡 ⇀ ⟨𝑋 ⇐germ 𝑖ℎ⟩ 𝑡
Size-Err

min{𝑗 ∣ ∃ℎ ∈ Head, germ 𝑗ℎ = 𝐴} > 𝑖
⟨?□𝑖 ⇐𝐴⟩ 𝑡 ⇀ err?□𝑖

Figure 10.4d. Casts and the unknown type

Finally, there are specific rules pertaining to casts to and from ?, showcasing
its behaviour as a universal type, given in Figure 10.4d. Rules Π-Germ and
List-Germ decompose an upcast into ? into an upcast to a germ followed by
an upcast from the germ to ?. This decomposition of an upcast to ? into a
series of ”atomic” upcasts from a germ to ? is a consequence of the way the
cast operation is implemented in Section 11.1, but similar decompositions
appear e.g. in Siek et al. [Sie+15], where the equivalent of our germs are
called ground types. The side conditions guarantee that this rule is used
when no other applies.

Rule Up-Down erases the succession of an upcast to ? and a downcast from
it. Note that in this rule the upcast ⟨?□𝑖 ⇐germ ℎ𝑖⟩ acts like a constructor
for ?□𝑖 , and ⟨𝑋 ⇐?□𝑖⟩ as a destructor – a view reflected by the canonical
and neutral forms for ?□ given in Figures 10.5b and 10.5c.3

Finally, Rule Size-Err corresponds to a peculiar kind of error, which only
happens due to the presence of a type hierarchy: ?□𝑖 is only universal with
respect to types at level 𝑖, and so a type might be of a level too high to fit

10.1. CastCIC 133

nm ⟨?□⇐germ 𝑖ℎ⟩ 𝑡

Figure 10.5b. Cast as a canonical form of
the unknown type

into it. To detect such a case, we check whether 𝐴 is a germ for a level that
is below 𝑖, and when not must raise an error.

10.1.2. Safety

Given the typing and reduction rules just define, we can already prove one
of our main meta-theoretical properties: safety, for the three variants of
CastCIC. The structure of the proof is very much the same as that of Part
‘A Certified Kernel for Coq, in Coq’ for PCUIC.

The crucial lemma is, as before, confluence:

Lemma 10.1. Confluence of CastCIC

If 𝑡 →⋆ 𝑡1 and 𝑡 →⋆ 𝑡2, then there exists 𝑡′ such that 𝑡1 →⋆ 𝑡′ and
𝑡2 →⋆ 𝑡′.

Proof.
We follow again the Tait-Martin-Löf proof, as exposed by Takahashi
[Tak95] [Tak95]: Takahashi (1995), Parallel Reduc-

tions in λ-Calculus
, extending the notion of parallel reduction from Section 7.3.1 to

account for our additional reduction. The triangle property still holds,
because as before there is no real critical pair between our rules – we
carefully set them up to that effect!

From this, exactly as in PCUIC we can obtain injectivity of type construc-
tors, and thus finally, subject reduction follows. The only possibly surpris-
ing point, with respect to Chapter 7, is that we state it directly for the bidi-
rectional system.

Theorem 10.2. Subject reduction for CastCIC

If Γ ⊢ 𝑡 ▷ 𝑇 and 𝑡 →⋆ 𝑡′ then Γ ⊢ 𝑡′ ◁ 𝑇 .

Let us now turn to progress. To state progress, we must first extend our
canonical forms, to encompass the three new term formers. This corre-
sponds to giving intuition on what are the new canonical forms, and on
“how” these new terms formers compute, in order to know when they are
stuck, and thus give rise to a neutral form.

𝑇 ∈ {□, 𝐋𝐢 (𝐴), ?□, err□}
nm ?𝑇

ne 𝑡
ne ?𝑡

𝑇 ∈ {□, 𝐋𝐢 (𝐴), ?□, err□}
nm err𝑇

ne 𝑡
ne err𝑡 Figure 10.5a. Normal and neutral forms

for ? and err

First, an error err𝑡 or an unknown term ?𝑡 is neutral when 𝑡 is neutral, and
is canonical when 𝑡 is a canonical type – one of the canonical types of CIC,
or the unknown or error types, but not a Π-type. This is detailed in Fig-
ure 10.5a. This is because exception-like terms reduce on Π-types – see Rule
Π-Unk, and Pédrot and Tabareau [PT18] [PT18]: Pédrot et al. (2018), Failure is Not

an Option An Exceptional Type Theory
.

134 10. From GCIC to CastCIC: Bidirectional Elaboration

Second come the canonical form for inhabitants of ?□ (Figure 10.5b): these
are upcasts from a germ, which can be seen as a term tagged with the head
constructor of its type, in a matter reminiscent of actual implementations
of dynamic typing using type tags. These canonical forms work as construc-
tors for ?□.

Figure 10.5c. Neutral casts

ne 𝑆
ne ⟨𝑇 ⇐ 𝑆⟩ 𝑡

ne 𝑡
ne ⟨𝑇 ⇐ ?𝑇 ⟩ 𝑡

ne 𝑇
ne ⟨𝑇 ⇐□⟩ 𝑡

ne 𝑇
ne ⟨𝑇 ⇐Π 𝑥: 𝐴. 𝐵⟩ 𝑡

ne 𝑡
ne ⟨Π 𝑥: 𝐴′. 𝐵′ ⇐Π 𝑥: 𝐴. 𝐵⟩ 𝑡

ne 𝑇
ne ⟨𝑇 ⇐𝐋𝐢 (𝐴)⟩ 𝑡

ne 𝑡
ne ⟨𝐋𝐢 (𝐴′)⇐𝐋𝐢 (𝐴)⟩ 𝑡

Finally, the cast operation behaves as a destructor on the universe□ – as if
it were an inductive type of usual CIC. This destructor first scrutinizes the
source type of the cast. This is why the cast is neutral as soon as its source
type is neutral. When the source type reduces to a head constructor, there
are two possibilities. Either that constructor is ?□, in which case the cast
scrutinizes whether its argument is a canonical form ⟨?□⇐𝑡⟩ germ 𝑖ℎ, and
is neutral when this is not the case. In all other cases, it first scrutinizes the
target type, so the cast is neutral when the target type is neutral. Finally,
when both types have head constructors, the cast might still need its argu-
ment to be either a λ-abstraction or an inductive constructor to reduce.

Additionally, the notion of neutral terms naturally induces a weak-head
reduction strategy, which reducing the (only) argument of the top-level de-
structor that is in a neutral position.

Equipped with the notion of canonical forms, we can state progress for
CastCIC, and thus safety.

Theorem 10.3. Progress for CastCIC

If 𝑡 is a well-typed term of CastCIC, then either nm 𝑡 , or there is some
𝑡′ such that 𝑡 →⋆ 𝑡′.

Proof.
The proof is similar to that which has been sketched in Section 3.4: sup-
pose a term is well-typed, and prove progress by induction on its typing
derivation.

For the two cases of ?𝑇 and err𝑇 , this is direct. If 𝑇 reduces, then the
whole term reduces. In case it is neutral, the whole term is neutral. If it
is a Π-type, the term reduces again – using e.g. Rule Π-Unk –. Finally, if
it is another canonical type, then the whole term is canonical. Any other
case is impossible, by typing.

For the cast term former, the proof still follows the same ideas. It is only
complicated by the fact that in most cases all three sub-terms need to
be canonical before the whole term can reduce.

Theorem 10.4. Safety for CastCIC

All three variants of CastCIC enjoy safety.

10.2. Bidirectional Elaboration: from GCIC to CastCIC 135

𝑥 ∼α 𝑥 □𝑖 ∼α □𝑖
𝐴 ∼α 𝐴′ 𝑡 ∼α 𝑡′
λ 𝑥: 𝐴. 𝑡 ∼α λ 𝑥: 𝐴′. 𝑡′

𝐴 ∼α 𝐴′ 𝐵 ∼α 𝐵′

Π 𝑥: 𝐴. 𝐵 ∼α Π 𝑥: 𝐴′. 𝐵′
𝑡 ∼α 𝑡′ 𝑢 ∼α 𝑢′

𝑡 𝑢 ∼α 𝑡′ 𝑢′

𝐴 ∼α 𝐴′

𝐋𝐢 (𝐴) ∼α 𝐋𝐢 (𝐴′)
𝐴 ∼α 𝐴′

𝜀𝐴 ∼α 𝜀𝐴′

𝐴 ∼α 𝐴′ 𝑎 ∼α 𝑎′ 𝑙 ∼α 𝑙′
𝑎 ;;𝐴 𝑙 ∼α 𝑎′ ;;𝐴′ 𝑙′

𝑠 ∼α 𝑠′ 𝑃 ∼α 𝑃 ′ 𝑏𝜀 ∼α 𝑏′𝜀 𝑏;; ∼α 𝑏′;;
ind𝐋𝐢 (𝑠; 𝑧.𝑃 ; 𝑏𝜀 , 𝑦1.𝑦2.𝑝𝑦2 .𝑏;;) ∼α ind𝐋𝐢 (𝑠′; 𝑧.𝑃 ′; 𝑏′𝜀 , 𝑦1.𝑦2.𝑝𝑦2 .𝑏′;;)

𝑡 ∼α 𝑡′
𝑡 ∼α ⟨𝐵′ ⇐𝐴′⟩ 𝑡′

𝑡 ∼α 𝑡′
⟨𝐵⇐𝐴⟩ 𝑡 ∼α 𝑡′

𝑡 ∼α ?𝑇 ′ ?𝑇 ∼α 𝑡

Figure 10.6. CastCIC: α-consistency

4: We use purple for terms of GCIC. To
maintain a distinction in the absence of
colours, we also use tildes – like so ̃𝑡 – for
terms in GCIC in expressions mixing both
source and target terms.

10.2. Bidirectional Elaboration: from GCIC to
CastCIC

Now that CastCIC has been described, let us move on to GCIC. The typing
judgement of GCIC is defined by an elaboration judgement from GCIC to
CastCIC, based upon that of Part ‘Bidirectional Calculus of Inductive Con-
structions’, but augmenting all judgements with an extra output: the elabo-
rated CastCIC term. This definition of typing using elaboration is required
because of the intricate interdependency between typing and reduction ex-
posed in Section 9.6.

10.2.1. System definition

Syntax. The syntax of GCIC4 extends that of CIC with a single new term
constructor ?𝑖, where 𝑖 is a universe level. From a user perspective, one is
not given direct access to the failure and cast primitives, those only arise
through uses of ?.

Consistent conversion. Before we can describe typing, we should fo-
cus on conversion. Indeed, to account for the imprecision introduced by
the unknown term, elaboration employs consistent conversion to compare
CastCIC terms, rather than usual conversion relation.

𝑠 𝑡

𝑠′ 𝑡′

←→

⋆

∼

←→

⋆
∼α

Figure 10.7. Consistent conversion, as a
diagram

Definition 10.5. Consistent conversion

Two CastCIC terms are α-consistent, written ∼α , if they are in the
relation defined by the inductive rules of Figure 10.6.

Two terms are consistently convertible – or simply consistent, noted 𝑠 ∼ 𝑡 ,
if and only if there exists 𝑠′ and 𝑡′ such that 𝑠 →⋆ 𝑠′, 𝑡 →⋆ 𝑡′ and
𝑠′ ∼α 𝑡′.

Thus, α-consistency is an extension of α-equality that takes imprecision
into account. Apart from the standard rules making ? consistent with any

136 10. From GCIC to CastCIC: Bidirectional Elaboration

Unk Γ ⊢ ?𝑖 ⇝ ??□𝑖
▷ ?□𝑖

Figure 10.8b. Type-directed elaboration
for ?

term, α-consistency optimistically ignores casts, and does not consider er-
rors to be consistent with themselves. The first point is to prevent casts
inserted by the elaboration from disrupting valid conversions, typically be-
tween static terms. The second is guided by the idea that if errors are en-
countered at elaboration already, the term cannot be well-behaved, so it
must be rejected as early as possible, and we should avoid typing it. The
consistency relation is then built upon α-consistency in a way totally simi-
lar to how algorithmic conversion in Figure 3.6a is built upon α-equality.

It is very important at this point to extend algorithmic conversion, rather
than declarative conversion, because we do not want consistency to be tran-
sitive, since we wish to have 𝑡 ∼ ? for any 𝑡 , which would turn ∼ into
the full relation if it were to be transitive. Thus, we must extend a relation
where transitivity is not baked in. Also note that this formulation of con-
sistent conversion makes no assumption of normalization, and is therefore
usable as such in the non-normalizing GCICG .

An important property of consistent conversion, and a necessary condition
for conservativity of GCIC with respect to CIC, is that it corresponds to
conversion on static terms.

Proposition 10.6. Properties of consistent conversion

▶ Two static terms are consistently convertible if and only if they
are convertible in CIC.

▶ If 𝑠 and 𝑡 have a normal form, then 𝑠 ∼ 𝑡 is decidable.

Proof.
For the first point, first remark that α-consistency between static terms
corresponds to α-equality of terms. Thus, and because the reduction of
static terms in CastCIC is the same as the reduction of CIC, two con-
sistent static terms must reduce to α-equal terms, which in turn implies
that they are convertible. Conversely, two convertible terms of CIC have
α-equal reducts, which are also α-consistent.

For the second point, if 𝑠 and 𝑡 are normalizing, they have a finite number
of reducts. Thus, to decide their consistency it is sufficient to check each
pair of reducts for the decidable α-consistency. We conjecture that the
more reasonable algorithm which is used in practice in e.g. Coq for de-
ciding conversion, and relies on iterated weak-head normalization, can
be adapted to decide consistency. This would however need somewhat
subtle proofs, in the vein of those we use in order to prove the DGG.

Elaboration. Elaboration from GCIC to CastCIC closely follows the
bidirectional presentation of CIC given in Part ‘Bidirectional Calculus of
Inductive Constructions’ for most rules, simply carrying around the extra
elaborated term: see Figure 10.8a. Note that only the subject of the judge-
ment is a source term in GCIC; inputs – that have already been elaborated
–, as well as outputs – that are to be constructed –, are target terms in Cast-
CIC. In particular, the extra elaborated term in CastCIC is an output, in all
judgements.

Next comes Rule Unk: ?𝑖 is elaborated to ??□𝑖
, the least precise term of

the least precise type of the whole universe □𝑖. This avoids unneeded type
annotations on ? in GCIC. Instead, the context is responsible for inserting

10.2. Bidirectional Elaboration: from GCIC to CastCIC 137

Var
(𝑥: 𝑇) ∈ Γ

Γ ⊢ 𝑥 ⇝ 𝑥 ▷ 𝑇 Univ Γ ⊢ □𝑖 ⇝ □𝑖 ▷ □𝑖+1
ΠTy

Γ ⊢ �̃�⇝ 𝐴 ▷□ □𝑖 Γ, 𝑥: 𝐴 ⊢ �̃� ⇝ 𝐵 ▷□ □𝑗
Γ ⊢ Π 𝑥: �̃�. �̃� ⇝ Π 𝑥: 𝐴. 𝐵 ▷ □sΠ (𝑖,𝑗)

Abs
Γ ⊢ �̃�⇝ 𝐴 ▷□ □ Γ, 𝑥: 𝐴 ⊢ ̃𝑡 ⇝ 𝑡 ▷ 𝐵

Γ ⊢ λ 𝑥: �̃�. ̃𝑡 ⇝ λ 𝑥: 𝐴. 𝑡 ▷ Π 𝑥: 𝐴. 𝐵 App
Γ ⊢ ̃𝑡 ⇝ 𝑡 ▷Π Π 𝑥: 𝐴. 𝐵 Γ ⊢ �̃� ⇝ 𝑢 ◁ 𝐴

Γ ⊢ ̃𝑡 �̃� ⇝ 𝑡 𝑢 ▷ 𝐵[𝑥 ≔ 𝑢]

ListTy
Γ ⊢ �̃�⇝ 𝐴 ▷□ □𝑖

Γ ⊢ 𝐋𝐢 (�̃�)⇝ 𝐋𝐢 (𝐴) ▷ □𝑖
Nil

Γ ⊢ �̃�⇝ 𝐴 ▷□ □
Γ ⊢ 𝜀�̃� ⇝ 𝜀𝐴 ▷ 𝐋𝐢 (𝐴)

Cons
Γ ⊢ �̃�⇝ 𝐴 ▷□ □ Γ ⊢ �̃� ⇝ 𝑎 ◁ 𝐴 Γ ⊢ ̃𝑙 ⇝ 𝑙 ◁ 𝐋𝐢 (𝐴)

Γ ⊢ �̃� ;;�̃� ̃𝑙 ⇝ 𝑎 ;;𝐴 𝑙 ▷ 𝐋𝐢 (𝐴)

Fix

Γ ⊢ ̃𝑠 ⇝ 𝑠 ▷𝐋𝐢 𝐋𝐢 (𝐴) Γ, 𝑧: 𝐋𝐢 (𝐴) ⊢ ̃𝑃 ⇝ 𝑃 ▷□ □
Γ ⊢ �̃�𝜀 ⇝ 𝑏𝜀 ◁ 𝑃[𝑧 ≔ 𝜀] Γ, 𝑦1: 𝐴, 𝑦2: 𝐋𝐢 (𝐴), 𝑝𝑦2 : 𝑃[𝑧 ≔ 𝑦2] ⊢ �̃�;; ⇝ 𝑏;; ◁ 𝑃[𝑧 ≔ 𝑦1 ;;𝐴 𝑦2]

Γ ⊢ ind𝐋𝐢 (̃𝑠; 𝑧. ̃𝑃 ; �̃�𝜀 , 𝑦1.𝑦2.𝑝𝑦2 .�̃�;;)⇝ ind𝐋𝐢 (𝑠; 𝑧.𝑃 ; 𝑏𝜀 , 𝑦1.𝑦2.𝑝𝑦2 .𝑏;;) ▷ 𝑃[𝑧 ≔ 𝑠]

Figure 10.8a. Type-directed elaboration of GCIC: static fragment

[CS16]: Cimini et al. (2016), The Gradu-
alizer: A Methodology and Algorithm for
Generating Gradual Type Systems

the appropriate cast, e.g. ? :: 𝑇 elaborates to a term reducing to ?𝑇 . We do
not drop annotations altogether because we wish to keep the property that
any well-formed term should infer a type, not just check. Thus, we must be
able to infer a type for ?. The obvious choice is to have ? infer ?, but this ?
is a term of CastCIC, and thus needs a type index. Because this ? is used
as a type, this index must be □, and the universe level of the source ? is
there to give us the level of this □. In a real system like Coq, this should
be handled by typical ambiguity, alleviating the user from the need to give
any annotations when using ?.
The most salient feature of elaboration is however the insertion of casts
that mediate between merely consistent but not convertible types, which
is done in the checking and constrained inference judgements, see Fig-
ure 10.8c. They of course are needed in Rule Check, where the terms are
compared using consistency. But this is not enough: casts also appear in the
newly-introduced Rules Inf-Univ?, Inf-Prod? and Inf-List? for constrained
inference, where the type ?□𝑖 is replaced by the least precise type of the
appropriate universe level having the constrained head constructor, which
is exactly what the germ function computes. Note that in the case of Inf-
Univ? we could have replaced□𝑖 with germ 𝑖+1□𝑖 to make the presentation
more uniform with respect to the other two rules. The role of these three
rules is to ensure that a term of type ?□𝑖 can be used as a function, or as
a scrutinee of a match, by giving a way to derive constrained inference for
such a term.

