
ON DECIDING TYPING IN BIDIRECTIONAL MARTIN-LÖF TYPE THEORY
MAKING TYPE-CHECKERS COMPLETE BY CONSTRUCTION

Neel KRISHNASWAMI, Meven LENNON-BERTRAND
Types – June 12th 2023

1/7



WHY TYPE-CHECKING?

Decidable type-checking is crucial practically and philosophically.

Elaboration, unification, etc. are nice, but fundamentally incomplete.

Hundreds of papers on conversion… but not so much about decidability of type-checking.

2/7



WHY TYPE-CHECKING?

Decidable type-checking is crucial practically and philosophically.

Elaboration, unification, etc. are nice, but fundamentally incomplete.

Hundreds of papers on conversion… but not so much about decidability of type-checking.

2/7



WHY TYPE-CHECKING?

Decidable type-checking is crucial practically and philosophically.

Elaboration, unification, etc. are nice, but fundamentally incomplete.

Hundreds of papers on conversion… but not so much about decidability of type-checking.

2/7



WHY TYPE-CHECKING?

Decidable type-checking is crucial practically and philosophically.

Elaboration, unification, etc. are nice, but fundamentally incomplete.

Hundreds of papers on conversion… but not so much about decidability of type-checking.

2/7



WHY TYPE-CHECKING?

Decidable type-checking is crucial practically and philosophically.

Elaboration, unification, etc. are nice, but fundamentally incomplete.

Hundreds of papers on conversion… but not so much about decidability of type-checking.

This talk!

2/7



COPING WITH UNDECIDABLE TYPE-CHECKING

Bad news: type-checking for general dependent types is undecidable (Dowek, 2001).

Good news: we know how to cope!

Solution 1:

Solution 2: Solution 3:

Annotations

Restricted terms Free-standing annotations

λ 𝑥: 𝐴. 𝑡

λ 𝑥. 𝑡 λ 𝑥. 𝑡 and 𝑡 :: 𝐴

COQ, LEAN…

AGDA… McBride, RED* family…

All terms infer

Neutrals infer Inferring terms
Normal forms check Checking terms

Our goal: unified setting & completeness proof, formalized.

3/7



COPING WITH UNDECIDABLE TYPE-CHECKING

Bad news: type-checking for general dependent types is undecidable (Dowek, 2001).
Good news: we know how to cope!

Solution 1:

Solution 2: Solution 3:

Annotations

Restricted terms Free-standing annotations

λ 𝑥: 𝐴. 𝑡

λ 𝑥. 𝑡 λ 𝑥. 𝑡 and 𝑡 :: 𝐴

COQ, LEAN…

AGDA… McBride, RED* family…

All terms infer

Neutrals infer Inferring terms
Normal forms check Checking terms

Our goal: unified setting & completeness proof, formalized.

3/7



COPING WITH UNDECIDABLE TYPE-CHECKING

Bad news: type-checking for general dependent types is undecidable (Dowek, 2001).
Good news: we know how to cope!

Solution 1:

Solution 2: Solution 3:

Annotations

Restricted terms Free-standing annotations

λ 𝑥: 𝐴. 𝑡

λ 𝑥. 𝑡 λ 𝑥. 𝑡 and 𝑡 :: 𝐴

COQ, LEAN…

AGDA… McBride, RED* family…

All terms infer

Neutrals infer Inferring terms
Normal forms check Checking terms

Our goal: unified setting & completeness proof, formalized.

3/7



COPING WITH UNDECIDABLE TYPE-CHECKING

Bad news: type-checking for general dependent types is undecidable (Dowek, 2001).
Good news: we know how to cope!

Solution 1: Solution 2:

Solution 3:

Annotations Restricted terms

Free-standing annotations

λ 𝑥: 𝐴. 𝑡 λ 𝑥. 𝑡

λ 𝑥. 𝑡 and 𝑡 :: 𝐴

COQ, LEAN… AGDA…

McBride, RED* family…

All terms infer Neutrals infer

Inferring terms

Normal forms check

Checking terms

Our goal: unified setting & completeness proof, formalized.

