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Bad news: type-checking for general dependent types is undecidable (Dowek, 2001).
Good news: we know how to cope!

Solution 1: Solution 2: Solution 3:
Annotations Restricted terms Free-standing annotations
AX: At Ax.t Ax.tandt: A
CoQ, LEAN... AGDA... McBride, RED* family...
Neutrals infer Inferring terms

All t inf i
erms fnier Normal forms check Checking terms

Our goal: unified setting & completeness proof, formalized.
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Beware of substitutions!

Ox:ADu—tu=A]

Annotations reduce, type-directed (see observational equality, gradual cast calculus..):

(Ox.t)zMIx:AB)u— (Ax:A. (t::B))u — (tu:: A]) = Blu:: A]

Conversion, too, is bidirectional (Abel et al,, 2018):

THA=A’ and FT'c=cd <A but THn=n'v A

(Stuck) annotations should be ignored (TT°PS again):
'n=n'v A
'-n:A"=n"pb A
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SHOULD WE COMPUTE ANNOTATIONS?

Annotation-free terms are exactly the normal/neutral forms:
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= | x|ic| | i |ig | | indyy(i; x. A5 ¢) |

Why?
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SHOULD WE COMPUTE ANNOTATIONS?

Annotation-free terms are exactly the normal/neutral forms:

¢, ABu=i |0 |IIx: AB|Ax.c|Zx:AB|{c,c) | Wx: AB | sup(c,c)

in= | x|ic]| |iq |ig | | indyw (5 x.A;¢) |

Why work hard to maintain annotations we know will disappear?

- Typable intermediate computation steps are nice...

- but if we only care about fast comparison, we should not bother.
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WHERE ARE WE AT?

The plan is laid out... and the formalization is
ongoing.
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WHERE ARE WE AT?

The plan is laid out... and the formalization is
ongoing.

Luckily, we already have formalized logical
relations for ~Solution 1, in Coq.

Listen to Kenji at 15:00!
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THANK YOU!
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