It is interesting to observe that the rules for constrained elaboration in a
gradual setting bear a close resemblance with those described by Cimini
and Siek [CS16, Section 3.3], where a matching operator is introduced to
verify that an output type can fit into a certain type constructor – either by
having that type constructor as head symbol or by virtue of being ?. Such
a form of matching was already present in our static, bidirectional system,
because of the presence of reduction in types. In a way, both Cimini and
Siek [CS16] and Part ‘Bidirectional Calculus of Inductive Constructions’

138 10. From GCIC to CastCIC: Bidirectional Elaboration

Check
Γ ⊢ ̃𝑡 ⇝ 𝑡 ▷ 𝑇 𝑇 ∼ 𝑆
Γ ⊢ ̃𝑡 ⇝ ⟨𝑆 ⇐ 𝑇⟩ 𝑡 ◁ 𝑆

Inf-Univ
Γ ⊢ ̃𝑡 ⇝ 𝑡 ▷ 𝑇 𝑇 →⋆ □𝑖

Γ ⊢ ̃𝑡 ⇝ 𝑡 ▷□ □𝑖
Inf-Univ?

Γ ⊢ ̃𝑡 ⇝ 𝑡 ▷ 𝑇 𝑇 →⋆ ?□𝑖+1
Γ ⊢ ̃𝑡 ⇝ ⟨□𝑖 ⇐𝑇⟩ 𝑡 ▷□ □𝑖

Inf-Prod
Γ ⊢ ̃𝑡 ⇝ 𝑡 ▷ 𝑇 𝑇 →⋆ Π 𝑥: 𝐴. 𝐵

Γ ⊢ ̃𝑡 ⇝ 𝑡 ▷Π Π 𝑥: 𝐴. 𝐵 Inf-Prod?
Γ ⊢ ̃𝑡 ⇝ 𝑡 ▷ 𝑇 𝑇 →⋆ ?□𝑖 cΠ (𝑖) ≥ 0

Γ ⊢ ̃𝑡 ⇝ ⟨germ 𝑖 Π⇐𝑇⟩ 𝑡 ▷Π germ 𝑖Π

Inf-List
Γ ⊢ ̃𝑡 ⇝ 𝑡 ▷ 𝑇 𝑇 →⋆ 𝐋𝐢 (𝐴)

Γ ⊢ ̃𝑡 ⇝ 𝑡 ▷𝐋𝐢 𝐋𝐢 (𝐴) Inf-List?
Γ ⊢ ̃𝑡 ⇝ 𝑡 ▷ 𝑇 𝑇 →⋆ ?□𝑖

Γ ⊢ ̃𝑡 ⇝ ⟨germ 𝑖 𝐋𝐢 ⇐𝑇⟩ 𝑡 ▷𝐋𝐢 germ 𝑖 𝐋𝐢

Figure 10.8c. Type-directed elaboration for GCIC: constrained judgements

have the same need of separating the inferred type from operations on it
to recover its head constructor, and our mixing of both computation and
gradual typing makes that need even clearer.

10.2.2. Direct properties

Let us establish already some important properties of elaboration that we
can prove at this stage. First, elaboration is sound, insofar as it always pro-
duces well-typed CastCIC terms.

Theorem 10.7. Soundness of elaboration

Elaboration produceswell-typed terms in awell-formed context. Namely,
given Γ such that ⊢ Γ, we have that if Γ ⊢ ̃𝑡 ⇝ 𝑡 ▷ 𝑇 , then Γ ⊢ 𝑡 ▷ 𝑇 .

Proof.

The proof is by induction on the elaboration derivation, mutually with
similar properties for all elaboration judgements. It resembles a lot the
soundness proof for bidirectional typing (Theorem 4.3). In particular,
for checking, we have an extra hypothesis that the given type is well-
formed, since it is an input that should already have been typed.

Because the bidirectional typing rules of CIC are very close to the GCIC-
to-CastCIC elaboration rules, the induction is mostly straightforward.
Let us point however that once again the careful design of the elabora-
tion rules to respect McBride’s discipline – see Section 4.1 – is crucial
for the proof to go through.

The main novel points to consider is the rules where a cast is inserted.
For these, we rely on the validity property – an inferred type is always
itself well-typed – to ensure that the domain of inserted casts is well-
typed, and thus that the casts can be typed.

Next come the more ”algorithmic” properties: elaboration is decidable, and
outputs are unique – up to conversion if no strategy is fixed.

10.2. Bidirectional Elaboration: from GCIC to CastCIC 139

Theorem 10.8. Decidability of elaboration

The elaboration relation of Figures 10.8a to 10.8c is decidable in GCICN

and GCIC↑. It is semi-decidable in GCICG .

Proof.

As the elaboration rules are completely syntax-directed, they immedi-
ately translate to an algorithm for elaboration. Coupled with decidabil-
ity of consistency (Proposition 10.6), this makes elaboration decidable
whenever →⋆ is normalizing; when →⋆ is not normalizing, the elab-
oration algorithm might diverge, resulting in only semi-decidability of
typing – as in e.g. Dependent Haskell [Eis16] [Eis16]: Eisenberg (2016), Dependent

Types in Haskell: Theory and Practice
.

As was the case for bidirectional typing – Theorems 4.4 and 4.6 – there are
two versions of uniqueness: one is uniqueness up to conversion, in case full
reduction is used. The second is a strengthening if a weak-head reduction
strategy is imposed for reduction.

Theorem 10.9. Uniqueness of elaboration – Full reduction

Elaborated terms are convertible: If Γ ⊢ ̃𝑡 ⇝ 𝑡 ▷ 𝑇 and Γ ⊢ ̃𝑡 ⇝ 𝑡′ ▷ 𝑇 ′,
then 𝑡 ≅ 𝑡′ and 𝑇 ≅ 𝑇 ′.

Theorem10.10. Uniqueness of elaboration –Weak-head reduction

If in Figure 10.8c, full reduction→⋆ is replaced byweak-head reduction,
then elaborated terms are unique: given Γ and ̃𝑡 , there is at most one 𝑡
and one 𝑇 such that Γ ⊢ ̃𝑡 ⇝ 𝑡 ▷ 𝑇 .

Proof.

Like for Theorems 4.4 and 4.6, those are provenmutually by induction on
the typing derivation. Again, the main argument is that there is always
at most one rule that can apply to get a typing conclusion for a given
term.

This is true for all inference statements because there is exactly one in-
ference rule for each term constructor, and for checking because there
is only one rule to derive checking. In those cases simply combining the
hypothesis of uniqueness is enough.

For ▷Π , by confluence of CastCIC the inferred type cannot at the same
time reduce to ?□ and Π 𝑥: 𝐴. 𝐵, because those do not have a common
reduct. Thus, only one of Rule Inf-Prod and Rule Inf-Prod? can apply. It
is enough to conclude for Theorem 10.9, because reducts of convertible
types are still convertible. For Theorem 10.10 the deterministic reduction
strategy ensures that the inferred type is unique, rather than unique up
to conversion.

The reasoning is similar for the other constrained inference judgements.

140 10. From GCIC to CastCIC: Bidirectional Elaboration

10.2.3. Illustration: back to Ω

Now that GCIC has been entirely presented, let us come back to the im-
portant example of Ω, and explain in detail the behaviour described in Sec-
tion 9.6.1 for the three GCIC variants.

Recall thatΩ is the term 𝛿 𝛿 , with 𝛿 ≔ λ 𝑥: ?𝑖+1. 𝑥 𝑥 . We leave out the casts
present in Section 9.6, knowing that they will be introduced by elaboration.
We also use ? at level 𝑖+1, because ?𝑖+1, when elaborated as a type, becomes
𝑇𝑖 ≔ ⟨□𝑖 ⇐?□𝑖+1⟩ ??□𝑖+1

, such that 𝑇𝑖 →⋆ ?□𝑖 . For the rest of this section,
we write ?𝑗 instead of ?□𝑗 to avoid stacked indices and ease readability.

If 𝑖 = 0 the elaboration of 𝛿 – and thus of Ω – fails in GCIC↑ and GCICN ,
because the inferred type for 𝑥 is 𝑇0, which reduces to ?0. Then, because
cΠ (0) = −1 < 0 in both GCIC↑ and GCICN , Rule Inf-Prod? does not
apply and 𝛿 is deemed ill-typed, and so is Ω.

Otherwise, if 𝑖 > 0 or we are considering GCICG , 𝛿 can be elaborated, and
we have

⋅ ⊢ 𝛿 ⇝ λ 𝑥: 𝑇𝑖. (⟨germ 𝑖Π⇐𝑇𝑖⟩ 𝑥) (⟨?cΠ (𝑖) ⇐𝑇𝑖⟩ 𝑥) ▷ 𝑇𝑖 → ?cΠ (𝑖)

From this, we get that Ω also elaborates, namely

⋅ ⊢ Ω⇝ 𝛿′ (⟨𝑇 ⇐𝑇 → ?cΠ (𝑖)⟩ 𝛿′) ▷ ?cΠ (𝑖)

with 𝛿′ the elaboration of 𝛿 above. Let us now look at the reduction be-
haviour of this elaborated term Ω′ in the three systems: it reduces seam-
lessly when cΠ (𝑖) = 𝑖 (CastCICG), while having cΠ (𝑖) < 𝑖 makes it fail
(CastCIC↑ and CastCICN).

The reduction of Ω′ in CastCICG is as follows:

Ω′
→⋆ (λ 𝑥: ?𝑖. (⟨?𝑖 → ?𝑖 ⇐𝑇⟩ 𝑥) (⟨?𝑖 ⇐𝑇⟩ 𝑥)) (⟨𝑇 ⇐𝑇 → ?𝑖⟩ 𝛿′)
→⋆ (λ 𝑥: ?𝑖. (⟨?𝑖 → ?𝑖 ⇐?𝑖⟩ 𝑥) (⟨?𝑖 ⇐?𝑖⟩ 𝑥)) (⟨?𝑖 ⇐?𝑖 → ?𝑖⟩ 𝛿′)
→⋆ (⟨?𝑖 → ?𝑖 ⇐ ?𝑖 ⇐?𝑖 → ?𝑖⟩ 𝛿′) (⟨?𝑖 ⇐ ?𝑖 ⇐?𝑖 → ?𝑖⟩ 𝛿′)
→⋆ (⟨?𝑖 → ?𝑖 ⇐?𝑖 → ?𝑖⟩ 𝛿′) (⟨?𝑖 ⇐?𝑖 → ?𝑖⟩ 𝛿′)
→⋆ (λ 𝑥: ?𝑖. ⟨?𝑖 ⇐ ?𝑖⟩ ((⟨?𝑖 → ?𝑖 ⇐?𝑖⟩ 𝑥) (⟨?𝑖 ⇐ ?𝑖 ⇐?𝑖⟩ 𝑥)))

(⟨?𝑖 ⇐?𝑖 → ?𝑖⟩ 𝛿′)

The first step is the identity, simply replacing Ω′, cΠ (𝑖) and the first occur-
rence of 𝛿′ by their definitions. The second reduces 𝑇 to ?𝑖. In the third,
the cast 𝛿′ is substituted for 𝑥 by a β-step. Casts are finally simplified
using Rule Up-Down and Rule Π-Π. At that point, the reduction has al-
most looped back to the second step, apart from the casts ⟨?𝑖 ⇐ ?𝑖⟩ in the
first occurrence of 𝛿′, which will simply accumulate through reduction, but
without hindering divergence.

On the contrary, the normalizing variants have cΠ (𝑖) < 𝑖, and thus share

10.3. Precision is a Simulation for Reduction 141

[Sie+15]: Siek et al. (2015), Refined Criteria
for Gradual Typing

5: Lemma 7 in Siek et al. [Sie+15] is
similar to our Theorem 10.16, and Fig-
ures 10.9a to 10.9c draws from their Fig. 9,
especially for Rule Cast-R and Rule Cast-
L. Also, while we do not make them ex-
plicit, Lemmas 8, 10 and 11 also appear in
our proofs.

6: Thus, while Lemmas 10.14 and 10.15
correspond roughly to Lemma 9 in Siek et
al. [Sie+15], Lemmas 10.12 and 10.13 are
completely novel.

[Len+22]: Lennon-Bertrand et al. (2022),
Gradualizing the Calculus of Inductive Con-
structions

the following reduction path:

Ω′ →⋆ 𝛿″ (⟨?𝑖−1 ⇐ ?𝑖 ⇐ ?𝑖 → ?𝑖−1⟩ 𝛿′)
where 𝛿″ is (⟨?𝑖−1 → ?𝑖−1 ⇐ ?𝑖 ⇐?𝑖 → ?𝑖−1⟩ 𝛿′)

→⋆ 𝛿″ (⟨?𝑖−1 ⇐ ?𝑖−1 → ?𝑖−1 ⇐?𝑖 → ?𝑖−1⟩ 𝛿′)
→⋆ 𝛿″err?𝑖−1→⋆ (⟨?𝑖−1 → ?𝑖−1 ⇐ ?𝑖−1 → ?𝑖−1 ⇐?𝑖 → ?𝑖−1⟩ 𝛿′) err?𝑖−1→⋆ (λ 𝑥: ?𝑖−1. ⟨?𝑖−1 ⇐ ?𝑖−1 ⇐?𝑖−1⟩ (𝑥″ (⟨?𝑖−1 ⇐?𝑖⟩ 𝑥′))) err?𝑖−1

where 𝑥′ is ⟨?𝑖 ⇐ ?𝑖−1 ⇐?𝑖−1⟩ 𝑥 and 𝑥″ is ⟨?𝑖−1 → ?𝑖−1 ⇐?𝑖⟩ 𝑥′
→⋆ ⟨?𝑖−1 ⇐ ?𝑖−1 ⇐?𝑖−1⟩(err?𝑖−1→?𝑖−1err?𝑖−1)→⋆ err?𝑖−1

The first step corresponds to the first three above, the only difference being
the value of cΠ (𝑖). The reductions however differ in the next step because
?𝑖 → ?𝑖−1 ≠ germ 𝑖Π, so Rule Π-Germ applies before Rule Up-Down. For
the third step, note that ?𝑖−1 → ?𝑖−1 = germ 𝑖 Π, so that Rule Size-Err
applies in the rightmost sequence of casts. The last three steps of reduction
then propagate the error by first using Rule Π-Germ, Rule Up-Down and
Rule Π-Π, then the β-rule, and finally Rule Down-Err, Rule Π-Err and a
last β step. At a high-level, the error can be seen as a dynamic universe
inconsistency, triggered by the invalid downcast ⟨?𝑖−1 ⇐ ?𝑖⟩ highlighted
on the first line.

10.3. Precision is a Simulation for Reduction

Establishing elaboration graduality – the formulation of the static grad-
ual guarantee SGG in our setting – is no small feat, as it requires proper-
ties about computations in CastCIC that amount to the dynamic gradual
guarantee (DGG). Indeed, to handle the typing rules for checking and con-
strained inference, it is necessary to know how consistency and reduction
evolve as a type becomes less precise.

As already explained in Section 9.6, we cannot directly prove graduality for
a syntactic notion of precision. However, we can still show that such a syn-
tactic precision is a simulation for reduction.While weaker than graduality,
this property implies the DGG, and suffices to conclude that graduality of
elaboration holds.

The purpose of this section is to establish this property. Our proof is partly
inspired by the proof of DGG by Siek et al. [Sie+15] for the simply-typed
lambda calculus.5 Wehowever have to adapt to themuch higher complexity
of CIC compared to STLC. In particular, the presence of computation in the
domain and codomain of casts is quite subtle to tame, as wemust in general
reduce types in a cast before we can reduce the cast itself.6

Technically, we need to distinguish between two notions of precision, one
for GCIC and one for CastCIC: syntactic precision, on terms in GCIC, which
corresponds to the usual syntactic precision of gradual typing, such as that
of Siek et al. [Sie+15]; and structural precision on terms in CastCIC, which
corresponds to syntactic precision, together with a proper account of casts.
In this section, we concentrate on properties of structural precision – in
CastCIC. We only state and discuss the various lemmas and theorems on
a rather high level, and refer the reader to Lennon-Bertrand et al. [Len+22,
Appendix B] for the detailed proofs.

142 10. From GCIC to CastCIC: Bidirectional Elaboration

10.3.1. Structural precision for CastCIC

As emphasized already, the key property we want to establish is that pre-
cision is a simulation for reduction, i.e. that less precise terms reduce at
least as well as more precise ones. This property guides the quite involved
definition we are about to give for structural precision: it is rigid enough
to give the induction hypotheses needed to prove the simulation, while be-
ing lax enough to be a consequence of syntactic precision after elaboration,
which is the key point to establish elaboration graduality (Theorem 10.23),
our equivalent of the static gradual guarantee.

Similarly to α-consistency, precision can ignore some casts, in order to han-
dle the cases when those might appear or disappear in one term but not
the other during reduction. But in order to control what casts can be ig-
nored, we impose some restriction on the types involved. In particular, we
want to ensure that ignored casts would not have raised an error: e.g. we
want to prevent 0 ⊑α ⟨𝐁⇐𝐍⟩ 0. Thus, the definition of structural preci-
sion relies on typing, and to do this we need to record the contexts of the
two compared terms. To denote such contexts where each variable is given
two types, we use double-struck letters, writing ℾ, 𝑥: 𝐴 ∣ 𝐴′ for context
extensions. We use ℾ.𝑖 for projections, i.e. (ℾ, 𝑥: 𝐴 ∣ 𝐴′).1 ≔ ℾ.1, 𝑥: 𝐴, and
write Γ ∣ Γ′ for the converse pairing operation.