3/7



COPING WITH UNDECIDABLE TYPE-CHECKING

Bad news: type-checking for general dependent types is undecidable (Dowek, 2001).
Good news: we know how to cope!

Solution 1: Solution 2: Solution 3:
Annotations Restricted terms Free-standing annotations

λ 𝑥: 𝐴. 𝑡 λ 𝑥. 𝑡 λ 𝑥. 𝑡 and 𝑡 :: 𝐴
COQ, LEAN… AGDA… McBride, RED* family…

All terms infer Neutrals infer Inferring terms
Normal forms check Checking terms

Our goal: unified setting & completeness proof, formalized.

3/7



COPING WITH UNDECIDABLE TYPE-CHECKING

Bad news: type-checking for general dependent types is undecidable (Dowek, 2001).
Good news: we know how to cope!

Solution 1: Solution 2: Solution 3:
Annotations Restricted terms Free-standing annotations

λ 𝑥: 𝐴. 𝑡 λ 𝑥. 𝑡 λ 𝑥. 𝑡 and 𝑡 :: 𝐴
COQ, LEAN… AGDA… McBride, RED* family…

All terms infer Neutrals infer Inferring terms
Normal forms check Checking terms

Our goal: unified setting & completeness proof, formalized.

3/7



INFERRING AND CHECKABLE TERMS, IN THE SYNTAX

𝑐, 𝐴, 𝐵 ::= 𝑖 ∣ □𝑘 ∣ Π𝑥: 𝐴.𝐵 ∣ λ 𝑥. 𝑐

∣ Σ 𝑥: 𝐴.𝐵 ∣ ⟨𝑐, 𝑐⟩ ∣ 𝐖 𝑥: 𝐴.𝐵 ∣ sup(𝑐, 𝑐)

𝑖 ::= 𝑐 :: 𝐴 ∣ 𝑥 ∣ 𝑖 𝑐 ∣ λ 𝑥: 𝐴. 𝑖

∣ 𝑖.1 ∣ 𝑖.2 ∣ ⟨𝑖, 𝑐⟩𝑥.𝐵 ∣ ind𝐖(𝑖; 𝑥.𝐴; 𝑐) ∣ sup𝑥.𝐵(𝑖, 𝑐)

(λ 𝑥. 𝑐) 𝑢 is not even valid syntax!

Γ ⊢ 𝐴 ◁ Γ, 𝑥: 𝐴 ⊢ 𝑡 ▷ 𝐵
Γ ⊢ λ 𝑥: 𝐴. 𝑡 ▷ Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ◁ 𝐴

Γ ⊢ (λ 𝑥: 𝐴. 𝑡) 𝑢 ▷ 𝐵[𝑢 :: 𝐴]

Complete, by construction.

4/7



INFERRING AND CHECKABLE TERMS, IN THE SYNTAX

𝑐, 𝐴, 𝐵 ::= 𝑖 ∣ □𝑘 ∣ Π𝑥: 𝐴.𝐵 ∣ λ 𝑥. 𝑐

∣ Σ 𝑥: 𝐴.𝐵 ∣ ⟨𝑐, 𝑐⟩ ∣ 𝐖 𝑥: 𝐴.𝐵 ∣ sup(𝑐, 𝑐)

𝑖 ::= 𝑐 :: 𝐴 ∣ 𝑥 ∣ 𝑖 𝑐 ∣ λ 𝑥: 𝐴. 𝑖

∣ 𝑖.1 ∣ 𝑖.2 ∣ ⟨𝑖, 𝑐⟩𝑥.𝐵 ∣ ind𝐖(𝑖; 𝑥.𝐴; 𝑐) ∣ sup𝑥.𝐵(𝑖, 𝑐)

Solution 1

(λ 𝑥. 𝑐) 𝑢 is not even valid syntax!

