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Abstract

In this work, we describe a presentation of dependent type systems rooted in bidi-
rectional ideas, carefully separating at the syntax level between inferring and checking
terms. This leads to a system which requires exactly the annotations needed to decide
type-checking. Moreover, it readily embeds the two most usual ways to handle typing in
dependent type systems, either by restricting to a certain subclass of terms that do not
need annotations (as done in Agda), or by demanding certain annotations to be provided
(as done in Coq), providing an elegant unifying framework.

1 Dependent type-checking is more subtle than you think
While a large body of work has been devoted to showing decidability of conversion for vari-
ous complex dependent type systems, decidability of typing has attracted comparatively little
interest. However, it is a more subtle question than on can at first think.

Type-checking for dependent type systems is, in general, undecidable [3]. The main culprits
are (β-)redexes: when considering f u, a type-checker typically infers a type Πx : A.B for the
function f , then checks u against A. However, when the function f is an abstraction λx.t, there
is nowhere this A can be obtained from! Trying to infer A from u runs into a similar issue.

There are two standard approaches to get out of this difficulty. The first one is to restrict
the terms fed to the type-checker to a subset for which type-checking becomes decidable again.
The kernel of the Agda proof assistant, for instance, only manipulates terms in normal forms
[9], for which type-checking is generally decidable whenever conversion is [1, 5].

The second approach is to decorate terms with type annotations, to ensure one can always
infer a type for any typable term. For instance, in Coq or Lean, the kernel only deals with
annotated abstractions λx : A.t, which contain exactly the information we were missing in the
redex earlier. Again, this leads to decidable type-checking when conversion is decidable [6].

In practice, these limitations are mitigated at the user level using unification, allowing for
a syntax which is more flexible than the kernel’s. Still both approaches still have significant
drawbacks. Because Agda can only represent normal forms, it has to eagerly normalize terms,
and cannot type-check intermediate steps of its reduction machine. Because Coq can only
represent terms that infer, it can be quite inefficient, as annotations create a lot of redundancy.
Finally, elaboration based on unification is inherently incomplete. This makes them less pre-
dictable, forcing users to get an intuition as to which unification problems their tool can solve.
Designing a system which has a complete, and thus predictable, type-checking, and has less of
the aforementioned shortcomings, thus seems like a desirable goal.

2 A bidirectional analysis
To better understand the issue, we can turn to bidirectional typing [4], an analysis of type-
checking algorithms which emphasizes the difference between two modes, between which most
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such algorithms alternate: checking–where the type is known–and inference–where it is to be
found. In this view, the issue with our redex is that in an application f u we want the function
f to infer a type, but an abstraction λx.t can only be reasonably checked. Both solutions
sketched in Section 1 are quite radical: Agda forces f to be a neutral term which always infers,
while Coq demands that all terms infer a type. What if, instead, we simply demanded that f
inferred a type, whatever way it achieves this? What if we separated, already in the syntax,
between inferring terms and checking terms to be able to express this demand?

This idea has already appeared in the literature [5, 8]. Both works, however, use it only
to relax Agda-style type-checking, by adding an annotation t :: A to a language otherwise
completely devoid of them, allowing writing a β-redex as (λx.t :: Πx : A.B) u. But this is
heavier than Coq-style annotations, because in general only the domain annotation is really
needed. So, let us simply throw these in as well! Altogether, the functional fragment of such a
language looks as follows, divided in the two, mutually defined checking and inferring terms:

c ::= i | λx.c i ::= c :: A | x | i c | λx : A.i | Πx : A.B | □k

with both typed and untyped abstractions, types (in the inferring fragment, as we luckily can
infer their type), and i , the converse of annotation that forgets that its argument is inferring.
While not presented here for lack of space, this presentation easily extends to virtually any
feature present in modern dependent type systems, such as inductive types or negative records.

Because we design the language to respect the structure of bidirectional algorithms, these
work perfectly, and typing is decidable for systems in this fashion as soon as conversion is.
Moreover, both earlier approaches can be carved out as subsystems: the first, by using neither
t :: A nor annotated abstraction; the second, by restricting to the inferring fragment, using no
checking term but i . We thus get two proofs of decidability for the price of one.

3 Substitution, reduction and conversion
Of course, this system would not be any good without a well-behaved conversion. Before coming
to it, however, we must beware of substitution. The naïve reduction of (λx : A.t) u to t[x := u]
is incorrect, as it does not preserve modes: the variable x infers, but u merely checks, and so
replacing one by the other is incorrect. Rather, the correct β-redex is instead t[x := u :: A], as
it is mode-preserving. If we care about preservation of typability during a small step reduction
chain, typically to be able to read back terms to users, then this is the correct substitution rule.

The second point of interest are of course annotations. Here we can take inspiration from
the transport of observational equality [2, 10] or the casts of gradual typing [7]: annotations
reduce when both the type and terms are canonical, and propagate down: (λx.t) :: (Πx : A.B) →
λx : A.(t :: B). Combining this with the previous rule for β-redex, we recover the earlier rule of
McBride [8]. Conversely, we can erase useless annotations: λx : A.t → λx. t . Finally, we also
want some form of extensionality for annotations: t :: A should be convertible to t.1 Just as
for casts on reflexivity in the latest version of observational equality [11], however, we do not
want to see this as a reduction rule, but rather as an equation only needed on neutral terms.
In the end, we get a system close to that of Pujet and Tabareau [11], and we expect being able
to adapt their technique to show decidability of our conversion.

If, however, we are only interested in evaluation to decide conversion, we know that normal
forms do not contain annotations. Why, then, bother with maintaining those? Instead, we can
erase them in a normalization by evaluation approach, similar to e.g. Gratzer et al. [5]. This
speeds up conversion-checking, at the cost of losing a well-typed reduction sequence.

1Note that it does not make sense to compare simply t :: A and t, as they do not have the same mode.
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