Univ-Diag ℾ ⊢ □𝑖 ⊑α □𝑖
Π-Diag

ℾ ⊢ 𝐴 ⊑α 𝐴′ ℾ, 𝑥: 𝐴 ∣ 𝐴′ ⊢ 𝐵 ⊑α 𝐵′

ℾ ⊢ Π 𝑥: 𝐴. 𝐵 ⊑α Π 𝑥: 𝐴′. 𝐵′

Abs-Diag
ℾ ⊢ 𝐴 ⊑→ 𝐴′ ℾ, 𝑥: 𝐴 ∣ 𝐴′ ⊢ 𝑡 ⊑α 𝑡′

ℾ ⊢ λ 𝑥: 𝐴.𝑡 ⊑α λ 𝑥: 𝐴′.𝑡′ App-Diag
ℾ ⊢ 𝑡 ⊑α 𝑡′ ℾ ⊢ 𝑢 ⊑α 𝑢′

ℾ ⊢ 𝑡 𝑢 ⊑α 𝑡′ 𝑢′

Var-Diag ℾ ⊢ 𝑥 ⊑α 𝑥 List-Diag
ℾ ⊢ 𝐴 ⊑α 𝐴′

ℾ ⊢ 𝐋𝐢 (𝐴) ⊑α 𝐋𝐢 (𝐴′) Nil-Diag
ℾ ⊢ 𝐴 ⊑α 𝐴′

ℾ ⊢ 𝜀𝐴 ⊑α 𝜀𝐴′

Cons-Diag
ℾ ⊢ 𝐴 ⊑α 𝐴′ ℾ ⊢ 𝑎 ⊑α 𝑎′ ℾ ⊢ 𝑙 ⊑α 𝑙′

ℾ ⊢ 𝑎 ;;𝐴 𝑙 ⊑α 𝑎′ ;;𝐴′ 𝑙′

Ind-Diag

ℾ ⊢ 𝑠 ⊑α 𝑠′ ℾ.1 ⊢ 𝑠 ▷𝐋𝐢 𝐋𝐢 (𝐴) ℾ.2 ⊢ 𝑠′ ▷𝐋𝐢 𝐋𝐢 (𝐴′) ℾ, 𝑧: 𝐋𝐢 (𝐴) ∣ 𝐋𝐢 (𝐴′) ⊢ 𝑃 ⊑α 𝑃 ′
ℾ ⊢ 𝑏𝜀 ⊑α 𝑏′𝜀 ℾ, 𝑦1: 𝐴 ∣ 𝐴′, 𝑦2: 𝐋𝐢 (𝐴) ∣ 𝐋𝐢 (𝐴′), 𝑝𝑦2 : 𝑃[𝑧 ≔ 𝑦2] ∣ 𝑃 ′[𝑧 ≔ 𝑦2] ⊢ 𝑏;; ⊑α 𝑏′;;

ℾ ⊢ ind𝐋𝐢 (𝑠; 𝑧.𝑃 ; 𝑏𝜀 , 𝑦1.𝑦2.𝑝𝑦2 .𝑏;;) ⊑α ind𝐋𝐢 (𝑠′; 𝑧.𝑃 ′; 𝑏′𝜀 , 𝑦1.𝑦2.𝑝𝑦2 .𝑏′;;)

Cast-Diag
ℾ ⊢ 𝐴 ⊑α 𝐴′ ℾ ⊢ 𝐵 ⊑α 𝐵′ ℾ ⊢ 𝑡 ⊑α 𝑡′

ℾ ⊢ ⟨𝐵⇐𝐴⟩ 𝑡 ⊑α ⟨𝐵′ ⇐𝐴′⟩ 𝑡′

Figure 10.9a. Structural precision in CastCIC, diagonal rules

Definition 10.11. Structural and definitional precision in CastCIC

Structural precision, denoted ℾ ⊢ 𝑡 ⊑α 𝑡′, is defined in Figures 10.9a
to 10.9c, mutually with definitional precision, denoted ℾ ⊢ 𝑡 ⊑→ 𝑡′ and
defined in Figure 10.9d.
We write Γ ⊑α Γ′ and Γ ⊑→ Γ′ for the pointwise extensions of those to
contexts.

Let us now detail the rules defining structural precision. Diagonal rules

10.3. Precision is a Simulation for Reduction 143

𝑡 𝑡′

𝑠 𝑠′

←→

⋆

⊑→

←→

⋆
⊑α

Figure 10.10. Definitional precision, dia-
grammatically

of Figure 10.9a correspond to congruence closure, and there is not much
to be said here. The only subtlety is with Rule Ind-Diag, where typing as-
sumptions are needed to provide us with the contexts used to compare the
predicates.

Unk
ℾ.1 ⊢ 𝑡 ▷ 𝑇 ℾ ⊢ 𝑇 ⊑→ 𝑇 ′

ℾ ⊢ 𝑡 ⊑α ?𝑇 ′
Unk-Univ

ℾ.1 ⊢ 𝐴 ▷□ □𝑖 𝑖 ≤ 𝑗
ℾ ⊢ 𝐴 ⊑α ?□𝑗

Err
ℾ.2 ⊢ 𝑡′ ▷ 𝑇 ′ ℾ ⊢ 𝑇 ⊑→ 𝑇 ′

ℾ ⊢ err𝑇 ⊑α 𝑡′ Err-λ
ℾ.1 ⊢ 𝑡′ ▷Π Π 𝑥: 𝐴′.𝐵′ ℾ ⊢ Π 𝑥: 𝐴. 𝐵 ⊑→ Π 𝑥: 𝐴′. 𝐵′

ℾ ⊢ λ 𝑥: 𝐴. err𝐵 ⊑α 𝑡′

Figure 10.9b. Structural precision in CastCIC, unknown and error

More interesting are the non-diagonal rules. First, those for ? and err. The
unknown ?𝑇 is greater than any term of the ”right type“. This incorporates
loss of precision – Rule Unk –, and accommodates for a small bit of cumula-
tivity per Rule Unk-Univ. This is needed because of technical reasons linked
with the possibility to form products between types at different levels. On
the contrary, the error is smaller than any term – Rule Err –, even in its
extended form on Π-types – Rule Err-λ –, with a typing premise similar to
that of Rule Unk.

Cast-R
ℾ.1 ⊢ 𝑡 ⊢ 𝑇 ▷ ℾ ⊢ 𝑇 ⊑→ 𝐴′ ℾ ⊢ 𝑇 ⊑→ 𝐵′ ℾ ⊢ 𝑡 ⊑α 𝑡′

ℾ ⊢ 𝑡 ⊑α ⟨𝐵′ ⇐𝐴′⟩ 𝑡′

Cast-L
ℾ.2 ⊢ 𝑡′ ⊢ 𝑇 ′ ▷ ℾ ⊢ 𝐴 ⊑→ 𝑇 ′ ℾ ⊢ 𝐵 ⊑→ 𝑇 ′ ℾ ⊢ 𝑡 ⊑α 𝑡′

ℾ ⊢ ⟨𝐵⇐𝐴⟩ 𝑡 ⊑α 𝑡′

Figure 10.9c. Structural precision in CastCIC, cast rules

Finally, casts on the right-hand side can be ignored as long as they are
performed on types that are less precise than the type of the term on the
left – Rule Cast-R. Dually, casts on the left-hand side can be ignored as
long as they are performed on types that are more precise than the type of
the term on the right – Rule Cast-L.

ℾ ⊢ 𝑡 ⊑α 𝑡′
ℾ ⊢ 𝑡 ⊑→ 𝑡′

ℾ ⊢ 𝑠 ⊑→ 𝑡′ 𝑡 →1 𝑠
ℾ ⊢ 𝑡 ⊑→ 𝑡′

ℾ ⊢ 𝑡 ⊑→ 𝑠′ 𝑡′ →1 𝑠′
ℾ ⊢ 𝑡 ⊑→ 𝑡′

Figure 10.9d. Definitional precision in CastCIC

As for definitional precision, ℾ ⊢ 𝑡 ⊑→ 𝑡′ is defined in a stepwise way –
to ease proofs by induction –, but is equivalent to the existence of 𝑠 and 𝑠′
such that 𝑡 →⋆ 𝑠, 𝑡′ →⋆ 𝑠′ and ℾ ⊢ 𝑠 ⊑α 𝑠′. The situation is the same
as for consistency – respectively algorithmic conversion –, which is the clo-
sure by reduction of α-consistency – respectively α-equality. However, here
definitional precision is also used in the definition of structural precision, in
order to permit computation in types – recall that in a dependently-typed
setting the two types involved in a cast may need to reduce before the cast
itself can reduce – and thus the two notions must be mutually defined.

144 10. From GCIC to CastCIC: Bidirectional Elaboration

10.3.2. Catch-up lemmas

The fact that structural precision is a simulation relies on a series of lemmas,
which constitute the technical core of this whole chapter. They all have the
same form: under the assumption that a term 𝑡′ is less precise than a term 𝑡
which is a canonical form –□, Π, 𝐋𝐢 , 𝜆, 𝜀 or ;; –, the term 𝑡′ can be reduced
to a term that either has the same head, or is some ?. We call these catch-
up lemmas, as they enable the less precise term to “catch up” on the more
precise one, whose head is already known. Their aim is to ensure that casts
appearing in a less precise term never block reduction, as they can always
be reduced away.

The catch-up lemmas are established in a descending fashion: first, on the
universe – Lemma 10.12 –, then on types – Lemma 10.13 –, and finally on
terms, namely on λ-abstractions – Lemma 10.14, and inductive constructors
– Lemma 10.15. Each time, the previously proven catch-up lemmas are used
to reduce types in casts appearing in the less precise term – apart from
Lemma 10.12, where an induction hypothesis is used instead.

Lemma 10.12. Universe catch-up

Under the hypothesis that ℾ.1 ⊑α ℾ.2, if ℾ ⊢ □𝑖 ⊑→ 𝑇 ′ and ℾ.2 ⊢
𝑇 ′ ▷□ □𝑗 , then either 𝑇 ′ →⋆h ?□𝑗 with 𝑖 < 𝑗 , or 𝑇 ′ →⋆h □𝑖.

Proof.
It is enough to show the property for ⊑α , in which case we prove the
judgement by induction on 𝑇 ′.

We know that the judgement ℾ ⊢ □𝑖 ⊑→ 𝑇 ′ must have been obtained
by either Rule Univ-Diag or Rule Unk, followed by a sequence of Rule
Cast-R. Thus, 𝑇 ′ is a sequence of casts around either □𝑖 or some ?𝑆 ,
and all types appearing in the casts are less (definitionally) precise than
□𝑖+1, the inferred type for □𝑖. By induction hypothesis, they must all
reduce to either some ? or □𝑗 . In all cases, we can show that they must
reduce away.

Lemma 10.13. Types catchup

Under the hypothesis that ℾ.1 ⊑α ℾ.2, we have the following:

▶ if ℾ ⊢ ?□𝑖 ⊑α 𝑇 ′ and ℾ.2 ⊢ 𝑇 ′ ▷□ □𝑗 , then 𝑇 ′ →⋆h ?□𝑗 and 𝑖 ≤ 𝑗 ;
▶ if ℾ ⊢ Π 𝑥: 𝐴. 𝐵 ⊑α 𝑇 ′, ℾ.1 ⊢ Π 𝑥: 𝐴.𝐵 ▷ □𝑖 and ℾ.2 ⊢ 𝑇 ′ ▷□ □𝑗 ,

then either 𝑇 ′ →⋆h ?□𝑗 and 𝑖 ≤ 𝑗 , or 𝑇 ′ →⋆h Π 𝑥: 𝐴′.𝐵′ for some
𝐴′ and 𝐵′ such that ℾ ⊢ Π 𝑥: 𝐴. 𝐵 ⊑α Π 𝑥: 𝐴′.𝐵′;

▶ if ℾ ⊢ 𝐋𝐢 (𝐴) ⊑α 𝑇 ′, ℾ.1 ⊢ 𝐋𝐢 (𝐴) ▷ □𝑖 and ℾ.2 ⊢ 𝑇 ′ ▷□ □𝑗 ,
then either 𝑇 ′ →⋆h ?□𝑗 and 𝑖 ≤ 𝑗 , or 𝑇 ′ →⋆h 𝐋𝐢 (𝐴′) for some 𝑎′
such that ℾ ⊢ 𝐋𝐢 (𝐴) ⊑α 𝐋𝐢 (𝐴′).

Proof.
The idea of the proof is very similar to that of Lemma 10.12: decompose
𝑇 ′ into a series of cast, and check that all those casts reduce. To do so,
we need the previous lemma to know that the types appearing in the
casts have a weak-head normal form of the right kind – either ?□ or □.

10.3. Precision is a Simulation for Reduction 145

[NA18]: New et al. (2018), Graduality from
Embedding-Projection Pairs

Lemma 10.14. λ-abstraction catch-up

If ℾ ⊢ λ 𝑥: 𝐴.𝑡 ⊑α 𝑠′, where 𝑡 is not an error, ℾ.1 ⊢ λ 𝑥: 𝐴. 𝑡 ▷ Π 𝑥: 𝐴.𝐵
and ℾ.2 ⊢ 𝑠′ ▷Π Π 𝑥: 𝐴′.𝐵′, then 𝑠′ →⋆h λ 𝑥: 𝐴′.𝑡′ with ℾ ⊢ λ 𝑥: 𝐴.
𝑡 ⊑α λ 𝑥: 𝐴′.𝑡′.
This holds inCastCICG , CastCIC↑, and for termswithout ? in CastCICN .

Proof.
Again, the idea is the same. However, there is a twist here, because the
lemma does not hold in CastCICN in whole generality. Indeed, there a
cast through ? might error too eagerly, meaning that the whole term 𝑠′
errors while 𝑡 is not an error.

This Lemma 10.14 deserves a more extensive discussion, because it is the
critical point where the difference between the three variants of CastCIC
manifests, as it does not hold in full generality for CastCICN . Indeed, the
fact that 𝑖 ≤ cΠ (sΠ (𝑖, 𝑗)) and 𝑗 ≤ cΠ (sΠ (𝑖, 𝑗)) appears crucially in the
proof to ensure that casting from a Π-type into ? and back does not reduce
to an error, given the restrictions on types in Cast-R. This is the manifesta-
tion in the reduction of the embedding-projection property [NA18].

In CastCICN , Lemma 10.14 still holds only if one restricts to terms with-
out ?, where such casts never happen. This is important with regard to con-
servativity, as elaboration produces terms with casts but without ?, and
Lemma 10.14 ensures that precision is still a simulation for these, even in
CastCICN .

The following term 𝑡𝑖 illustrates these differences:

𝑡𝑖 ≔ ⟨𝐍 → 𝐍 ⇐ ?□𝑖 ⇐𝐍 → 𝐍⟩ λ 𝑥: 𝐍.S(𝑥)
Such a term appears naturally whenever a loss of precision happens on a
function, for instance when elaborating a term such as

((λ 𝑥: 𝐍.S(𝑥)) :: ?) 0
This term 𝑡𝑖 always reduces to

⟨𝐍 → 𝐍⇐?□𝑖 ⇐ germ 𝑖Π ⇐ 𝐍 → 𝐍⟩ λ 𝑥: 𝐍.S(𝑥)
and at this point the difference kicks in: if germ 𝑖Π is err?□𝑖

– i.e. if cΠ (𝑖) <
0 –, then the whole term reduces to err𝐍→𝐍. Otherwise, further reductions
finally give

λ 𝑥: 𝐍.S (⟨𝐍⇐𝐍 ⇐ 𝐍⟩ 𝑥)
Although the body is blocked by the variable 𝑥 , applying the function to 0
would reduce to 1 as expected. Let us compare what happens in the three
systems.

In all of them, if 𝑖 ≥ 1, we have ⊢ λ 𝑥: 𝐍.S(𝑥) ⊑α 𝑡𝑖, via repeated uses of
Rule Cast-R, since ⋅ ⊢ 𝐍 → 𝐍⇝ 𝐍 → 𝐍 ▷ sΠ (0, 0), and sΠ (0, 0) ≤ 1 ≤ 𝑖.
Moreover, also 0 ≤ 𝑖 − 1 ≤ cΠ (𝑖) and so the reduction is errorless. Thus,
Lemma 10.14 holds in all three systems when 𝑖 ≥ 1.

146 10. From GCIC to CastCIC: Bidirectional Elaboration

The difference appears in the specific case where 𝑖 = 0. In CastCICG and
CastCICN , we still have ⊢ λ 𝑥: 𝐍.S(𝑥) ⊑α 𝑡0, since sΠ (0, 0) = 0 ≤ 𝑖.
In the former, cΠ (0) = 0 so 𝑡0 reduces safely and Lemma 10.14 holds. In
the latter, however, cΠ (0) = −1, and so 𝑡0 errors even if it is less precise
than an errorless term – Lemma 10.14 does not hold in that case. Finally, in
CastCIC↑, 𝑡0 errors since again cΠ (0) = −1. However, because 𝑠 sΠ (0, 0) =
1, 𝑡0 is not less precise than λ 𝑥: 𝐍.S(𝑥) thanks to the typing restriction in
Cast-R, so this error does not contradict Lemma 10.14.

Lemma 10.15. Constructors and inductive unknown catch-up

If ℾ ⊢ 𝜀𝐴 ⊑α 𝑠′, ℾ.1 ⊢ 𝜀𝐴 ▷ 𝐋𝐢 (𝐴) and ℾ.2 ⊢ 𝑠′ ▷𝐋𝐢 𝐋𝐢 (𝐴′), then
either 𝑠′ →⋆h ?𝐋𝐢 (𝐴′), or 𝑠′ →⋆h 𝜀𝐴′ with ℾ ⊢ 𝐴 ⊑α 𝐴′.

Similarly, if ℾ ⊢ 𝑎 ;;𝐴 𝑙 ⊑α 𝑠′, ℾ.1 ⊢ 𝑎 ;;𝐴 𝑙 ▷ 𝐋𝐢 (𝐴) and ℾ.2 ⊢ 𝑠′ ▷𝐋𝐢
𝐋𝐢 (𝐴′), then either 𝑠′ →⋆h ?𝐋𝐢 (𝐴′), or 𝑠′ →⋆h 𝑎′ ;;𝐴′ 𝑙′ with ℾ ⊢ 𝐴 ⊑α
𝐴′, ℾ ⊢ 𝑎 ⊑α 𝑎′ and ℾ ⊢ 𝑙 ⊑α 𝑙′.
Finally, if ℾ ⊢ ?𝐋𝐢 (𝐴) ⊑α 𝑠′, ℾ.1 ⊢ ?𝐋𝐢 (𝐴) ▷ 𝐋𝐢 (𝐴) and ℾ.2 ⊢ 𝑠′ ▷𝐋𝐢
𝐋𝐢 (𝐴′), then 𝑠′ →⋆h ?𝐋𝐢 (𝐴′) with ℾ ⊢ 𝐴 ⊑→ 𝐴′.

Note that for Lemma 10.15, we need to deal with unknown terms specifi-
cally, which is not necessary for Lemma 10.14 because the unknown term
in a Π-type reduces to a λ-abstraction.

10.3.3. Simulation

We finally come to the main property of this section, the advertised simula-
tion property. It needs to be stated – and proven – mutually for structural
and definitional precision.

Theorem 10.16. Precision is a simulation for reduction
Suppose we have that ℾ.1 ⊑→ ℾ.2, ℾ.1 ⊢ 𝑡 ▷ 𝑇 , ℾ.2 ⊢ 𝑢 ▷ 𝑈 and
𝑡 →⋆ 𝑡′. Then

▶ if ℾ ⊢ 𝑡 ⊑α 𝑢, there exists 𝑢′ such that 𝑢 →⋆ 𝑢′ and ℾ ⊢ 𝑡′ ⊑α 𝑢′;
▶ if ℾ ⊢ 𝑡 ⊑→ 𝑢 then ℾ ⊢ 𝑡′ ⊑→ 𝑢.

This holds inCastCICG , CastCIC↑ and for termswithout ? in CastCICN .

Moreover, if 𝑡 →⋆ 𝑡′ is replaced by 𝑡 →⋆h 𝑡′ in the hypotheses, then
𝑢 →⋆ 𝑢′ can be replaced by 𝑢 →⋆h 𝑢′ in the conclusion.

Proof.
The case of definitional precision holds by confluence of reduction. For
the case of structural precision, the hardest point is of course that of
top-level, where we use Lemmas 10.14 and 10.15, to show that a similar
reduction can also happen in 𝑡′, once the destructed term has properly
caught up.

We must also take care when handling the premises of precision where
typing is involved. In particular, subject reduction is needed to relate the
types inferred after reduction to the type inferred before, and the mu-
tual induction hypothesis on ⊑→ is used to conclude that the premises
holding on 𝑡 still hold on 𝑡′. Finally, the restriction to terms without ?