Γ ⊢ 𝐴 ◁ Γ, 𝑥: 𝐴 ⊢ 𝑡 ▷ 𝐵
Γ ⊢ λ 𝑥: 𝐴. 𝑡 ▷ Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ◁ 𝐴

Γ ⊢ (λ 𝑥: 𝐴. 𝑡) 𝑢 ▷ 𝐵[𝑢 :: 𝐴]

Complete, by construction.

4/7



INFERRING AND CHECKABLE TERMS, IN THE SYNTAX

𝑐, 𝐴, 𝐵 ::= 𝑖 ∣ □𝑘 ∣ Π𝑥: 𝐴.𝐵 ∣ λ 𝑥. 𝑐

∣ Σ 𝑥: 𝐴.𝐵 ∣ ⟨𝑐, 𝑐⟩ ∣ 𝐖 𝑥: 𝐴.𝐵 ∣ sup(𝑐, 𝑐)

𝑖 ::= 𝑐 :: 𝐴 ∣ 𝑥 ∣ 𝑖 𝑐 ∣ λ 𝑥: 𝐴. 𝑖

∣ 𝑖.1 ∣ 𝑖.2 ∣ ⟨𝑖, 𝑐⟩𝑥.𝐵 ∣ ind𝐖(𝑖; 𝑥.𝐴; 𝑐) ∣ sup𝑥.𝐵(𝑖, 𝑐)

Solution 2

(λ 𝑥. 𝑐) 𝑢 is not even valid syntax!

Γ ⊢ 𝐴 ◁ Γ, 𝑥: 𝐴 ⊢ 𝑡 ▷ 𝐵
Γ ⊢ λ 𝑥: 𝐴. 𝑡 ▷ Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ◁ 𝐴

Γ ⊢ (λ 𝑥: 𝐴. 𝑡) 𝑢 ▷ 𝐵[𝑢 :: 𝐴]

Complete, by construction.

4/7



INFERRING AND CHECKABLE TERMS, IN THE SYNTAX

𝑐, 𝐴, 𝐵 ::= 𝑖 ∣ □𝑘 ∣ Π𝑥: 𝐴.𝐵 ∣ λ 𝑥. 𝑐

∣ Σ 𝑥: 𝐴.𝐵 ∣ ⟨𝑐, 𝑐⟩ ∣ 𝐖 𝑥: 𝐴.𝐵 ∣ sup(𝑐, 𝑐)

𝑖 ::= 𝑐 :: 𝐴 ∣ 𝑥 ∣ 𝑖 𝑐 ∣ λ 𝑥: 𝐴. 𝑖

∣ 𝑖.1 ∣ 𝑖.2 ∣ ⟨𝑖, 𝑐⟩𝑥.𝐵 ∣ ind𝐖(𝑖; 𝑥.𝐴; 𝑐) ∣ sup𝑥.𝐵(𝑖, 𝑐)

Solution 3

(λ 𝑥. 𝑐) 𝑢 is not even valid syntax!

Γ ⊢ 𝐴 ◁ Γ, 𝑥: 𝐴 ⊢ 𝑡 ▷ 𝐵
Γ ⊢ λ 𝑥: 𝐴. 𝑡 ▷ Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ◁ 𝐴

Γ ⊢ (λ 𝑥: 𝐴. 𝑡) 𝑢 ▷ 𝐵[𝑢 :: 𝐴]

Complete, by construction.

4/7



INFERRING AND CHECKABLE TERMS, IN THE SYNTAX

𝑐, 𝐴, 𝐵 ::= 𝑖 ∣ □𝑘 ∣ Π𝑥: 𝐴.𝐵 ∣ λ 𝑥. 𝑐

∣ Σ 𝑥: 𝐴.𝐵 ∣ ⟨𝑐, 𝑐⟩ ∣ 𝐖 𝑥: 𝐴.𝐵 ∣ sup(𝑐, 𝑐)

𝑖 ::= 𝑐 :: 𝐴 ∣ 𝑥 ∣ 𝑖 𝑐 ∣ λ 𝑥: 𝐴. 𝑖

∣ 𝑖.1 ∣ 𝑖.2 ∣ ⟨𝑖, 𝑐⟩𝑥.𝐵 ∣ ind𝐖(𝑖; 𝑥.𝐴; 𝑐) ∣ sup𝑥.𝐵(𝑖, 𝑐)

(λ 𝑥. 𝑐) 𝑢 is not even valid syntax!