10.4. Properties of GCIC 147

𝑇 ′ 𝑇 𝑆 𝑆′

𝑈 ′ 𝑈 𝑉 𝑉 ′

←→

⋆

⊒α

←→

⋆

∼

←→

⋆

⊑α
←→

⋆
⊒α ∼α ⊑α

Figure 10.11. The proof of Corol-
lary 10.18, as a diagram

[Len+22]: Lennon-Bertrand et al. (2022),
Gradualizing the Calculus of Inductive Con-
structions

in CastCICN similar to Lemma 10.14 appears again when treating Up-
Down, where having cΠ (sΠ (𝑖, 𝑖)) = 𝑖 is required.

Finally, since the catch-up can be done using only weak-head reduction,
a weak-head reduction step can always be simulated by weak-head re-
ductions.

From this theorem, we get as direct corollaries the following properties,
that are required to handle reduction – Corollary 10.17 – and consistency
– Corollary 10.18 – in elaboration. Again, those corollaries hold in GCICG ,
GCIC↑ and for terms in GCICN containing no ?.

Corollary 10.17. Monotonicity of reduction to type constructor

Let ℾ, 𝑇 and 𝑇 ′ be such that ℾ.1 ⊢ 𝑇 ▷□ □𝑖, ℾ.2 ⊢ 𝑇 ′ ▷□ □𝑗 , and
ℾ ⊢ 𝑇 ⊑α 𝑇 ′. Then

▶ if 𝑇 →⋆ ?□𝑖 then 𝑇 ′ →⋆ ?□𝑗 with 𝑖 ≤ 𝑗 ;
▶ if 𝑇 →⋆ □𝑖−1 then either 𝑇 ′ →⋆ ?□𝑗 with 𝑖 ≤ 𝑗 , or 𝑇 ′ →⋆ □𝑖−1;
▶ if 𝑇 →⋆ Π 𝑥: 𝐴. 𝐵, then either 𝑇 ′ →⋆ ?□𝑗 with 𝑖 ≤ 𝑗 , or 𝑇 ′ →⋆

Π 𝑥: 𝐴′. 𝐵′ and ℾ ⊢ Π 𝑥: 𝐴.𝐵 ⊑α Π 𝑥: 𝐴′.𝐵′;
▶ if 𝑇 →⋆ 𝐋𝐢 (𝐴) then either 𝑇 ′ →⋆ ?□𝑗 with 𝑖 ≤ 𝑗 , or 𝑇 ′ →⋆

𝐋𝐢 (𝐴′) and ℾ ⊢ 𝐋𝐢 (𝐴) ⊑α 𝐋𝐢 (𝐴′).
Moreover, the same hold by replacing →⋆ with →⋆h everywhere.

Proof.
It suffices to simulate the reductions of 𝑇 by using Theorem 10.16, and
then use Lemmas 10.12 and 10.13 to conclude.

Corollary 10.18. Monotonicity of consistency

If ℾ ⊢ 𝑇 ⊑α 𝑇 ′, ℾ ⊢ 𝑆 ⊑α 𝑆′ and 𝑇 ∼ 𝑆, then 𝑇 ′ ∼ 𝑆′.

Proof.

By definition of∼ , we get some 𝑈 and 𝑉 such that 𝑇 →⋆ 𝑈 and 𝑆 →⋆ 𝑉 ,
and 𝑈 ∼α 𝑉 . By Theorem 10.16, we can simulate these reductions to get
some 𝑈 ′ and 𝑉 ′ such that 𝑇 ′ →⋆ 𝑈 ′ and 𝑆′ →⋆ 𝑉 ′, and also ℾ.1 ⊢
𝑈 ⊑α 𝑈 ′ and ℾ.1 ⊢ 𝑉 ⊑α 𝑉 ′. It remains to show that α-consistency
is monotone with respect to structural precision ⊑α , which is direct by
induction.

10.4. Properties of GCIC

We now finally have enough technical tools to prove most of the proper-
ties of GCIC. We state those theorems in an empty context in this section
to make them more readable, but they are of course corollaries of similar
statements including contexts, proven by mutual induction. The complete
statements and proofs can be found in Lennon-Bertrand et al. [Len+22].

148 10. From GCIC to CastCIC: Bidirectional Elaboration

10.4.1. Conservativity with respect to CIC

Elaboration systematically inserts casts during checking, thus even static
terms are not elaborated to themselves. Therefore, we use a (partial) erasure
function eras to relate terms of CastCIC to terms of CIC by erasing all
casts. We also introduce the notion of erasability, characterizing terms that
contain only ”harmless“ casts, such that in particular the elaboration of a
static term is always erasable.

Definition 10.19. Equi-precision

Two terms 𝑠 and 𝑡 are equi-precise in a context ℾ, denoted ℾ ⊢ 𝑠 ⊒⊑α 𝑡
if both ℾ ⊢ 𝑠 ⊑α 𝑡 and ℾ ⊢ 𝑡 ⊑α 𝑠.

Definition 10.20. Erasure, erasability

Erasure eras is a partial function from the syntax of CastCIC to the syn-
tax of CIC, which is undefined on ? and err, is such that eras (⟨𝐵⇐𝐴⟩ 𝑡) =
eras (𝑡), and is a congruence for all other term constructors.

Given a context ℾ, we say that a term 𝑡 well-typed in ℾ.1 is erasable
if eras (𝑡) is defined, well-typed in ℾ.2, and equi-precise with 𝑡 in ℾ.
Similarly, a context Γ is called erasable if it is pointwise erasable. When
Γ is erasable, we say that a term 𝑡 is erasable in Γ to mean that it is
erasable in Γ ∣ eras (Γ).

Armed with these definitions, we can state and prove conservativity. It
holds in all three systems, typeability being of course taken in the corre-
sponding variant of CIC: full CIC for GCICG and GCICN , and CIC↑ for
GCIC↑.

Theorem 10.21. Conservativity

Let 𝑡 be a static term – i.e. a term of CIC.

If ⋅ ⊢ 𝑡 ▷ 𝑇 for some type 𝑇 , then there exists 𝑡′ and 𝑇 ′ such that
⋅ ⊢ 𝑡 ⇝ 𝑡′ ▷ 𝑇 ′, and moreover eras (𝑡) = 𝑡 and eras (𝑇 ′) = 𝑇 .

Conversely, if ⋅ ⊢ 𝑡 ⇝ 𝑡′ ▷ 𝑇 for some 𝑡′ and 𝑇 , then ⋅ ⊢ 𝑡 ▷ eras (𝑇).

Proof.
Because 𝑡 is static, its typing derivation in GCIC can only use rules that
have a counterpart in CIC, and conversely all rules of CIC have a coun-
terpart in GCIC. The only difference is about the reduction/conversion
side conditions, which are used on elaborated types in GCIC, rather
than their non-elaborated counterparts in CIC.

Thus, the main difficulty is to ensure that the extra casts inserted by
elaboration do not alter reduction. This is why we maintain the prop-
erty that all terms 𝑡 considered in CastCIC are erasable, and more pre-
cisely that any static term 𝑡 that elaborates to some 𝑡′ is such that
eras (𝑡) = 𝑡 . Indeed, from the simulation property of structural preci-
sion (Theorem 10.16), we obtain that an erasable term 𝑡 has the same
reduction behaviour as its erasure, i.e. if 𝑡 →⋆ 𝑠 then eras (𝑡) →⋆ 𝑠′ for
some 𝑠′ such that 𝑠′ = eras (𝑠), and conversely if eras (𝑡) →⋆ 𝑠′ then
𝑡 →⋆ 𝑠 for some 𝑠 such that 𝑠′ = eras (𝑠). Using that property, we prove

10.4. Properties of GCIC 149

𝑥 ⊑Gα 𝑥 □𝑖 ⊑Gα □𝑖

𝐴 ⊑Gα 𝐴′ 𝐵 ⊑Gα 𝐵′

Π 𝑥: 𝐴.𝐵 ⊑Gα Π 𝑥: 𝐴′.𝐵′
𝐴 ⊑Gα 𝐴′ 𝑡 ⊑Gα 𝑡′
λ 𝑥: 𝐴.𝑡 ⊑Gα λ 𝑥: 𝐴.𝑡

𝑡 ⊑Gα 𝑡′ 𝑢 ⊑Gα 𝑢′
𝑡 𝑢 ⊑Gα 𝑡′ 𝑢′

𝐴 ⊑Gα 𝐴′

𝐋𝐢 (𝐴) ⊑Gα 𝐋𝐢 (𝐴′)
𝐴 ⊑Gα 𝐴′

𝜀𝐴 ⊑Gα 𝜀𝐴′

𝐴 ⊑Gα 𝐴′ 𝑎 ⊑Gα 𝑎′ 𝑙 ⊑Gα 𝑙′
𝑎 ;;𝐴 𝑙 ⊑Gα 𝑎′ ;;𝐴′ 𝑙′

𝑠 ⊑Gα 𝑠′ 𝑃 ⊑Gα 𝑃 ′ 𝑏𝜀 ⊑Gα 𝑏′𝜀 𝑏;; ⊑Gα 𝑏′;;
ind𝐋𝐢 (𝑠; 𝑧.𝑃 ; 𝑏𝜀 , 𝑦1.𝑦2.𝑝𝑦2 .𝑏;;) ⊑Gα ind𝐋𝐢 (𝑠′; 𝑧.𝑃 ′; 𝑏′𝜀 , 𝑦1.𝑦2.𝑝𝑦2 .𝑏′;;)

𝑡 ⊑Gα ?𝑖

Figure 10.12. Syntactic precision for GCIC

[Sie+15]: Siek et al. (2015), Refined Criteria
for Gradual Typing

that constrained inference on an erasable term of CastCIC behave the
same as its erasure. Similarly, consistency of erasable terms of CastCIC
is equivalent to conversion of the erased terms.

10.4.2. Elaboration Graduality

Next, we turn to elaboration graduality, the equivalent of the static grad-
ual guarantee (SGG) of Siek et al. [Sie+15] in our setting. We state it with
respect to a notion of precision for terms in GCIC, syntactic precision ⊑Gα ,
defined in Figure 10.12. Syntactic precision is the usual and expected source-
level notion of precision in gradual languages: it is generated by a single
non-trivial rule 𝑡 ⊑Gα ?𝑖, and congruence rules for all term formers.

In contrast with the simply-typed setting, the presence ofmultiple unknown
types ?𝑖, one for each universe level 𝑖, requires an additional hypothesis re-
lating elaboration and precision judgements.

Definition 10.22. Universe adequacy

We say that two judgements ̃𝑡 ⊑Gα ?𝑖 and Γ ⊢ ̃𝑡 ⇝ 𝑡 ▷ 𝑇 are universe
adequate if the universe level 𝑗 given by the well-formation judgement
Γ ⊢ 𝑇 ▷□ □𝑗 induced by soundness of the elaboration satisfies 𝑖 = 𝑗 .
More generally, ̃𝑡 ⊑Gα ̃𝑠 and Γ ⊢ ̃𝑡 ⇝ 𝑡 ▷ 𝑇 are universe adequate if for
any sub-term ̃𝑡0 of ̃𝑡 inducing judgements ̃𝑡0 ⊑Gα ?𝑖 and Γ0 ⊢ ̃𝑡0 ⇝ 𝑡0 ▷
𝑇 , those are universe adequate in the previous sense.

Note that this extraneous technical assumption on universe levels should be
painless in a practical system using typical ambiguity, since universe levels
are very seldom given explicitly. In such a case, the elaboration would insert
fresh universe levels at each ?, which would automatically ensure universe
adequacy.

Theorem 10.23. Elaboration Graduality / Static Gradual Guarantee

In GCICG and GCIC↑, if ̃𝑡 ⊑Gα ̃𝑠 and ⋅ ⊢ ̃𝑡 ⇝ 𝑡 ▷ 𝑇 by derivations that

150 10. From GCIC to CastCIC: Bidirectional Elaboration

[Sie+15]: Siek et al. (2015), Refined Criteria
for Gradual Typing

are universe adequate, then ⋅ ⊢ ̃𝑠 ⇝ 𝑠 ▷ 𝑆 for some 𝑠 and 𝑆 such that
⋅ ⊢ 𝑡 ⊑α 𝑠 and ⋅ ⊢ 𝑇 ⊑α 𝑆.

Proof.

The proof is by induction on the elaboration derivation for ̃𝑡 .
All cases for inference consist in a straightforward combination of the
hypotheses, with the universe adequacy hypothesis used in the case
where ̃𝑠 is ?𝑖, in order to relate the inferred types.

Here again the technical difficulties arise in the rules involving computa-
tion. This is where Corollary 10.17 is useful, proving that the less precise
type obtained by induction can simulate the reduction of the more pre-
cise one. Thus, either the same rule can still be used, or one has to trade
Rule Inf-Univ, Inf-Prod or Inf-List respectively for Rule Inf-Univ?, Inf-
Prod? or Inf-List? in case the less precise type is some ?□ and the more
precise type is not.

Similarly, Corollary 10.18 proves that in the checking rule the less precise
types are still consistent.

Note that, again, because Corollary 10.17 still holds when restricted to
weak-head reduction, elaboration graduality also holds when fixing a
weak-head strategy for elaboration.

10.4.3. Dynamic Gradual Guarantee

Following Siek et al. [Sie+15], using the fact that structural precision is
a simulation (Theorem 10.16), we can prove the DGG for CastCICG and
CastCIC↑ – stated using the notion of observational refinement ⊑ob from
Definition 9.4.

Theorem10.24. DynamicGradual Guarantee for CastCICG andCastCIC↑

Suppose that Γ ⊢ 𝑡 ▷ 𝐴 and Γ ⊢ 𝑢 ▷ 𝐴. If moreover Γ ∣ Γ ⊢ 𝑡 ⊑α 𝑢,
then 𝑡 ⊑ob 𝑢.

Proof.
Let C: (Γ ⊢ 𝐴) ⇒ (⊢ 𝐁) closing over all free variables. By the diagonal
rules of structural precision, we have Γ ∣ Γ ⊢ C[𝑡] ⊑α C[𝑢]. By safety
(Theorem 10.4), C[𝑡] either reduces to tt, ff, ?𝐁, err𝐁 or diverges, and
similarly for C[𝑢]. If C[𝑡] diverges or reduces to err𝐁, we are done. If it
reduces to either tt, ff or ?𝐁, then by the catch-up Lemma 10.15, C[𝑢]
either reduces to the same value, or to ?𝐁. In particular, it cannot diverge
or reduce to an error.

Note that the counter-example to Lemma 10.14 given in Section 10.3 pro-
vides a counter-example to this theorem as well for CastCICN , by choosing
the context ind𝐍(• 0; 𝑧.𝐁; tt, tt), because in that context the function λ 𝑥: 𝐍.
S(𝑥) reduces to tt while the less precise cast function reduces to err𝐁.

[Len+22]: Lennon-Bertrand et al. (2022),
Gradualizing the Calculus of Inductive Con-
structions
[Mai+22]: Maillard et al. (2022), A Reason-
ably Gradual Type Theory

1: Syntactic models [BPT17; Bou18], are
a kind of models of type theory defined
directly by induction on the raw syntax,
in a way akin to program translation or
compilation. This allows for simple mod-
els, that moreover can be used to capture
fine-grained properties that only make
sense on that raw syntax, typically those
that need to separate between convertible
terms.
[BPT17]: Boulier et al. (2017), The next 700
syntactical models of type theory

[Bou18]: Boulier (2018), Extending Type
Theory with Syntactical Models

[Mar96]: Martin-Löf (1996), On the Mean-
ings of the Logical Constants and the Justi-
fications of the Logical Laws
[DS03]: Dybjer et al. (2003), Induction-
recursion and initial algebras
[GMF15]: Ghani et al. (2015), Positive
Inductive-Recursive Definitions

[PT18]: Pédrot et al. (2018), Failure is Not
an Option An Exceptional Type Theory

2: Corresponding to a form of ad-hoc
polymorphism.

Beyond CastCIC: Models,
Indices and Pure Reasoning 11.

Chapter 10 establishes quite a few properties of GCIC and CastCIC, cul-
minating with elaboration graduality. This is, however, still far from sat-
isfactory. First, it is missing proofs of normalization for the two variants
which are supposed to satisfy it – CastCICN and CastCIC↑ –, and of grad-
uality – for CastCICG and CastCIC↑. Next, it only treats CIC−, i.e. it does
not handle indexed inductive types. But these are crucial in order to really
exploit dependency: for instance, most of our introductory examples were
based on the vector type, an indexed inductive type outside the scope of
Chapter 10.

In this chapter we go over these issues and possible solutions: Section 11.1
describes model constructions to establish both normalization and gradual-
ity; Section 11.2 describes the issue with indexed inductive types, and gives
possible solutions in case the indices are “nice enough”, which covers vec-
tors; finally, Section 11.3 gives a much more ambitious solution to handle
indices, giving a proper treatment of the equality type – the stereotypical
pathologic inductive type –, and much more.

As these have no direct relation to bidirectional typing per se, we do not
dwell on the technical details in this chapter. The interested reader can
consult either Lennon-Bertrand et al. [Len+22] – Section 11.1 corresponds
roughly to Section 6 there, and Section 11.2 to Sections 6 and 8.3 –, or Mail-
lard et al. [Mai+22] – corresponding to Section 11.3.

11.1. Realizing CastCIC

11.1.1. The discrete model

To inform the design and justify the reduction rules provided for CastCIC,
we build a syntactic model1 of CastCIC by translation to CIC augmented
with induction-recursion [Mar96; DS03; GMF15].

From a type theoretical point of view, what makes CastCIC peculiar are the
possibility of having exceptions – both “pessimistic” (err) and “optimistic”
(?) –, and the necessity to do intensional type analysis in order to resolve
casts. For the former, we build upon the work of Pédrot and Tabareau
[PT18] on the exceptional type theory ExTT. For the latter, we reuse the
technique of Boulier, Pédrot, and Tabareau [BPT17] to equip the universe
with an elimination principle 𝑡𝑦𝑝𝑒𝑟𝑒𝑐 2, which requires induction-recursion
to be implemented.

We call this syntactic model of CastCIC the discrete model. It captures the
intuition that the unknown type is inhabited by “tagged values”, e.g. a term
together with its type. In other words, the unknown type ?□ behaves as
a dependent sum Σ𝐴:□. 𝐴. Projecting out of it is realized through type
analysis using 𝑡𝑦𝑝𝑒𝑟𝑒𝑐 , and may fail – raising an error in the ExTT sense.

Note that we provide a particular interpretation of the unknown term in
the universe, which is legitimized by an observation made by Pédrot and

152 11. Beyond CastCIC: Models, Indices and Pure Reasoning

Tabareau [PT18]: ExTT does not constrain in any way the definition of ex-
ceptions in the universe. This is crucial to combine ExTT with a universe
equipped with 𝑡𝑦𝑝𝑒𝑟𝑒𝑐 .
The key point to prove normalization is that reduction is preserved, in the
sense that a reduction step in the source theory CastCIC is mapped to
at least one step in the target. Thus, the target being normalizing, so is
CastCIC.