Γ ⊢ 𝐴 ◁ Γ, 𝑥: 𝐴 ⊢ 𝑡 ▷ 𝐵
Γ ⊢ λ 𝑥: 𝐴. 𝑡 ▷ Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ◁ 𝐴

Γ ⊢ (λ 𝑥: 𝐴. 𝑡) 𝑢 ▷ 𝐵[𝑢 :: 𝐴]

Complete, by construction.

4/7



INFERRING AND CHECKABLE TERMS, IN THE SYNTAX

𝑐, 𝐴, 𝐵 ::= 𝑖 ∣ □𝑘 ∣ Π𝑥: 𝐴.𝐵 ∣ λ 𝑥. 𝑐

∣ Σ 𝑥: 𝐴.𝐵 ∣ ⟨𝑐, 𝑐⟩ ∣ 𝐖 𝑥: 𝐴.𝐵 ∣ sup(𝑐, 𝑐)

𝑖 ::= 𝑐 :: 𝐴 ∣ 𝑥 ∣ 𝑖 𝑐 ∣ λ 𝑥: 𝐴. 𝑖

∣ 𝑖.1 ∣ 𝑖.2 ∣ ⟨𝑖, 𝑐⟩𝑥.𝐵 ∣ ind𝐖(𝑖; 𝑥.𝐴; 𝑐) ∣ sup𝑥.𝐵(𝑖, 𝑐)

(λ 𝑥. 𝑐) 𝑢 is not even valid syntax!

Γ ⊢ 𝐴 ◁ Γ, 𝑥: 𝐴 ⊢ 𝑡 ▷ 𝐵
Γ ⊢ λ 𝑥: 𝐴. 𝑡 ▷ Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ◁ 𝐴

Γ ⊢ (λ 𝑥: 𝐴. 𝑡) 𝑢 ▷ 𝐵[𝑢 :: 𝐴]

Complete, by construction.

4/7



INFERRING AND CHECKABLE TERMS, IN THE SYNTAX

𝑐, 𝐴, 𝐵 ::= 𝑖 ∣ □𝑘 ∣ Π𝑥: 𝐴.𝐵 ∣ λ 𝑥. 𝑐

∣ Σ 𝑥: 𝐴.𝐵 ∣ ⟨𝑐, 𝑐⟩ ∣ 𝐖 𝑥: 𝐴.𝐵 ∣ sup(𝑐, 𝑐)

𝑖 ::= 𝑐 :: 𝐴 ∣ 𝑥 ∣ 𝑖 𝑐 ∣ λ 𝑥: 𝐴. 𝑖

∣ 𝑖.1 ∣ 𝑖.2 ∣ ⟨𝑖, 𝑐⟩𝑥.𝐵 ∣ ind𝐖(𝑖; 𝑥.𝐴; 𝑐) ∣ sup𝑥.𝐵(𝑖, 𝑐)

(λ 𝑥. 𝑐) 𝑢 is not even valid syntax!

Γ ⊢ 𝐴 ◁ Γ, 𝑥: 𝐴 ⊢ 𝑡 ▷ 𝐵
Γ ⊢ λ 𝑥: 𝐴. 𝑡 ▷ Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ◁ 𝐴

Γ ⊢ (λ 𝑥: 𝐴. 𝑡) 𝑢 ▷ 𝐵[𝑢 :: 𝐴]

Complete, by construction.