Theorem 11.1. Normalization for CastCIC

Both CastCICN and CastCIC↑ have the normalization property (Prop-
erty 3.14).

An important corollary of this property, in combination with safety (Theo-
rem 10.4), is a weak form of logical consistency, characterizing the possible
inhabitants of the empty type:

Theorem 11.2. Weak logical consistency

Suppose 𝑡 is a closed inhabitant of the empty type ⊥ in CastCICN or
CastCIC↑, e.g. ⊢ 𝑡 ◁ ⊥. Then 𝑡 must reduce to either err⊥ or ?⊥.

11.1.2. The monotone model

The simplicity of the discrete model comes at the price of an inherent inabil-
ity to characterize which casts are guaranteed to succeed, i.e. a graduality
theorem. To overcome this limitation, and prove graduality of CastCIC↑, we
can build a more elaborate monotone model, inducing a precision relation
that is well-behaved with respect to conversion.

In this model, each type 𝐴 comes equipped with an order structure ⊑𝐴 –
a reflexive, transitive, antisymmetric and proof-irrelevant relation – mod-
elling precision between terms. In particular, the exceptions err𝐴 and ?𝐴
correspond respectively to the smallest and greatest element of 𝐴 for this
order. Saying that this interpretation of types as posets is a model is equiv-
alent to saying that each term and type former is enforced to be monotone,
providing a strong form of graduality. This implies in particular that such
a model cannot be defined for CastCICN , as this type theory lacks gradu-
ality.

The precision order of the monotone model can be reflected back to Cast-
CIC, giving rise to the propositional precision judgment Γ ⊢ 𝑡 ⊑𝑇 𝑈 𝑢, where
𝑇 and 𝑈 are the respective types of 𝑡 and 𝑢. Type dependency naturally
demands such a notion of inhomogeneous precision, rather than a simpler
notion relating only terms of the same type.

This precision relation bears a similar relationship to definitional precision
⊑→ as propositional equality to conversion/definitional equality in CIC.
Propositional precision can be used to prove precision statements inside
the target type theory, for instance we can show by case analysis on 𝑏: 𝐁
that

𝑏: 𝐁 ⊢ ind𝐁(𝑏; 𝑥.□; 𝐴, 𝐴) ⊑□ □ 𝐴

11.2. The issue with indices: gradual vectors and equalities 153

a judgment that does not hold for definitional precision. In particular, propo-
sitional precision is invariant by conversion: if 𝑡 ≅ 𝑡′, 𝑢 ≅ 𝑢′ and Γ ⊢
𝑡 ⊑𝑇 𝑈 𝑢 then Γ ⊢ 𝑡′ ⊑𝑇 𝑈 𝑢′. But this means that propositional precision

is too coarse to capture properties such as the simulation property (Theo-
rem 10.16) and its corollaries (Corollaries 10.17 and 10.18), because these
distinguish convertible terms.

Still, we can relate the two notions, as follows:

Theorem 11.3. Compatibility of structural and propositional precision

If Γ ⊢ 𝑡 ▷ 𝑇 , Γ ⊢ 𝑢 ▷ 𝑈 and Γ ∣ Γ ⊢ 𝑡 ⊑α 𝑢, then Γ ⊢ 𝑡 ⊑𝑇 𝑈 𝑢.
Conversely, if ⋅ ⊢ 𝑣1 ⊑𝐁 𝐁 𝑣2 for normal forms 𝑣1, 𝑣2, then ⋅ ⊢ 𝑣1 ⊑α 𝑣2.

Again, this is similar to the relation between conversion and propositional
equality: the former always implies the latter, and one can come back from
the second to the first in a constrained enough setting – here, on closed
booleans.

Finally, the main property satisfied by propositional precision is gradual-
ity:

Theorem 11.4. Graduality

Propositional precision satisfies the Dynamic Gradual Guarantee: if
Γ ⊢ 𝑡 ▷ 𝑇 , Γ ⊢ 𝑡′ ▷ 𝑇 and Γ ⊢ 𝑡 ⊑𝑇 𝑇 𝑡′ hold, then 𝑡 ⊑ob 𝑡′.
Casts form embedding-projection pairs. That is, if Γ ⊢ 𝑡 ▷ 𝑇 and Γ ⊢
𝑢 ▷ 𝑈 , andmoreover Γ ⊢ 𝑇 ⊑□ □ 𝑈 , then the following three properties
are equivalent:

Γ ⊢ ⟨𝑈 ⇐𝑇⟩ 𝑡 ⊑𝑈 𝑈 𝑢 ⇔ Γ ⊢ 𝑡 ⊑𝑇 𝑈 𝑢 ⇔ Γ ⊢ 𝑡 ⊑𝑇 𝑇 ⟨𝑇 ⇐𝑈 ⟩ 𝑢
And furthermore, Γ ⊢ ⟨𝑇 ⇐𝑈 ⟩ ⟨𝑈 ⇐𝑇⟩ 𝑡 ⊑𝑇 𝑇 𝑡 – this is the retraction
property.

11.2. The issue with indices: gradual vectors
and equalities

11.2.1. The issue with propositional equality

For the sake of exposing the problem, suppose that we can define the equal-
ity type 𝑎 =𝐴𝑎′ in CastCIC, while still satisfying canonicity, conservativity
and graduality. This means that for an equality 𝑡 = 𝑢 involving closed terms
𝑡 and 𝑢 of CIC, there should only be three possible canonical forms: refl𝐴,𝑡
whenever 𝑡 and 𝑢 are convertible terms, as well as err and ?.
Just under these assumptions, we can show that there exist two functions
that are pointwise equal in CIC, but are no longer equivalent in CastCIC.
Consider the two functions id𝐍 and add0 defined respectively as id𝐍 ≔
λ 𝑥: 𝐍. 𝑛 and add0 ≔ λ 𝑥: 𝐍. 𝑥 +0. In CIC, these functions are not convert-
ible, but they are pointwise equal, and observationally equivalent. However,

154 11. Beyond CastCIC: Models, Indices and Pure Reasoning

3: And quite a lot of those used in the con-
text of dependently typed programming.

[BMM04]: Brady et al. (2004), Inductive
Families Need Not Store Their Indices
[Gil+19]: Gilbert et al. (2019), Definitional
Proof-Irrelevance without K

they would not be observationally equivalent in GCIC under our assump-
tions. To see why, consider the following term:

test ≔ λ 𝑓 : 𝐍 → 𝐍.ind= (𝑦 .𝑧.𝐁; ⟨id𝐍 = 𝑓 ⇐ ?□⇐ id𝐍 = id𝐍⟩ refl; tt)

We have test id𝐍 →⋆ tt because, by graduality, the upcast-downcast in the
scrutinee must succeed, i.e.

⟨id𝐍 = id𝐍 ⇐ ?□⇐ id𝐍 = id𝐍⟩ refl →⋆ refl
However, since add0 is not convertible to id𝐍,

⟨id𝐍 = add0 ⇐ ?□⇐ id𝐍 = id𝐍⟩ refl
cannot possibly reduce to refl, and thus would need to reduce either to
err or ?; and so does test add0. This means that the theory would be very
intensional, by being able to distinguish between any two functions that
are not convertible, even if they are pointwise equal.

More generally, the issue is the following: given a constructor 𝑐 of an in-
ductive type 𝐼 , we need to decide what to do when confronted with some
⟨𝐼 (𝑏′1, … , 𝑏′𝑛)⇐ 𝐼 (𝑏1, … , 𝑏𝑛)⟩ 𝑐(𝑎1, … , 𝑎𝑚). If 𝐼 does not have indices, as in
the case of lists, we know that 𝑐 can always be used to inhabit 𝐼 (𝑏′1, … , 𝑏′𝑛), if
given arguments of the right types. If 𝐼 has indices, however, this might not
be possible due to typing constraints, as in the example of refl. But we still
need to provide an inhabitant of that type as redex for the cast! If we resort
to the wildcards ? or err, then we expose a very intensional behaviour such
as the one above. However, in the setting of a generic inductive type – such
as that of the equality –, deciding whether it is inhabited by a “valid”, non-
wildcard, term in a given non-empty context is undecidable, so we cannot
hope to always decide whether the cast should fail or return such a valid
term.

11.2.2. Solutions for vectors

Thankfully, not all indexed inductive types are as thorny as equality. In-
deed, in examples such as 𝐕𝐞 ,3 solutions are possible that avoid the dead-
end identified for equality, by carefully using the structure of indices. These
rely on two well-known alternatives to indexed inductive types for captur-
ing properties intrinsically: type-level eliminators, and “forded” inductive
types.

Type-level eliminators. Instead of an inductive type,𝐕𝐞 can be defined
as a recursive function on its index, at the type level, effectively representing
lists as nested pairs:

Veμ ≔ λ(𝐴:□)(𝑛: 𝐍).ind𝐍(𝑛; 𝑥.□; ⊤, 𝑦 .𝑝𝑦 .𝐴 × 𝑝𝑦)
corresponding to the Coq definition

Fixpoint FVect (A : Type) (n : ℕ) : Type :=
match n with 0 => unit | S n => A * FVec A n end.

11.2. The issue with indices: gradual vectors and equalities 155

4: This technique has been coined “ford-
ing” by McBride [McB99, Section 3.5], as
an allusion to Henry Ford’ quote “Any cus-
tomer can have a car painted any color that
he wants, so long as it is black.”

[McB99]: McBride (1999), Dependently
typed functional programs and their proofs

Type-level eliminators can be used as soon as the indices are concretely
forceable [BMM04]. Intuitively, concretely forceable indices are those that
can be matched upon (like 𝑛 in the example of 𝐕𝐞). Gilbert et al. [Gil+19]
give a general translation of this kind to build mock-up inductive types
inside a sort of definitionally irrelevant propositions.

This presentation coincides with the indexed inductive one on standard,
non-exceptional terms, but quickly becomes very imprecise in presence of
unknown indices.

Forded inductive type. Instead of using an indexed inductive type, one
can use a parametrized inductive type, with explicit equalities as arguments
to constructors.4 For instance, vectors can be defined in this style as fol-
lows:

Inductive Vectf (A : Type) (n : ℕ) : Type :=
| nilf : eq_nat 0 n -> Vectf A n
| consf : A -> forall m : ℕ, eq_nat (S m) n

-> Vectf A m -> Vectf A n.

Here, eq_nat is the type of decidable equality proofs between natural num-
bers, expressing the constraints on 𝑛 – e.g. 𝑛 = 0 – but avoiding the use of
the unavailable propositional equalities –, which can be defined like this:

Fixpoint eq_nat (m n : ℕ) : Type :=
match m, n with
| 0, 0 => True
| S m, S n => eq_nat m n
| _, _ => False

end.

This presentation is more accurate than the previous one when dealing
with unknown indices, but is too permissive with invalid index assertions.
It fails very late when such invalid assertions are made, meaning that error-
reporting is bad.

Direct support. In contrast to the two previously-exposed encodings that
both have serious shortcomings, extending CastCIC with direct support for
indexed inductive types can provide amuchmore satisfactory solution. The
idea is to reason about indices directly in the reduction of casts.

To do so, we first add two new canonical forms, corresponding to the casts
of 𝜀 and ;; to Ve(𝐴, ?𝐍): namely, 𝜀?𝐴 and 𝑎 ;;?𝐴,𝑛 𝑣 .
We then extend reduction to account for casts on vectors in canonical forms.
Figure 11.1a presents these rules when the argument of the cast is a non-
empty vector. Rule V-cons-? propagates the cast on the arguments, but
using the newly introduced ;;?. This effectively loses precision in the type
information, but keeps it all recorded in the term, so that it can be used
in case of a downcast. This is exactly what Rule V-cons?-s does. Rule V-
cons-s applies when both source and target indices are successors, and
propagates the cast of the arguments, just like in the case of lists. Finally,
as expected, Rule V-cons-0 raises an error when the indices do not match.
Similarly, Rule V-cons?-0 also raises an error when trying to create a vector
of length 0 from one with an unknown index, but whose underlying vector
is non-empty.

156 11. Beyond CastCIC: Models, Indices and Pure Reasoning

V-cons-?: ⟨Ve(𝐵, ?𝐍)⇐Ve(𝐴, S(𝑛))⟩ (𝑎 ;;𝐴,𝑘𝑣) ⇀ (⟨𝐵⇐𝐴⟩ 𝑎) ;;?𝐵,𝑛 (⟨Ve(𝐵, 𝑛)⇐Ve(𝐴, 𝑘)⟩ 𝑣)

V-cons?-s: ⟨Ve(𝐵, S(𝑛))⇐Ve(𝐴, ?𝐍)⟩ (𝑎 ;;?𝐴,𝑘 𝑣) ⇀ (⟨𝐵⇐𝐴⟩ 𝑎) ;; 𝐵,𝑛 (⟨Ve(𝐵, 𝑛)⇐Ve(𝐴, 𝑘)⟩ 𝑣)

V-cons-s: ⟨Ve(𝐵, S(𝑚))⇐Ve(𝐴, S(𝑛))⟩ (𝑎 ;;𝐴,𝑘𝑣) ⇀ (⟨𝐵⇐𝐴⟩ 𝑎) ;; 𝐵,𝑚 (⟨Ve(𝐵, 𝑚)⇐Ve(𝐴, 𝑘)⟩ 𝑣)

V-cons-0: ⟨Ve(𝐵, 0)⇐Ve(𝐴, S(𝑛))⟩ (𝑎 ;;𝐴,𝑘𝑣) ⇀ errVe(𝐵,0)
V-cons?-0: ⟨Ve(𝐵, 0)⇐Ve(𝐴, ?𝐍)⟩ (𝑎 ;;?𝐴,𝑘 𝑣) ⇀ errVe(𝐵,0)

Figure 11.1a. Casts between gradual vector types (excerpt)

Figure 11.1b. Eliminator for the gradual
vector type (excerpt)

V-rect-nil?: ind𝐕𝐞 (𝜀?𝐴; 𝑦 .𝑧.𝑃 ; 𝑏𝜀 , 𝑦1.𝑦2.𝑦3.𝑝𝑦3 .𝑏;;) ⇀ ⟨𝑃 ?𝐍 ⇐𝑃0⟩ 𝑏𝜀

For the eliminator, there are two new computation rules, one for each new
constructor. We give the one for the case of 𝜀?, this is Rule V-rect-nil?.
These rules apply the eliminator to the underlying non-exceptional con-
structor, and then cast the result to 𝑃 ?𝐍. Intuitively, they transfer the cast
on vectors to a cast on the reduct.

Note that all of these rules crucially use the fact that it is possible to dis-
criminate between 0, S(𝑛) and ?𝐍, which is a specificity of the vector type
and explains why this solution is not possible for e.g. the equality.

This “definitive” presentation is justified by a modification of the models
described in Section 11.1, and gives the satisfactory behaviour described
in the examples of Sections 9.0.1 and 9.0.4: it preserves as much computa-
tional content as possible, while failing early when invalid assumptions are
used.

11.3. A Reasonably Gradual Type Theory

In the context of a gradual proof assistant based on CIC, the normalizing
and conservative variant GCICN is the most appealing, as it ensures decid-
ability of typing, (weak) canonicity, and supports all existing developments
and libraries by virtue of being a conservative extension of CIC. Unfortu-
nately, the universe shift introduced in CastCICN during reduction means
that some terms break graduality. For instance, while the term

nArrow ≔ λ 𝑛: 𝐍. ind𝐍(𝑛; 𝑥.□0; 𝐍, 𝑦 .𝑝𝑦 .𝐍 → 𝑝𝑦)
or, in Coq,

Fixpoint nArrow (n : ℕ) : Type :=
match n with

| 0 => ℕ
| S m => ℕ -> nArrow n

end.

is well-typed in GCICN , the type Π 𝑛: 𝐍. nArrow 𝑛 does not satisfy the
embedding-projection property with respect to any unknown type ?□𝑖 , be-
cause the appropriate universe level is not known a priori. However, apart

11.3. A Reasonably Gradual Type Theory 157

[PT18]: Pédrot et al. (2018), Failure is Not
an Option An Exceptional Type Theory

[NA18]: New et al. (2018), Graduality from
Embedding-Projection Pairs

[Péd+19]: Pédrot et al. (2019), A Reason-
ably Exceptional Type Theory

[PT22]: Pujet et al. (2022), Observational
Equality: Now for Good

[AMS07]: Altenkirch et al. (2007),Observa-
tional Equality, Now!

from the fact that GCICN does not satisfy graduality globally, little is
known about its gradual properties as its metatheory in this regard has
not been developed. In particular, there is no clear characterization of a
class of terms for which graduality holds.

A refined stratification of precision However, by refining the stratifi-
cation of precision we can develop a full account of graduality for an ex-
tension of CastCICN , called GRIP. The key idea is that ?□𝑖 should be the
least precise type among all types at level 𝑖 and below, except for dependent
function types at level 𝑖 – which are however still less precise than ?□𝑖+1 .

We can precisely characterize problematic terms as those that are not self-
precise – i.e.more precise than themselves. For function types, self-precision
meansmonotonicity with respect to precision. A recursive large elimination
as in nArrow is not monotone because there is no fixed level 𝑖 for which
nArrow 𝑛 ⊑ ?□𝑖 , given 𝑛 ⊑ ?𝐍.

On the contrary, we can prove that the dynamic gradual guarantee holds
in GRIP for any self-precise context, and that casts between types related
by precision induce embedding-projection pairs between self-precise terms.
Therefore, this shift in perspective in the interpretation of the unknown
type and the associated notion of precision yields a gradual theory that
conservatively extends CIC, is normalizing, and satisfies graduality for a
large and well-defined class of terms.

Internalizing precision, reasonably While we could study graduality
for GRIP externally, we observe thatwe can exploit the expressiveness of the
type-theoretic setting to internalize precision and its associated reasoning.
In particular, this makes it possible to state and prove, within the theory
itself, results about (self-)precision and graduality for specific terms. In a
way, this is the natural next step following the definition of propositional
precision in Section 11.1.

Introducing internal precision in a gradual type theory however requires us
to address twomain obstacles. First, when adding exceptions to CIC [PT18],
the theory becomes inconsistent as a logic, because it is possible to inhabit
any type 𝐴 by raising an exception err𝐴. In the gradual setting, there is
also the alternative of using the unknown term ?𝐴 to inhabit any type 𝐴.
If we want to support valid internal reasoning about precision and gradual-
ity, we need to avoid these degenerate proofs and provide a logically consis-
tent theory. Second, the gradual type theory needs to satisfy extensionality
principles in order to support the notion of precision as error approximation
[NA18]. Embracing extensionality principles in an intensional type theory
such as CIC is a challenge in itself.

We can address both issues by combining recent advances in type the-
ory: the reasonably exceptional type theory RETT [Péd+19] and the obser-
vational type theory TTObs [PT22]. First, RETT supports consistent rea-
soning about exceptional terms. It features a layer of possibly exceptional
terms, and a separate layer of pure terms in which raising an exception
is prohibited. This way, the consistency of the logical layer is guaranteed,
while allowing non-trivial interaction with the exceptional layer. Techni-
cally, the two layers are defined using two distinct universe hierarchies.
Second, based on the seminal work onObservational Type Theory [AMS07],

158 11. Beyond CastCIC: Models, Indices and Pure Reasoning

[Gil+19]: Gilbert et al. (2019), Definitional
Proof-Irrelevance without K

TTObs provides a setoidal equality in a specific universe SProp of defini-
tionally proof-irrelevant propositions. This universe of strict propositions,
introduced by [Gil+19] and supported in recent versions of Coq and Agda,
makes it possible to define an extensional notion of equality, while trivial-
izing the so-called higher coherence hell by imposing that any two proofs
of a given equality are convertible.