4/7



INFERRING AND CHECKABLE TERMS, IN THE SYNTAX

𝑐, 𝐴, 𝐵 ::= 𝑖 ∣ □𝑘 ∣ Π𝑥: 𝐴.𝐵 ∣ λ 𝑥. 𝑐 ∣ Σ 𝑥: 𝐴.𝐵 ∣ ⟨𝑐, 𝑐⟩ ∣ 𝐖 𝑥: 𝐴.𝐵 ∣ sup(𝑐, 𝑐)
𝑖 ::= 𝑐 :: 𝐴 ∣ 𝑥 ∣ 𝑖 𝑐 ∣ λ 𝑥: 𝐴. 𝑖 ∣ 𝑖.1 ∣ 𝑖.2 ∣ ⟨𝑖, 𝑐⟩𝑥.𝐵 ∣ ind𝐖(𝑖; 𝑥.𝐴; 𝑐) ∣ sup𝑥.𝐵(𝑖, 𝑐)

(λ 𝑥. 𝑐) 𝑢 is not even valid syntax!

Γ ⊢ 𝐴 ◁ Γ, 𝑥: 𝐴 ⊢ 𝑡 ▷ 𝐵
Γ ⊢ λ 𝑥: 𝐴. 𝑡 ▷ Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ◁ 𝐴

Γ ⊢ (λ 𝑥: 𝐴. 𝑡) 𝑢 ▷ 𝐵[𝑢 :: 𝐴]

Complete, by construction.

4/7



REDUCTION AND CONVERSION

Beware of substitutions!

(λ 𝑥: 𝐴. 𝑡) 𝑢 → 𝑡[𝑢] ✗

Annotations reduce, type-directed (see observational equality, gradual cast calculus…):

((λ 𝑥. 𝑡) :: Π 𝑥: 𝐴.𝐵) 𝑢 → (λ 𝑥: 𝐴. (𝑡 :: 𝐵)) 𝑢 → (𝑡[𝑢 :: 𝐴]) :: 𝐵[𝑢 :: 𝐴]
Conversion, too, is bidirectional (Abel et al., 2018):

Γ ⊢ 𝐴 ≅ 𝐴′ and Γ ⊢ 𝑐 ≅ 𝑐′ ◁ 𝐴 but Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝐴
(Stuck) annotations should be ignored (TTobs again):

Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝐴
Γ ⊢ 𝑛 :: 𝐴′ ≈ 𝑛′ ▷ 𝐴′

5/7



REDUCTION AND CONVERSION

Beware of substitutions!

(λ 𝑥: 𝐴. 𝑡) 𝑢 → 𝑡[𝑢 :: 𝐴] ✓

Annotations reduce, type-directed (see observational equality, gradual cast calculus…):

((λ 𝑥. 𝑡) :: Π 𝑥: 𝐴.𝐵) 𝑢 → (λ 𝑥: 𝐴. (𝑡 :: 𝐵)) 𝑢 → (𝑡[𝑢 :: 𝐴]) :: 𝐵[𝑢 :: 𝐴]
Conversion, too, is bidirectional (Abel et al., 2018):

Γ ⊢ 𝐴 ≅ 𝐴′ and Γ ⊢ 𝑐 ≅ 𝑐′ ◁ 𝐴 but Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝐴
(Stuck) annotations should be ignored (TTobs again):

Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝐴
Γ ⊢ 𝑛 :: 𝐴′ ≈ 𝑛′ ▷ 𝐴′

5/7



REDUCTION AND CONVERSION

Beware of substitutions!

(λ 𝑥: 𝐴. 𝑡) 𝑢 → 𝑡[𝑢 :: 𝐴] ✓
Annotations reduce, type-directed (see observational equality, gradual cast calculus…):

((λ 𝑥. 𝑡) :: Π 𝑥: 𝐴.𝐵) 𝑢 → (λ 𝑥: 𝐴. (𝑡 :: 𝐵)) 𝑢 → (𝑡[𝑢 :: 𝐴]) :: 𝐵[𝑢 :: 𝐴]

Conversion, too, is bidirectional (Abel et al., 2018):

Γ ⊢ 𝐴 ≅ 𝐴′ and Γ ⊢ 𝑐 ≅ 𝑐′ ◁ 𝐴 but Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝐴
(Stuck) annotations should be ignored (TTobs again):

Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝐴
Γ ⊢ 𝑛 :: 𝐴′ ≈ 𝑛′ ▷ 𝐴′

5/7



REDUCTION AND CONVERSION

Beware of substitutions!

(λ 𝑥: 𝐴. 𝑡) 𝑢 → 𝑡[𝑢 :: 𝐴] ✓
Annotations reduce, type-directed (see observational equality, gradual cast calculus…):

((λ 𝑥. 𝑡) :: Π 𝑥: 𝐴.𝐵) 𝑢 → (λ 𝑥: 𝐴. (𝑡 :: 𝐵)) 𝑢 → (𝑡[𝑢 :: 𝐴]) :: 𝐵[𝑢 :: 𝐴]
Conversion, too, is bidirectional (Abel et al., 2018):

Γ ⊢ 𝐴 ≅ 𝐴′ and Γ ⊢ 𝑐 ≅ 𝑐′ ◁ 𝐴 but Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝐴

(Stuck) annotations should be ignored (TTobs again):

Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝐴
Γ ⊢ 𝑛 :: 𝐴′ ≈ 𝑛′ ▷ 𝐴′

5/7



REDUCTION AND CONVERSION

Beware of substitutions!

(λ 𝑥: 𝐴. 𝑡) 𝑢 → 𝑡[𝑢 :: 𝐴] ✓
Annotations reduce, type-directed (see observational equality, gradual cast calculus…):

((λ 𝑥. 𝑡) :: Π 𝑥: 𝐴.𝐵) 𝑢 → (λ 𝑥: 𝐴. (𝑡 :: 𝐵)) 𝑢 → (𝑡[𝑢 :: 𝐴]) :: 𝐵[𝑢 :: 𝐴]
Conversion, too, is bidirectional (Abel et al., 2018):

Γ ⊢ 𝐴 ≅ 𝐴′ and Γ ⊢ 𝑐 ≅ 𝑐′ ◁ 𝐴 but Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝐴
(Stuck) annotations should be ignored (TTobs again):

Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝐴
Γ ⊢ 𝑛 :: 𝐴′ ≈ 𝑛′ ▷ 𝐴′

5/7



SHOULD WE COMPUTE ANNOTATIONS?

Annotation-free terms are exactly the normal/neutral forms:

𝑐, 𝐴, 𝐵 ::= 𝑖 ∣ □𝑘 ∣ Π𝑥: 𝐴.𝐵 ∣ λ 𝑥. 𝑐 ∣ Σ 𝑥: 𝐴.𝐵 ∣ ⟨𝑐, 𝑐⟩ ∣ 𝐖 𝑥: 𝐴.𝐵 ∣ sup(𝑐, 𝑐)
𝑖 ::= 𝑐 :: 𝐴 ∣ 𝑥 ∣ 𝑖 𝑐 ∣ 𝜆𝑥: 𝐴.𝑖 ∣ 𝑖.1 ∣ 𝑖.2 ∣ ⟨𝑖, 𝑐⟩𝑥.𝐵 ∣ ind𝐖(𝑖; 𝑥.𝐴; 𝑐) ∣ sup𝑥.𝐵(𝑖, 𝑐)

Why?

Why work hard to maintain annotations we know will disappear?

• Typable intermediate computation steps are nice…
• but if we only care about fast comparison, we should not bother.

6/7



SHOULD WE COMPUTE ANNOTATIONS?