A major insight of GRIP is to realize that we can actually merge the logical
universe of RETT used to reason about exceptional terms with the universe
SProp of proof-irrelevant propositions in order to define an internal notion
of precision that is extensional and whose proofs cannot be trivialized with
exceptional terms.

Applications of internal precision In addition to supporting reasoning
about the graduality of terms in a theory that is not globally gradual, inter-
nal precision makes it possible to support gradual subset types, in which a
type can be refined by a proposition expressed using precision. Moreover,
in the literature, exception handling is never considered when proving grad-
uality because this mechanism inherently allows terms that do not behave
monotonically with respect to precision. Internal precision enables us to
support exception handling in the impure layer of the type theory, and
to consistently reason about the graduality (or not) of exception-handling
terms.

[McB22]: McBride (2022), Types Who Say
Ni
[GSB19]: Gratzer et al. (2019), Implement-
ing a Modal Dependent Type Theory

[DK21]: Dunfield et al. (2021), Bidirec-
tional Typing

[BHL20]: Bauer et al. (2020), A general def-
inition of dependent type theories
[BP22]: Bauer et al. (2022), An extensible
equality checking algorithm for dependent
type theories

Perspectives 12.
I hope that this thesis gives compelling arguments for the adoption of bidi-
rectional typing, but there is more.

Part ‘Bidirectional Calculus of Inductive Constructions’ shows that one
can use the valuable bidirectional structure, without having to leave their
favourite declarative system behind. Indeed, it can most likely be shown
equivalent to a bidirectional one – given it is one’s favourite system, it does
surely satisfy the good properties needed for that.

In Part ‘A Certified Kernel for Coq, in Coq’, we enter the real world, and see
how this plays out on a complex type system: bidirectionalism gives good
guidelines to analyse typing rules, and provides a precise specification to
prove the implementation sound, while allowing separation of concerns. If
this is enough to catch bugs in Coq, it should prove useful in finding those
in other kernels, too. Yet, MetaCoq is much more than bidirectional typing:
its certified kernel opens up a new era for proof assistants, with a previously
unreached trust level.

Finally, Part ‘Bidirectional Elaboration for Gradual Typing’ exemplifies how
the bidirectional structure can be useful when simply designing a type sys-
tem, even without a single implementation in sight. But gradual typing can
hopefully be more than a mere example. As it enables the transition of pro-
grammers from the soft realms of dynamic typing to the discipline of static
typing, so it could open the door of dependently typed programming to
more than a fraction of fanatic enthusiasts.

Still, as most thesis, this one opens up at least as many questions as it
answers, in all its three broad directions.

12.1. Bidirectional Typing for Dependent
Types

The formal study of bidirectional typing in the setting of dependent types
still begs for more investigations. While I hope the present work gives a ro-
bust answer in the setting of Curry-style syntax, where every term infers a
type, the case of Church-style syntax is quite different. In the case of normal
forms, the proof ideas presented in this thesis should be easily adapted. But
if we wish to go beyond normal forms, we must consider the use of anno-
tations in terms, as is done in e.g. McBride [McB22], Gratzer, Sterling, and
Birkedal [GSB19] or Dunfield and Krishnaswami [DK21]. However, due to
the dependently-typed setting, we have to investigate how these annota-
tions play out with conversion and/or reduction. To the best of my knowl-
edge, only McBride has taken that question up, but does not arrive – yet –
at a definitive solution, so there is matter left for further research.

Another thread to pull is the relationwithGeneralized Type Systems [BHL20;
BP22]. Here, as in McBride’s discipline, we find well-formation invariants
to be preserved, and carefully structured rules that should respect them. Re-
casting the bidirectional concepts in such a setting could allow for a better

160 12. Perspectives

[AÖV17]: Abel et al. (2017),Decidability of
Conversion for Type Theory in Type Theory

1: A restricted form of universe polymor-
phism, which the latter should hopefully
be able to replace.

2: For an overview of these, see Lennon-
Bertrand [Len22].

[Len22]: Lennon-Bertrand (2022), À bas
l’η – Coq’s troublesome η-conversion

understanding both of the ideas at work in bidirectional typing, yielding a
proper formal account ofMcBride’s discipline together with a general proof
that it ensures good properties of the system, and of thewell-formation con-
ditions already explored in Bauer, Haselwarter, and Lumsdaine [BHL20] on
judgment boundaries.

Since Generalized Type Systems put conversion and typing on the same
footing, it also seems natural to question howwe canmarry conversion and
bidirectionalism. Here again there are ingredients in the air: Abel, Öhman,
and Vezzosi [AÖV17] show a notion of conversion geared towards proving
decidability of typing, but which is clearly bidirectional, and could serve as
a basis to give a general notion of bidirectional conversion. This subject is
only scratched in Chapter 6, but I believe that the ideas presented there
can be scaled to a system such as PCUIC, and be an interesting building
block in order to specify extensionality rules as used in Coq’s kernel.

12.2. MetaCoq’s Future

MetaCoq is a mature project, and has reached the stage where the formal-
ization can really serve as a tool to move Coq forward.

We have already evoked in Chapter 5 the question of the representation
of pattern-matching. This is a relatively minor question, but more complex
ones – e.g. the integration of a sort SProp of strict propositions, or subject
reduction for co-inductive types – can now be investigated in MetaCoq,
providing a valuable guidance to their implementation in Coq.

However, MetaCoq is still quite some distance away from type-checking
realistic developments in Coq, as it lacks some important features present
in the latter’s kernel. Barring template polymorphism,1 there are two main
lacking elements that are to be integrated if we wish to really reach the
project’s goal.

The first are extensionality conversion rules: definitional proof irrelevance,
and η laws for functions and records. The η conversion laws are basic fea-
tures, present in virtually any modern proof assistant. However, in the pre-
cise context of MetaCoq, they pose subtle questions.2 Broadly, giving a
specification of such η laws is easy in the setting of typed conversion, but
much trickier in that of untyped conversion. However, the whole structure
of MetaCoq is built around that untyped notion of conversion, and could
not be so easily adapted to a typed conversion. This makes the integration
of η laws challenging. The case of strict propositions is less well-known, be-
ing much more recent, but poses similar challenges. A possible solution to
solve these issues would be to move the whole development over to typed
conversion, using the ideas introduced in Chapter 6.

The second lacking feature are modules and functors. While these are less
pervasive than η laws, they are still present in a number of developments.
Here again the difficulty is not simply to show that an implementation is
faithful to a given semantic, but to precisely pin down said semantic. This
is tricky in the case of modules, which have interactions with global envi-
ronments, contrarily to records – their first-class counterpart. This unclear
semantic is probably one of the reason modules are not used more, and so

12.3. Gradual CIC 161

[Gim95]: Giménez (1995), Codifying
guarded definitions with recursive schemes

[FK19]: Forster et al. (2019), A Certifying
Extraction with Time Bounds from Coq to
Call-By-Value Lambda Calculus
[LUF20]: Liesnikov et al. (2020), Generat-
ing induction principles and subterm rela-
tions for inductive types using MetaCoq

putting them on a stabler ground might also give users more confidence to
use them.

A last important investigation to make MetaCoq closer to the real kernel
is that of guard conditions. The impossibility to prove full normalization of
PCUIC does not mean that we should not completely abandon this ques-
tion. We can at least implement a guard condition, and show that it fulfils
the conditions we abstractly ask for in the current development. More am-
bitious, the complex guard condition implemented in Coq was designed
[Gim95] in order to allow a translation back to eliminators. This gives a
much stronger validity criterion for the guard, but would not be an easy
project. But as for modules, reaching that goal wouldmake the guardmuch
more trustworthy than it currently is. Moreover, it could open the door to
extending it, with the formalization as a safeguard as to the validity of those
extensions.

Beyond these missing but rather necessary pieces, MetaCoq should hope-
fully offer tools for broader investigations around Coq’s core: formalization
of tactics, of syntax transformation and generation… Some have already
started to appear [FK19; LUF20], but hopefully more are to come!

12.3. Gradual CIC

As for the last part of this thesis, if the aim goal of gradual typing is to
answer the needs of developers, we should get closer to those. I believe that
GRIP gives at least a good starting point to experiment with, so the main
missing piece now is an implementation. Such an implementation of course
is no small feat: integrating a new feature to CIC is never easy, even more
so one of this scale. Moreover, it raises subtle questions. For instance, while
almost all reduction rules of dependent type theories are parametric over
the universe levels, reduction in CastCIC crucially depends on those. In a
setting where these universe levels are not mere integers, what becomes of
those? How do we handle a non-total order between universe levels?

Appendix

[Mar72]: Martin-Löf (1972), An intuitionis-
tic theory of types

[CH88]: Coquand et al. (1988), The calcu-
lus of constructions

1: Using a question on the proof assistant
Stack Exchange.

Names for Type Systems A.
MLTT and CIC

In the field of dependently types, I think we can safely delineate two main
schools, with different histories and cultures. The first goes back to Martin-
Löf – in particular Martin-Löf [Mar72] –, and is strongly linked to the Agda
proof assistant. The second is related to the proof assistant Coq, in the fil-
iation of Coquand and Huet – since Coquand and Huet [CH88]. The um-
brella name “MLTT”, for Martin-Löf Type Theory is the one usually used
for systems in the first school, while ones in the second tend to use “CIC”
– Calculus of Inductive Constructions –, or variants thereof.

This separation is of course not a strict one, and researchers from both
schools interact, exchange theoretical and implementation ideas, andmove
forward together. But still, this cultural difference is not anecdotal, as seem-
ingly small differences between the approaches on both sides lead to wildly
different behaviours between the systems, so that some techniques that are
very successful on one side can prove unusable on the other.

I tried to probe the community of proof assistants1 as to what they con-
sider the more important differences between the two schools, which led
to quite different answers, although this is very approximate: Agda has a
general scheme for inductive types (including cubical ones in the cubical
library) while many articles on CIC only consider a few example inductive
types – as was the case in parts of this thesis –, etc. So this should be read
as “this tradition is more prone to taking that approach”. The results are
summarized in Figure A.1.

Universes Inductive Types Pattern-matching Philosophy Conversion

MLTT Predicative hierarchy 0, 1, 𝑊 and 𝐼 𝑑 Top-level clauses Constructivism Typed

CIC Impredicative Prop General scheme First-class terms None/Formalism Untyped

Figure A.1. General characteristics of MLTT and CIC

Why “CIC”?

The one feature which came out maybe as the more prominent in the dis-
tinction between MLTT and CIC is the presence of an impredicative sort of
propositions, which immensely augments the logical power of the theory,
and makes it much harder to prove normalization. Despite the exclusion of
propositions by default, I still chose to use the name CIC in this thesis, for
multiple reasons.

First, regarding all other columns in the table, the system fits more in the
bottom line than the top one. In particular, the general spirit of studying
conversion using tools from rewriting theory which appears as a repeated
pattern throughout the thesis is incompatible – or, at the very least, must
be heavily amended – with a typed conversion. Moreover, apart from Part
‘Bidirectional Elaboration for Gradual Typing’, the absence of treatment

https://proofassistants.stackexchange.com/questions/267/what-are-the-differences-between-mltt-and-cic

166 A. Names for Type Systems

2: This is a deliberate trade-off, at least in
the case of Agda [Nor07, p. 19].

[Nor07]: Norell (2007), Towards a practical
programming language based on dependent
type theory

of Prop on the paper presentation was done mostly due to simplification
concerns than to theoretical limitations, as the formalization of PCUIC as
a whole illustrates. This also applies to Chapter 10, even though the models
presented in Chapter 11 do not scale to Prop, meaning that the target of
Chapter 10 would then be on a precarious foundation.

But more importantly, in the bidirectional approach, there is again a clear
cultural difference between Agda/MLTT and Coq/CIC. The former have
used the bidirectional ideas for a long time in order to allow for a lightweight
syntax using Curry-style abstractions, at the cost of losing completeness of
typing on non-normal forms.2 The latter insist on keeping enough annota-
tions in the kernel syntax by using Church-style abstractions to let every
term infer, and use a mechanism of implicit arguments during elaboration
to lighten the weight of for users. This means that the completeness theo-
rem as stated in Theorem 4.3 does not hold in any of the standard presen-
tations of MLTT, while it does to CIC’s, as this thesis shows.

Bibliography

Here are the references in citation order.

[Har20] Kevin Hartnett. ‘Building theMathematical Library of the Future’. In:QuantaMagazine (Oct. 1, 2020).
(Visited on 04/20/2022) (cited on pages 1, 13).

[Fre79] Gottlob Frege.Begriffsschrift: Eine der ArithmetischenNachgebildete Formelsprache des ReinenDenkens.
Halle a.d.S.: Louis Nebert, 1879 (cited on pages 3, 4, 15, 16, 25).

[Ded72] Richard Dedekind. Stetigkeit und Undirrationale Zahlen. Braunschweig: F. Vieweg und Sohn, 1872
(cited on pages 3, 15).

[Can72] Georg Cantor. ‘Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen’.
In: Mathematische Annalen 5 (1872), pp. 123–132 (cited on pages 3, 15).

[Pea89] Giuseppe Peano. Arithmetices principia: Nova methodo exposita. Torino: Fratres Bocca, 1889 (cited on
pages 3, 15).

[Can83] GeorgCantor.Grundlagen einer allgemeinenMannigfaltigkeitslehre. Einmathematisch-philosophischer
Versuch in der Lehre des Unendlichen. Leibnitz: Teubner, 1883 (cited on pages 3, 15).

[Fre03] Gottlob Frege. Grundgesetze der Arithmetik. Vol. 2. Pohle: Jena, 1903 (cited on pages 3, 15).

[WR13] Alfred North Whitehead and Bertrand Russell. Principia Mathematica. Cambridge University Press,
1913 (cited on pages 4, 15, 16).

[Zer08] Ernst Zermelo. ‘Untersuchungen über die Grundlagen der Mengenlehre I’. In: Mathematische An-
nalen 65 (1908), pp. 261–281 (cited on pages 4, 15).

[Zer04] E. Zermelo. ‘Beweis, daß jede Menge wohlgeordnet werden kann’. In: Mathematische Annalen 59.4
(1904), pp. 514–516. doi: 10.1007/BF01445300 (cited on pages 4, 15).

[Göd31] Kurt Gödel. ‘Über formal unentscheidbare Sätze der Principia mathematica und verwandter Sys-
teme. I’. In: Monatshefte für Mathematik und Physik 37 (1931), pp. 173–198 (cited on pages 4, 15, 16).

[dBru70] Nicolaas Govert de Bruijn. ‘The mathematical language AUTOMATH, its usage, and some of its
extensions’. In: Symposium on automatic demonstration. Springer. 1970, pp. 29–61 (cited on pages 5,
17).

[Rud92] Piotr Rudnicki. ‘An overview of the Mizar project’. In: Proceedings of the 1992 Workshop on Types for
Proofs and Programs. 1992, pp. 311–330 (cited on pages 5, 17).

[Voe10] Vladimir Voevodsky. ‘Univalent foundations project’. In:NSF grant application (2010) (cited on pages 5,
17).

[Hal12] Thomas Hales. Dense Sphere Packings: A Blueprint for Formal Proofs. London Mathematical Society
Lecture Note Series. Cambridge University Press, 2012 (cited on pages 5, 17).

[Sch21] Peter Scholze. Half a year of the Liquid Tensor Experiment: Amazing developments. Blog post. 2021.
url: https://xenaproject.wordpress.com/2021/06/05/half-a-year-of-the-liquid-tensor-experiment-
amazing-developments/ (visited on 05/18/2022) (cited on pages 5, 17).

[Del00] David Delahaye. ‘A Tactic Language for the System Coq’. In: Proceedings of Logic for Programming
and Automated Reasoning (LPAR). Vol. 1955. LNCS/LNAI. Jan. 2000, pp. 85–95 (cited on pages 5, 17).

[Bla+16] Jasmin C. Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, and Josef Urban. ‘Hammering towards
QED’. In: Journal of Formalized Reasoning 9.1 (Jan. 2016), pp. 101–148. doi: 10.6092/issn.1972-5787/
4593 (cited on pages 5, 17).

[Eki+17] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds, and Clark
Barrett. ‘SMTCoq: A plug-in for integrating SMT solvers into Coq’. In: Computer Aided Verification -
29th International Conference. Heidelberg, Germany, July 2017 (cited on pages 5, 17).

https://doi.org/10.1007/BF01445300
https://xenaproject.wordpress.com/2021/06/05/half-a-year-of-the-liquid-tensor-experiment-amazing-developments/
https://xenaproject.wordpress.com/2021/06/05/half-a-year-of-the-liquid-tensor-experiment-amazing-developments/
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593

[LW22] Robert Y. Lewis and Minchao Wu. ‘A Bi-Directional Extensible Interface Between Lean and Mathe-
matica’. In: Journal of Automated Reasoning (2022). doi: 10.1007/s10817-021-09611-1 (cited on pages 6,
17).

[MMS19] Assia Mahboubi, Guillaume Melquiond, and Thomas Sibut-Pinote. ‘Formally Verified Approxima-
tions of Definite Integrals’. In: Journal of Automated Reasoning 62.2 (Feb. 2019), pp. 281–300. doi:
10.1007/s10817-018-9463-7 (cited on pages 6, 17).

[Käs+17] Daniel Kästner, Xavier Leroy, Sandrine Blazy, Bernhard Schommer, Michael Schmidt, and Christian
Ferdinand. ‘Closing the Gap – The Formally Verified Optimizing Compiler CompCert’. In: SSS’17:
Safety-critical Systems Symposium 2017. Developments in System Safety Engineering: Proceedings
of the Twenty-fifth Safety-critical Systems Symposium. Bristol, United Kingdom: CreateSpace, Feb.
2017, pp. 163–180 (cited on pages 6, 17).

[Bha+17] Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric Fournet, Chris Hawblitzel,
Catalin Hritcu, Samin Ishtiaq, Markulf Kohlweiss, Rustan Leino, Jay Lorch, Kenji Maillard, Jianyang
Pan, Bryan Parno, Jonathan Protzenko, Tahina Ramananandro, Ashay Rane, Aseem Rastogi, Nikhil
Swamy, Laure Thompson, Peng Wang, Santiago Zanella-Béguelin, and Jean-Karim Zinzindohoué.
‘Everest: Towards a Verified, Drop-in Replacement of HTTPS’. In: 2nd Summit on Advances in Pro-
gramming Languages (SNAPL 2017). Ed. by Benjamin S. Lerner, Rastislav Bodík, and Shriram Kr-
ishnamurthi. Vol. 71. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, 1:1–1:12. doi: 10.4230/LIPIcs.SNAPL.2017.
1 (cited on pages 6, 17).

[Imm18] Fabian Immler. ‘A Verified ODE Solver and the Lorenz Attractor’. In: Journal of Automated Reasoning
61.1 (2018), pp. 73–111. doi: 10.1007/s10817-017-9448-y (cited on pages 6, 17).