Annotation-free terms are exactly the normal/neutral forms:

𝑐, 𝐴, 𝐵 ::= 𝑖 ∣ □𝑘 ∣ Π𝑥: 𝐴.𝐵 ∣ λ 𝑥. 𝑐 ∣ Σ 𝑥: 𝐴.𝐵 ∣ ⟨𝑐, 𝑐⟩ ∣ 𝐖 𝑥: 𝐴.𝐵 ∣ sup(𝑐, 𝑐)
𝑖 ::= 𝑐 :: 𝐴 ∣ 𝑥 ∣ 𝑖 𝑐 ∣ 𝜆𝑥: 𝐴.𝑖 ∣ 𝑖.1 ∣ 𝑖.2 ∣ ⟨𝑖, 𝑐⟩𝑥.𝐵 ∣ ind𝐖(𝑖; 𝑥.𝐴; 𝑐) ∣ sup𝑥.𝐵(𝑖, 𝑐)

Why?

Why work hard to maintain annotations we know will disappear?

• Typable intermediate computation steps are nice…
• but if we only care about fast comparison, we should not bother.

6/7



SHOULD WE COMPUTE ANNOTATIONS?

Annotation-free terms are exactly the normal/neutral forms:

𝑐, 𝐴, 𝐵 ::= 𝑖 ∣ □𝑘 ∣ Π𝑥: 𝐴.𝐵 ∣ λ 𝑥. 𝑐 ∣ Σ 𝑥: 𝐴.𝐵 ∣ ⟨𝑐, 𝑐⟩ ∣ 𝐖 𝑥: 𝐴.𝐵 ∣ sup(𝑐, 𝑐)
𝑖 ::= 𝑐 :: 𝐴 ∣ 𝑥 ∣ 𝑖 𝑐 ∣ 𝜆𝑥: 𝐴.𝑖 ∣ 𝑖.1 ∣ 𝑖.2 ∣ ⟨𝑖, 𝑐⟩𝑥.𝐵 ∣ ind𝐖(𝑖; 𝑥.𝐴; 𝑐) ∣ sup𝑥.𝐵(𝑖, 𝑐)

Why?

Why work hard to maintain annotations we know will disappear?

• Typable intermediate computation steps are nice…
• but if we only care about fast comparison, we should not bother.

6/7



WHERE ARE WE AT?

The plan is laid out… and the formalization is
ongoing.

Luckily, we already have formalized logical
relations for ∼Solution 1, in Coq.
Listen to Kenji at 15:00!

7/7



WHERE ARE WE AT?

The plan is laid out… and the formalization is
ongoing.

Luckily, we already have formalized logical
relations for ∼Solution 1, in Coq.
Listen to Kenji at 15:00!

7/7



THANK YOU!

𝑐, 𝐴, 𝐵 ::= 𝑖 ∣ □𝑘 ∣ Π𝑥: 𝐴.𝐵 ∣ λ 𝑥. 𝑐 ∣ Σ 𝑥: 𝐴.𝐵 ∣ ⟨𝑐, 𝑐⟩ ∣ 𝐖 𝑥: 𝐴.𝐵 ∣ sup(𝑐, 𝑐)
𝑖 ::= 𝑐 :: 𝐴 ∣ 𝑥 ∣ 𝑖 𝑐 ∣ 𝜆𝑥: 𝐴.𝑖 ∣ 𝑖.1 ∣ 𝑖.2 ∣ ⟨𝑖, 𝑐⟩𝑥.𝐵 ∣ ind𝐖(𝑖; 𝑥.𝐴; 𝑐) ∣ sup𝑥.𝐵(𝑖, 𝑐)

7/7



BIBLIOGRAPHY

[1] Gilles Dowek. “Chapter 16 - Higher-Order Unification and Matching”. In: Handbook of
Automated Reasoning. Ed. by Alan Robinson and Andrei Voronkov. Handbook of
Automated Reasoning. North-Holland, 2001, pp. 1009–1062. DOI:
10.1016/B978-044450813-3/50018-7.

[2] Andreas Abel, Joakim Öhman, and Andrea Vezzosi. “Decidability of Conversion for
Type Theory in Type Theory”. In: Proc. ACM Program. Lang. (Jan. 2018). DOI:
10.1145/3158111.

https://doi.org/10.1016/B978-044450813-3/50018-7
https://doi.org/10.1145/3158111

	Appendix