[Coq22a] The Coq Development Team. The Coq Proof Assistant. Version 8.15. Jan. 2022. doi: 10.5281/zenodo.
5846982 (cited on pages 6, 17).

[Mil78] Robin Milner. ‘A theory of type polymorphism in programming’. In: Journal of Computer and System
Sciences 17.3 (1978), pp. 348–375. doi: 10.1016/0022-0000(78)90014-4 (cited on pages 6, 18, 44).

[How80] William Howard. ‘The Formulae-as-Types Notion of Construction’. In: To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism 44 (1980). Original paper manuscript from 1969,
pp. 479–490 (cited on pages 6, 18).

[CFC58] Haskell Curry, Robert Feys, and William Craig. Combinatory Logic. Vol. 1. North Holland Publishing
Company, 1958 (cited on pages 6, 18).

[BG01] Henk Barendregt and Herman Geuvers. ‘Proof-Assistants Using Dependent Type Systems’. In:Hand-
book of Automated Reasoning. Ed. by Alan Robinson and Andrei Voronkov. Handbook of Automated
Reasoning. Amsterdam: North-Holland, 2001, pp. 1149–1238. doi: 10.1016/B978-044450813-3/50020-5
(cited on pages 8, 19).

[Hue89] Gérard Huet. ‘The Constructive Engine’. In: A Perspective in Theoretical Computer Science. 1989,
pp. 38–69. doi: 10 .1142/9789814368452_0004. eprint: https : / /www.worldscientific .com/doi/pdf/
10.1142/9789814368452_0004 (cited on pages 9, 20, 49).

[Sie+15] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. ‘Refined Criteria for
Gradual Typing’. In: 1st Summit on Advances in Programming Languages (SNAPL 2015). Ed. by Thomas
Ball, Rastislav Bodik, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett. Vol. 32. Leib-
niz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2015, pp. 274–293. doi: 10.4230/LIPIcs.SNAPL.2015.274 (cited on pages 9, 21, 107, 111, 113,
116–118, 123, 126, 132, 141, 149, 150).

[Len+22] Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter. ‘Gradualizing the Cal-
culus of Inductive Constructions’. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) (2022). doi: 10.1145/3495528 (cited on pages 11, 22, 107, 108, 129, 141, 147, 151).

[Mai+22] Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Éric Tanter. A Reasonably Gradual
Type Theory. Mar. 2022. Hal: hal-03596652 (cited on pages 11, 22, 108, 151).

https://doi.org/10.1007/s10817-021-09611-1
https://doi.org/10.1007/s10817-018-9463-7
https://doi.org/10.4230/LIPIcs.SNAPL.2017.1
https://doi.org/10.4230/LIPIcs.SNAPL.2017.1
https://doi.org/10.1007/s10817-017-9448-y
https://doi.org/10.5281/zenodo.5846982
https://doi.org/10.5281/zenodo.5846982
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/B978-044450813-3/50020-5
https://doi.org/10.1142/9789814368452_0004
https://www.worldscientific.com/doi/pdf/10.1142/9789814368452_0004
https://www.worldscientific.com/doi/pdf/10.1142/9789814368452_0004
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1145/3495528
hal-03596652

[Len21] Meven Lennon-Bertrand. ‘Complete Bidirectional Typing for the Calculus of Inductive Construc-
tions’. In: 12th International Conference on Interactive Theorem Proving (ITP 2021). Ed. by Liron Co-
hen and Cezary Kaliszyk. Vol. 193. Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi: 10.4230/LIPIcs.ITP.2021.24 (cited on pages 11,
22).

[SLF22] Matthieu Sozeau, Meven Lennon-Bertrand, and Yannick Forster. ‘The Curious Case of Case: Cor-
rect & Efficient Representation of Case Analysis in Coq and MetaCoq’. Talk. 1st Workshop on the
Implementation of Type Systems, 2022 (cited on pages 11, 22, 64).

[Len22] Meven Lennon-Bertrand. ‘À bas l’η – Coq’s troublesome η-conversion’. Talk. 1st Workshop on the
Implementation of Type Systems, 2022 (cited on pages 11, 22, 65, 160).

[BHL20] Andrej Bauer, Philipp G. Haselwarter, and Peter LeFanu Lumsdaine.A general definition of dependent
type theories. 2020. arXiv: 2009.05539 (cited on pages 24, 52, 69, 159, 160).

[Ayd+05] Brian Aydemir, Aaron Bohannon, Matthew Fairbairn, Nathan Foster, Benjamin Pierce, Peter Sewell,
Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve Zdancewic. ‘Mechanized
metatheory for the masses: the POPLmark challenge’. In: International Conference on Theorem Prov-
ing in Higher Order Logics. Springer. 2005, pp. 50–65 (cited on page 24).

[CH88] Thierry Coquand and Gérard Huet. ‘The calculus of constructions’. In: Information and Computation
76.2 (1988), pp. 95–120. doi: 10.1016/0890-5401(88)90005-3 (cited on pages 24, 42, 165).

[Bar92] Henk Barendregt. ‘Lambda Calculi with Types’. In: Handbook of Logic in Computer Science. 1992
(cited on page 25).

[Nor07] Ulf Norell. ‘Towards a practical programming language based on dependent type theory’. PhD thesis.
Department of Computer Science and Engineering, Chalmers University of Technology, Sept. 2007
(cited on pages 25, 49, 57, 58, 66, 166).

[AÖV17] Andreas Abel, Joakim Öhman, and Andrea Vezzosi. ‘Decidability of Conversion for Type Theory in
Type Theory’. In: Proc. ACM Program. Lang. 2.POPL (Dec. 2017). doi: 10 . 1145 / 3158111 (cited on
pages 25, 57, 65, 66, 73, 76, 160).

[McB22] Conor McBride. ‘Types Who Say Ni’. 2022 (cited on pages 25, 58, 159).

[Pal98] Erik Palmgren. ‘On universes in type theory’. eng. In: Twenty Five Years of Constructive Type Theory.
Oxford University Press, 1998. doi: 10.1093/oso/9780198501275.003.0012 (cited on page 25).

[Gir72] Jean-Yves Girard. ‘Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre
supérieur’. PhD thesis. Université Paris VII, 1972 (cited on page 25).

[Mar72] Per Martin-Löf. An intuitionistic theory of types. 1972 (cited on pages 25, 27, 35, 66, 165). Reprinted
in Giovanni Sambin and Jan Smith. Twenty five years of constructive type theory. Vol. 36. Clarendon
Press, 1998.

[HP91] Robert Harper and Robert Pollack. ‘Type checking with universes’. In: Theoretical Computer Science
89.1 (1991). doi: 10.1016/0304-3975(90)90108-T (cited on page 26).

[Bar85] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Revised Edition. Studies in Logics and
the Foundation of Mathematics 103. North Holland, 1985 (cited on page 27).

[Bar91] Henk Barendregt. ‘An Introduction to Generalized Type Systems’. In: Journal of Functional Program-
ming 1 (Apr. 1991), pp. 125–154. doi: 10.1017/S0956796800020025 (cited on pages 27, 53, 123, 125).

[HB21] Philipp G. Haselwarter and Andrej Bauer. Finitary type theories with and without contexts. 2021. doi:
10.48550/ARXIV.2112.00539 (cited on page 31).

[Tak95] M. Takahashi. ‘Parallel Reductions in λ-Calculus’. In: Information and Computation 118.1 (1995),
pp. 120–127. doi: 10.1006/inco.1995.1057 (cited on pages 33, 92, 133).

[WF94] Andrew Wright and Matthias Felleisen. ‘A Syntactic Approach to Type Soundness’. In: Information
and Computation 115.1 (1994), pp. 38–94. doi: 10.1006/inco.1994.1093 (cited on page 34).

[Tai67] WilliamWTait. ‘Intensional interpretations of functionals of finite type I’. In: The journal of symbolic
logic 32.2 (1967), pp. 198–212 (cited on page 35).

https://doi.org/10.4230/LIPIcs.ITP.2021.24
https://arxiv.org/abs/2009.05539
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1145/3158111
https://doi.org/10.1093/oso/9780198501275.003.0012
https://doi.org/10.1016/0304-3975(90)90108-T
https://doi.org/10.1017/S0956796800020025
https://doi.org/10.48550/ARXIV.2112.00539
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1006/inco.1994.1093

[Abe13] Andreas Abel. ‘Normalization by Evaluation: Dependent Types and Impredicativity’. Habilitation
thesis. Institut für Informatik, Ludwig-Maximilians-Universität München, 2013 (cited on page 35).

[Geu01] Herman Geuvers. ‘Induction Is Not Derivable in Second Order Dependent Type Theory’. In: Typed
Lambda Calculi and Applications. Ed. by Samson Abramsky. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2001, pp. 166–181 (cited on page 35).

[Pau93] C. Paulin-Mohring. ‘Inductive Definitions in the System Coq - Rules and Properties’. In: Proceedings
of the conference Typed Lambda Calculi and Applications. Ed. by M. Bezem and J.-F. Groote. Lecture
Notes in Computer Science 664. LIP research report 92-49. 1993 (cited on page 35).

[MS84] Per Martin-Löf and Giovanni Sambin. Intuitionistic Type Theory. Studies in Proof Theory 1. Napoli:
Bibliopolis, 1984 (cited on page 35).

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study: https://homotopytypetheory.org/book, 2013 (cited on pages 39, 66).

[LW11] Gyesik Lee and Benjamin Werner. ‘Proof-irrelevant model of CC with predicative induction and
judgmental equality’. In: Logical Methods in Computer Science Volume 7, Issue 4 (Nov. 2011). doi:
10.2168/LMCS-7(4:5)2011 (cited on pages 41, 65).

[Pol92] R. Pollack. ‘Typechecking in Pure Type Systems’. In: Informal Proceedings of the 1992 Workshop on
Types for Proofs and Programs, Båstad, Sweden. June 1992, pp. 271–288 (cited on pages 43, 44, 53, 54).

[ST14] Matthieu Sozeau and Nicolas Tabareau. ‘Universe Polymorphism in Coq’. In: Interactive Theorem
Proving. Ed. by Gerwin Klein and Ruben Gamboa. Cham: Springer International Publishing, 2014,
pp. 499–514 (cited on page 44).

[Hin69] R. Hindley. ‘The Principal Type-Scheme of an Object in Combinatory Logic’. In: Transactions of the
American Mathematical Society 146 (1969), pp. 29–60 (cited on page 44).

[TS18] Amin Timany and Matthieu Sozeau. ‘Cumulative Inductive Types In Coq’. In: 3rd International Con-
ference on Formal Structures for Computation and Deduction (FSCD 2018). Ed. by Hélène Kirchner.
Vol. 108. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: SchlossDagstuhl–
Leibniz-Zentrum fuer Informatik, 2018, pp. 1–16. doi: 10.4230/LIPIcs.FSCD.2018.29 (cited on page 44).

[Gim95] Eduarde Giménez. ‘Codifying guarded definitions with recursive schemes’. In: Types for Proofs and
Programs. Ed. by Peter Dybjer, Bengt Nordström, and Jan Smith. Springer Berlin Heidelberg, 1995,
pp. 39–59 (cited on pages 44, 45, 161).

[CST20] Cyril Cohen, Kazuhiko Sakaguchi, and Enrico Tassi. ‘Hierarchy Builder: algebraic hierarchies made
easy in Coq with Elpi’. In: FSCD 2020 - 5th International Conference on Formal Structures for Com-
putation and Deduction. 5th International Conference on Formal Structures for Computation and
Deduction (FSCD 2020) 167. Paris, France, June 2020, 34:1–34:21. doi: 10.4230/LIPIcs.FSCD.2020.34
(cited on page 45).

[Abe+13] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. ‘Copatterns: programming infi-
nite structures by observations’. In: The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013. Ed. by Roberto Giacobazzi
and Radhia Cousot. ACM, 2013, pp. 27–38. doi: 10.1145/2429069.2429075 (cited on page 45).

[Jim96] Trevor Jim. ‘What Are Principal Typings and What Are They Good For?’ In: Proceedings of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’96. St. Peters-
burg Beach, Florida, USA: Association for Computing Machinery, 1996, pp. 42–53. doi: 10 . 1145 /
237721.237728 (cited on page 49).

[PT00] Benjamin C. Pierce and David N. Turner. ‘Local Type Inference’. In: ACM Transactions on Program-
ming Languages and Systems 22.1 (Jan. 2000), pp. 1–44. doi: 10.1145/345099.345100 (cited on page 49).

[DK21] Jana Dunfield and Neel Krishnaswami. ‘Bidirectional Typing’. In: ACMComputing Surveys 54.5 (May
2021). doi: 10.1145/3450952 (cited on pages 49, 52, 99, 159).

[McB18] Conor McBride. ‘Basics of Bidirectionalism’. Blog post. Aug. 6, 2018. (Visited on 05/30/2022) (cited
on pages 49, 51, 57, 97).

https://homotopytypetheory.org/book
https://doi.org/10.2168/LMCS-7(4:5)2011
https://doi.org/10.4230/LIPIcs.FSCD.2018.29
https://doi.org/10.4230/LIPIcs.FSCD.2020.34
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1145/237721.237728
https://doi.org/10.1145/237721.237728
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/3450952

[McB19] Conor McBride. ‘Check the Box!’ In: 25th International Conference on Types for Proofs and Programs.
June 14, 2019 (cited on pages 49, 51, 57).

[Coq96] Thierry Coquand. ‘An algorithm for type-checking dependent types’. In: Science of Computer Pro-
gramming 26.1 (1996). doi: 10.1016/0167-6423(95)00021-6 (cited on pages 49, 57).

[Asp+12] Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. ‘A Bi-Directional Refine-
ment Algorithm for the Calculus of (Co)Inductive Constructions’. In: Logical Methods in Computer
Science Volume 8, Issue 1 (Mar. 2012). doi: 10.2168/LMCS-8(1:18)2012 (cited on pages 49, 55, 58).

[AA11] Andreas Abel and Thorsten Altenkirch. ‘A Partial Type Checking Algorithm for Type:Type’. In: Elec-
tronic Notes in Theoretical Computer Science 229.5 (2011). Proceedings of the Second Workshop on
Mathematically Structured Functional Programming (MSFP 2008), pp. 3–17. doi: 10.1016/j .entcs .
2011.02.013 (cited on pages 54, 57).

[ACD08] Andreas Abel, Thierry Coquand, and Peter Dybjer. ‘Verifying a Semantic 𝛽𝜂-Conversion Test for
Martin-Löf Type Theory’. In: Mathematics of Program Construction. Ed. by Philippe Audebaud and
Christine Paulin-Mohring. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 29–56 (cited on
pages 54, 57).

[GSB19] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. ‘Implementing a Modal Dependent Type The-
ory’. In: Proc. ACM Program. Lang. 3.ICFP (July 2019). doi: 10.1145/3341711 (cited on pages 54, 58,
159).

[Saï97] Amokrane Saïbi. ‘Typing Algorithm in Type Theory with Inheritance’. In: Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL ’97. doi:10.1145/263699.263742
(1997). doi: 10.1145/263699.263742 (cited on pages 54, 55).

[Soz07] Matthieu Sozeau. ‘Subset Coercions in Coq’. In: Types for Proofs and Programs. Ed. by Thorsten
Altenkirch and Conor McBride. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 237–252
(cited on pages 54, 55).

[AC07] Andreas Abel and Thierry Coquand. ‘Untyped Algorithmic Equality for Martin-Löf’s Logical Frame-
work with Surjective Pairs’. In: Fundamenta Informaticae 77.4 (2007). TLCA’05 special issue., pp. 345–
395 (cited on page 57).

[McB16] Conor McBride. ‘I Got Plenty o’ Nuttin’’. In: A List of Successes That Can Change the World: Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday. Ed. by Sam Lindley, Conor McBride,
Phil Trinder, and Don Sannella. Springer International Publishing, 2016, pp. 207–233. doi: 10.1007/
978-3-319-30936-1_12 (cited on page 57).

[Gil+19] GaëtanGilbert, Jesper Cockx,Matthieu Sozeau, andNicolas Tabareau. ‘Definitional Proof-Irrelevance
without K’. In: Proceedings of the ACMon Programming Languages. POPL’19 3.POPL (Jan. 2019), pp. 1–
28. doi: 10.1145/329031610.1145/3290316 (cited on pages 66, 154, 155, 158).

[PT22] Loıc̈ Pujet and Nicolas Tabareau. ‘Observational Equality: Now for Good’. In: Proc. ACM Program.
Lang. 6.POPL (Jan. 2022). doi: 10.1145/3498693 (cited on pages 66, 157).

[App22] Andrew W. Appel. ‘Coq’s Vibrant Ecosystem for Verification Engineering (Invited Talk)’. In: Proceed-
ings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs. CPP 2022.
Philadelphia, PA, USA: Association for Computing Machinery, 2022, pp. 2–11. doi: 10.1145/3497775.
3503951 (cited on page 66).

[Wer94] Benjamin Werner. ‘Une Théorie des Constructions Inductives’. Theses. Université Paris-Diderot -
Paris VII, May 1994 (cited on page 73).

[Alt93] Thorsten Altenkirch. ‘Constructions, Inductive Types and Strong Normalization’. PhD thesis. Uni-
versity of Edinburgh, 1993 (cited on page 73).

[Soz+20] Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter. ‘Coq
Coq Correct! Verification of Type Checking and Erasure for Coq, in Coq’. In: Proceedings of the ACM
on Programming Languages (Jan. 2020), pp. 1–28. doi: 10.1145/3371076 (cited on pages 73, 100).

[TS17] Amin Timany and Matthieu Sozeau. Consistency of the Predicative Calculus of Cumulative Inductive
Constructions (pCuIC). Research Report RR-9105. KU Leuven, Belgium ; Inria Paris, Oct. 2017, p. 32
(cited on page 86).

https://doi.org/10.1016/0167-6423(95)00021-6
https://doi.org/10.2168/LMCS-8(1:18)2012
https://doi.org/10.1016/j.entcs.2011.02.013
https://doi.org/10.1016/j.entcs.2011.02.013
https://doi.org/10.1145/3341711
https://doi.org/10.1145/263699.263742
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1145/329031610.1145/3290316
https://doi.org/10.1145/3498693
https://doi.org/10.1145/3497775.3503951
https://doi.org/10.1145/3497775.3503951
https://doi.org/10.1145/3371076

[Aba+91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. ‘Explicit substitutions’. In: Journal of Functional
Programming 1.4 (1991), pp. 375–416. doi: 10.1017/S0956796800000186 (cited on page 90).

[STS15] Steven Schäfer, Tobias Tebbi, and Gert Smolka. ‘Autosubst: Reasoning with de Bruijn Terms and
Parallel Substitutions’. In: Interactive Theorem Proving. Ed. by Christian Urban and Xingyuan Zhang.
Cham: Springer International Publishing, 2015, pp. 359–374 (cited on page 90).

[SM19] Matthieu Sozeau and Cyprien Mangin. ‘Equations Reloaded: High-Level Dependently-Typed Func-
tional Programming and Proving in Coq’. In: Proc. ACM Program. Lang. 3.ICFP (July 2019). doi: 10.
1145/3341690 (cited on page 93).

[PT17] Pierre-Marie Pédrot and Nicolas Tabareau. ‘An Effectful Way to Eliminate Addiction to Dependence’.
In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2017. doi: 10.1109/
LICS.2017.8005113 (cited on page 95).

[Win20] ThéoWinterhalter. ‘Formalisation andmeta-theory of type theory’. PhD thesis. Université deNantes,
2020 (cited on page 101).

[ST06] Jeremy G. Siek and Walid Taha. ‘Gradual Typing for Functional Languages’. In: In Scheme and Func-
tional Programming Workshop. 2006, pp. 81–92 (cited on pages 107, 110, 112, 115, 116, 127, 128, 131,
132).

[Ou+04] Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. ‘Dynamic Typing with Dependent
Types’. In: Proceedings of the IFIP International Conference on Theoretical Computer Science. 2004,
pp. 437–450 (cited on page 107).

[WF09] Philip Wadler and Robert Bruce Findler. ‘Well-Typed Programs Can’t Be Blamed’. In: Proceedings of
the 18th European Symposium on Programming Languages and Systems (ESOP 2009). Ed. by Giuseppe
Castagna. Lecture Notes in Computer Science. Springer-Verlag, 2009, pp. 1–16 (cited on pages 107,
131).

[KF10] Kenneth Knowles and Cormac Flanagan. ‘Hybrid type checking’. In: ACM Transactions on Program-
ming Languages and Systems 32.2 (Jan. 2010) (cited on page 107).

[TT15] Éric Tanter and Nicolas Tabareau. ‘Gradual Certified Programming in Coq’. In: Proceedings of the
11th ACM Dynamic Languages Symposium (DLS 2015). Pittsburgh, PA, USA: ACM Press, Oct. 2015,
pp. 26–40 (cited on page 107).

[LT17] Nico Lehmann and Éric Tanter. ‘Gradual Refinement Types’. In: Proceedings of the 44th ACMSIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2017). Paris, France: ACM Press,
Jan. 2017, pp. 775–788 (cited on page 107).

[DTT18] Pierre-Évariste Dagand, Nicolas Tabareau, and Éric Tanter. ‘Foundations of Dependent Interoper-
ability’. In: Journal of Functional Programming 28 (2018) (cited on page 107).

[MT21] Assia Mahboubi and Enrico Tassi. Mathematical Components. Zenodo, Jan. 2021 (cited on page 109).

[ETG19] Joseph Eremondi, Éric Tanter, and Ronald Garcia. ‘Approximate Normalization for Gradual Depen-
dent Types’. In: Proceedings of the ACM on Programming Languages 3.ICFP (Aug. 2019) (cited on
pages 110, 120, 124, 128).

[GCT16] Ronald Garcia, Alison M. Clark, and Éric Tanter. ‘Abstracting Gradual Typing’. In: Proceedings of the
43rd ACM Symposium on Principles of Programming Languages (POPL 2016). St Petersburg, FL, USA:
ACM Press, Jan. 2016, pp. 429–442 (cited on pages 112, 115–117, 120, 128, 131).

[PT18] Pierre-Marie Pédrot and Nicolas Tabareau. ‘Failure is Not an Option An Exceptional Type Theory’.
In: ESOP 2018 - 27th European Symposium on Programming. Vol. 10801. LNCS. Thessaloniki, Greece:
Springer, 2018, pp. 245–271. doi: 10.1007/978-3-319-89884-1_9 (cited on pages 114, 129, 133, 151,
157).

[Péd+19] Pierre-Marie Pédrot, Nicolas Tabareau, Hans Jacob Fehrmann, and Éric Tanter. ‘A Reasonably Ex-
ceptional Type Theory’. In: ICFP 2019 - 24th ACM SIGPLAN International Conference on Functional
Programming. Berlin, Germany: ACM, Aug. 2019. doi: 10.1145/3341712 (cited on pages 114, 157).

https://doi.org/10.1017/S0956796800000186
https://doi.org/10.1145/3341690
https://doi.org/10.1145/3341690
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1007/978-3-319-89884-1_9
https://doi.org/10.1145/3341712

[PT20] Pierre-Marie Pédrot and Nicolas Tabareau. ‘The Fire Triangle: How to Mix Substitution, Dependent
Elimination, and Effects’. In: Proceedings of the ACM on Programming Languages 4.POPL (2020). doi:
10.1145/3371126 (cited on page 114).

[BGT16] Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. ‘Gradual type-and-effect systems’. In:
Journal of Functional Programming 26 (2016). doi: 10.1017/S0956796816000162 (cited on page 115).

[FT13] Luminous Fennell and Peter Thiemann. ‘Gradual Security Typing with References’. In: 2013 IEEE 26th
Computer Security Foundations Symposium. 2013, pp. 224–239. doi: 10.1109/CSF.2013.22 (cited on
page 115).

[TGT18] Matıás Toro, Ronald Garcia, and Éric Tanter. ‘Type-Driven Gradual Security with References’. In:
ACM Trans. Program. Lang. Syst. 40.4 (Dec. 2018). doi: 10.1145/3229061 (cited on page 115).

[TF14] Peter Thiemann and Luminous Fennell. ‘Gradual Typing for Annotated Type Systems’. In: Program-
ming Languages and Systems. Ed. by Zhong Shao. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 47–66 (cited on page 115).

[BMT10] Gavin Bierman, Erik Meijer, and Mads Torgersen. ‘Adding Dynamic Types to C#’. In: ECOOP 2010 –
Object-Oriented Programming. Ed. by Theo D’Hondt. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 76–100 (cited on page 115).

[HTF10] DavidHerman, Aaron Tomb, andCormac Flanagan. ‘Space-efficient gradual typing’. In:Higher-Order
and Symbolic Computation 23.2 (2010), pp. 167–189 (cited on page 116).

[TF08] Sam Tobin-Hochstadt and Matthias Felleisen. ‘The Design and Implementation of Typed Scheme’.
In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’08. San Francisco, California, USA: Association for Computing Machinery, 2008,
pp. 395–406. doi: 10.1145/1328438.1328486 (cited on page 116).

[SW10] Jeremy G. Siek and Philip Wadler. ‘Threesomes, with and without Blame’. In: Proceedings of the
37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’10.
Madrid, Spain: Association for Computing Machinery, 2010, pp. 365–376. doi: 10 . 1145 / 1706299 .
1706342 (cited on pages 116, 130).

[SGT09] Jeremy Siek, Ronald Garcia, and Walid Taha. ‘Exploring the Design Space of Higher-Order Casts’. In:
Programming Languages and Systems. Ed. by Giuseppe Castagna. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 17–31 (cited on page 116).

[TT20] Matías Toro and Éric Tanter. ‘Abstracting gradual references’. In: Science of Computer Programming
197 (2020), p. 102496. doi: 10.1016/j.scico.2020.102496 (cited on page 116).

[Bañ+21] Felipe Bañados Schwerter, Alison M. Clark, Khurram A. Jafery, and Ronald Garcia. ‘Abstracting
Gradual Typing Moving Forward: Precise and Space-Efficient’. In: Proceedings of the ACM on Pro-
gramming Languages 5.POPL (Jan. 2021). doi: 10.1145/3434342 (cited on page 116).

[NA18] Max S. New and Amal Ahmed. ‘Graduality from Embedding-Projection Pairs’. In: Proceedings of the
ACM on Programming Languages 2.ICFP (July 2018). doi: 10.1145/3236768 (cited on pages 117, 118,
121, 130, 145, 157).

[ISI17] Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi. ‘On Polymorphic Gradual Typing’. In: Proceedings
of the ACM on Programming Languages 1.ICFP (Aug. 2017). doi: 10.1145/3110284 (cited on page 117).

[Cas+19] Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek. ‘Gradual Typing: A
New Perspective’. In: Proc. ACM Program. Lang. 3.POPL (2019). doi: 10 . 1145 / 3290329 (cited on
page 120).

[Eis16] Richard Eisenberg. Dependent Types in Haskell: Theory and Practice. 2016. arXiv: 1610.07978 (cited on
pages 121, 126, 139).

[Bra13] Edwin Brady. ‘Idris, a general-purpose dependently typed programming language: Design and im-
plementation’. In: Journal of Functional Programming 23.5 (2013), pp. 552–593 (cited on pages 121,
124).

[GT20] Ronald Garcia and Éric Tanter. ‘Gradual Typing as if Types Mattered’. In: Informal Proceedings of the
ACM SIGPLAN Workshop on Gradual Typing (WGT20). 2020 (cited on page 124).

https://doi.org/10.1145/3371126
https://doi.org/10.1017/S0956796816000162
https://doi.org/10.1109/CSF.2013.22
https://doi.org/10.1145/3229061
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1706299.1706342
https://doi.org/10.1145/1706299.1706342
https://doi.org/10.1016/j.scico.2020.102496
https://doi.org/10.1145/3434342
https://doi.org/10.1145/3236768
https://doi.org/10.1145/3110284
https://doi.org/10.1145/3290329
https://arxiv.org/abs/1610.07978

[Ngu+19] Phúc Nguyễn, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn. ‘Size-Change Termina-
tion as a Contract: Dynamically and Statically Enforcing Termination for Higher-Order Programs’.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. PLDI 2019. Phoenix, AZ, USA: Association for Computing Machinery, 2019, pp. 845–859.
doi: 10.1145/3314221.3314643 (cited on page 124).

[Coq22b] The Coq Development Team. The Coq proof assistant reference manual. Version 8.15. Jan. 2022. url:
https://coq.inria.fr/refman/ (visited on 04/11/2022) (cited on page 127).

[ST07] Jeremy Siek and Walid Taha. ‘Gradual Typing for Objects’. In: ECOOP 2007 – Object-Oriented Pro-
gramming. Ed. by Erik Ernst. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 2–27 (cited on
page 128).

[Bou18] S. Boulier. ‘Extending Type Theory with Syntactical Models’. PhD thesis. École Mines-Telecom At-
lantique, 2018 (cited on pages 128, 151).

[Lev04] Paul Blain Levy. Call-By-Push-Value: A Functional/Imperative Synthesis. Vol. 2. Semantics Structures
in Computation. Springer, 2004 (cited on page 131).

[MM94] Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic: A First Introduction to Topos
Theory. Universitext. Springer New York, 1994 (cited on page 131).

[FF02] Robert Bruce Findler andMatthias Felleisen. ‘Contracts for Higher-Order Functions’. In: Proceedings
of the Seventh ACM SIGPLAN International Conference on Functional Programming. ICFP ’02. Pitts-
burgh, PA, USA: Association for Computing Machinery, 2002, pp. 48–59. doi: 10.1145/581478.581484
(cited on page 131).

[CS16] Matteo Cimini and Jeremy G. Siek. ‘The Gradualizer: A Methodology and Algorithm for Generating
Gradual Type Systems’. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’16. St. Petersburg, FL, USA: Association for Computing
Machinery, 2016, pp. 443–455. doi: 10.1145/2837614.2837632 (cited on page 137).

[BPT17] Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. ‘The next 700 syntactical models of type
theory’. In: Certified Programs and Proofs (CPP 2017). Paris, France, Jan. 2017, pp. 182–194. doi: 10.
1145/3018610.3018620 (cited on page 151).

[Mar96] Per Martin-Löf. ‘On the Meanings of the Logical Constants and the Justifications of the Logical
Laws’. In: Nordic Journal of Philosophical Logic 1.1 (1996), pp. 11–60 (cited on page 151).

[DS03] Peter Dybjer and Anton Setzer. ‘Induction-recursion and initial algebras’. In: Annals of Pure and
Applied Logic 124.1-3 (2003), pp. 1–47. doi: 10.1016/S0168-0072(02)00096-9 (cited on page 151).

[GMF15] Neil Ghani, Lorenzo Malatesta, and Fredrik Nordvall Forsberg. ‘Positive Inductive-Recursive Defini-
tions’. In: Logical Methods in Computer Science 11.1 (2015). doi: 10.2168/LMCS-11(1:13)2015 (cited
on page 151).

[BMM04] Edwin Brady, ConorMcBride, and JamesMcKinna. ‘Inductive Families NeedNot Store Their Indices’.
In: Types for Proofs and Programs. Ed. by Stefano Berardi, Mario Coppo, and Ferruccio Damiani.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 115–129 (cited on pages 154, 155).

[McB99] Conor McBride. ‘Dependently typed functional programs and their proofs’. PhD thesis. University
of Edinburgh, 1999 (cited on page 155).

[AMS07] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. ‘Observational Equality, Now!’ In: Pro-
ceedings of the 2007 Workshop on Programming Languages Meets Program Verification. PLPV ’07.
Freiburg, Germany: Association for Computing Machinery, 2007, pp. 57–68. doi: 10.1145/1292597.
1292608 (cited on page 157).

[BP22] Andrej Bauer and Anja Petković Komel. ‘An extensible equality checking algorithm for dependent
type theories’. In: Logical Methods in Computer Science Volume 18, Issue 1 (Jan. 2022). doi: 10.46298/
lmcs-18(1:17)2022 (cited on page 159).

https://doi.org/10.1145/3314221.3314643
https://coq.inria.fr/refman/
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/2837614.2837632
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1016/S0168-0072(02)00096-9
https://doi.org/10.2168/LMCS-11(1:13)2015
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.46298/lmcs-18(1:17)2022
https://doi.org/10.46298/lmcs-18(1:17)2022

[FK19] Yannick Forster and Fabian Kunze. ‘A Certifying Extraction with Time Bounds from Coq to Call-By-
Value Lambda Calculus’. In: 10th International Conference on Interactive Theorem Proving (ITP 2019).
Ed. by John Harrison, John O’Leary, and Andrew Tolmach. Vol. 141. Leibniz International Proceed-
ings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2019, 17:1–17:19. doi: 10.4230/LIPIcs.ITP.2019.17 (cited on page 161).

[LUF20] Bohdan Liesnikov, Marcel Ullrich, and Yannick Forster. Generating induction principles and subterm
relations for inductive types using MetaCoq. 2020. doi: 10.48550/ARXIV.2006.15135 (cited on page 161).

https://doi.org/10.4230/LIPIcs.ITP.2019.17
https://doi.org/10.48550/ARXIV.2006.15135

Titre : Typage Bidirectionnel pour le Calcul des Constructions Inductives

Mot clés : Théorie des Types, Assistants à la Preuve, Typage Bidirectionnel, Calcul des
Constructions Inductives, Coq, Typage Graduel

Résumé : Durant leurs plus de 50 ans d’exis-
tence, les assistants à la preuve se sont éta-
blis comme des outils permettant un haut ni-
veau de fiabilité dans de nombreuses appli-
cations. Cependant, du fait de leur complexité
grandissante, la solution historique de faire
confiance à un petit noyau stable n’est plus
suffisante pour avancer en évitant des bugs
critiques. Mais les assistants à la preuve sont
utilisés depuis des décennies pour certifier la
correction de programmes, pourquoi pas la
leur ? C’est l’ambition du projet METACOQ, vi-
sant à construire le premier noyau réaliste à la
correction formellement prouvée, pour l’assis-
tant à la preuve COQ. Ne faites plus confiance
au programme, seulement à sa preuve !

Cette thèse étudie la structure bidirec-
tionnelle qui sous-tend l’algorithme de typage
implémenté par le noyau de COQ, dans le
contexte du Calcul des Constructions Induc-
tives (CIC) qui fonde celui-ci. Le tout est for-
malisé dans le cadre de METACOQ, et consti-
tue un passage obligé pour atteindre l’objec-
tif du projet, fournissant un intermédiaire entre
limplémentation et sa spécification. Enfin, le
contrôle renforcé sur le calcul offert par le ty-
page bidirectionnel est une pièce nécessaire
à la conception d’une extension graduelle de
CIC, qui vise à apporter au développement
en COQ la flexibilité du typage dynamique et
constitue la dernière partie de la thèse.

Title: Bidirectional Typing for the Calculus of Inductive Constructions

Keywords: Type Theory, Proof Assistant, Bidirectional Typing, Calculus of Inductive Construc-
tions, Coq, Gradual Typing

Abstract: Over their more than 50 years of
existence, proof assistants have established
themselves as tools guaranteeing high trust
levels in many applications. Yet, due to their
increasing complexity, the historical solution of
relying on a small, trusted kernel is not enough
anymore to avoid critical bugs while moving
forward. But proof assistants have been used
for decades to certify program correctness, so
why not their own? This is the ambition of
the METACOQ project, which aims at provid-
ing the first realistic kernel for a proof assistant
COQ to be formally proven correct, in COQ it-
self. Don’t trust the program anymore, only its
proof!

This thesis studies the bidirectional struc-
ture on which the typing algorithm imple-
mented by the kernel of COQ relies, in the
context of the Calculus of Inductive Construc-
tions on which it is founded. This is formalized
as a part of METACOQ, and is a key step to
reach the projects goal, by giving an interme-
diate layer between the implementation and its
specification. Moreover, the increased control
over computation offered by bidirectional typ-
ing is a necessary piece in designing a grad-
ual extension of CIC, which aims at bringing to
development in COQ the flexibility of dynamic
typing, and forms the last part of the thesis.

	Bidirectional Typing in the Calculus of Inductive Constructions
	Abstract
	Acknowledgments
	How to Read This Thesis
	Contents
	Résumé en français
	Une très courte histoire de la logique
	Les ordinateurs entrent en scène
	Coq et son noyau
	Et cette thèse, alors ?

	Introduction
	A Very Short History of Logic
	Computers Enter the Scene
	Coq and Its Kernel
	And this Thesis?

	The Calculus of Inductive Constructions
	Terms and Types
	Functional Core: CCω
	50 Shades of Conversion
	The Good Properties
	Adding Inductive Types: CIC
	Beyond CIC: PCUIC

	Bidirectional Calculus of Inductive Constructions
	Warm-up: CCω
	Turning CCω Bidirectional
	Properties of the Bidirectional System

	Bidirectional PCUIC
	Cumulativity
	Inductive Types

	Bidirectional Conversion
	Bidirectional Conversion
	Untyped Presentation
	McBride’s Discipline
	Equivalence of the presentations

	A Certified Kernel for Coq, in Coq
	Formalized Meta-Theory of PCUIC
	Setting up the Definitions: Terms, Cumulativity and Types
	Stabilities
	Confluence
	The Road to Subject Reduction
	Normalization

	Building a Certified Kernel
	Formalized Bidirectional Typing
	Before Typing: Environment Querying and Cumulativity Checking
	Sound and Complete Inference
	Beyond Typing: Environment Checking and Re-Typing

	Bidirectional Elaboration for Gradual Typing
	Gradual Typing Meets Dependent Types
	Safety and Normalization, Endangered
	Non-Gradual Approaches
	Gradual Simple Types
	Graduality and Dependent Types
	The Fire Triangle of Graduality
	GCIC: An Overview

	From GCIC to CastCIC: Bidirectional Elaboration
	CastCIC
	Bidirectional Elaboration: from GCIC to CCIC
	Precision is a Simulation for Reduction
	Properties of GCIC

	Beyond CastCIC: Models, Indices and Pure Reasoning
	Realizing CastCIC
	The issue with indices: gradual vectors and equalities
	A Reasonably Gradual Type Theory

	Perspectives
	Bidirectional Typing for Dependent Types
	MetaCoq’s Future
	Gradual CIC

	Appendix
	Names for Type Systems

	Bibliography

