ON DECIDING TYPING IN BIDIRECTIONAL MARTIN-LOF TYPE THEORY

MAKING TYPE-CHECKERS COMPLETE BY CONSTRUCTION

Neel KRISHNASWAMI, Meven LENNON-BERTRAND
Types - June 12" 2023

. UNIVERSITY OF
«¥ CAMBRIDGE

Department of Computer
Science and Technology

1/7

WHY TYPE-CHECKING?

217

WHY TYPE-CHECKING?

Decidable type-checking is crucial practically and philosophically.

217

WHY TYPE-CHECKING?

Decidable type-checking is crucial practically and philosophically.

Elaboration, unification, etc. are nice, but fundamentally incomplete.

217

WHY TYPE-CHECKING?

Decidable type-checking is crucial practically and philosophically.
Elaboration, unification, etc. are nice, but fundamentally incomplete.
Hundreds of papers on conversion... but not so much about decidability of type-checking.

217

WHY TYPE-CHECKING?

Decidable type-checking is crucial practically and philosophically.
Elaboration, unification, etc. are nice, but fundamentally incomplete.

Hundreds of papers on conversion... but not so much about decidability of type-checking.

e

This talkl ——

217

COPING WITH UNDECIDABLE TYPE-CHECKING

Bad news: type-checking for general dependent types is undecidable (Dowek, 2001).

3/7

COPING WITH UNDECIDABLE TYPE-CHECKING

Bad news: type-checking for general dependent types is undecidable (Dowek, 2001).
Good news: we know how to cope!

3/7

COPING WITH UNDECIDABLE TYPE-CHECKING

Bad news: type-checking for general dependent types is undecidable (Dowek, 2001).
Good news: we know how to cope!

Solution 1:
Annotations

AXxI At

CoQ, LEAN...

All terms infer

3/7

COPING WITH UNDECIDABLE TYPE-CHECKING

Bad news: type-checking for general dependent types is undecidable (Dowek, 2001).
Good news: we know how to cope!

Solution 1: Solution 2:

Annotations Restricted terms
Ax: At Ax.t

CoQ, LEAN... AGDA...

Neutrals infer

All terms infer Normal forms check

3/7

COPING WITH UNDECIDABLE TYPE-CHECKING

Bad news: type-checking for general dependent types is undecidable (Dowek, 2001).
Good news: we know how to cope!

Solution 1: Solution 2: Solution 3:
Annotations Restricted terms Free-standing annotations
AX: At Ax.t Ax.tandt: A
CoQ, LEAN... AGDA... McBride, RED* family...
Neutrals infer Inferring terms

All t inf i
erms fnier Normal forms check Checking terms

3/7

COPING WITH UNDECIDABLE TYPE-CHECKING

Bad news: type-checking for general dependent types is undecidable (Dowek, 2001).
Good news: we know how to cope!

Solution 1: Solution 2: Solution 3:
Annotations Restricted terms Free-standing annotations
AX: At Ax.t Ax.tandt: A
CoQ, LEAN... AGDA... McBride, RED* family...
Neutrals infer Inferring terms

All t inf i
erms fnier Normal forms check Checking terms

Our goal: unified setting & completeness proof, formalized.

3/7

INFERRING AND CHECKABLE TERMS, IN THE SYNTAX

¢, A Bu=1i |0 |IIx: AB| Ax.c

it=cuAlx|ic|Ax:AlQ

417

INFERRING AND CHECKABLE TERMS, IN THE SYNTAX

¢, A Bu=1i |0 |[IIx: AB| Ax.c

) . _ Solution 1
it=cuAlx|ic|Ax:A i

417

INFERRING AND CHECKABLE TERMS, IN THE SYNTAX

¢, A Bu=1i |0 |IIx: AB| Ax.c

Solution 2
it=cuAlx|ic| Ax:A i

417

INFERRING AND CHECKABLE TERMS, IN THE SYNTAX

¢, A Bu=1i |0 |IIx: AB| Ax.c

Solution 3
it=cuAlx|ic| Ax:A i

417

INFERRING AND CHECKABLE TERMS, IN THE SYNTAX

¢, A Bu=1i |0 |IIx: AB| Ax.c

it=cuAlx|ic|Ax:AlQ

(A x.¢) uis not even valid syntax!

417

INFERRING AND CHECKABLE TERMS, IN THE SYNTAX

¢, A Bu=1i |0 |IIx: AB| Ax.c

it=cuAlx|ic|Ax:AlQ

I'-A« I,x:A—t>B
'EAx:At>IIx: AB ''Fu<A
'\ x:A.t)uv Blu: Al

(A x.¢) uis not even valid syntax!

417

INFERRING AND CHECKABLE TERMS, IN THE SYNTAX

¢, A,Bu=i |0 |IIx: AB| Ax.c

it=cuAlx|ic|Ax: A

I'-A« I''x:A+—t>B
'EAx:At>Ilx:AB 'Fu<A
'\ x:A.t)uv Blu: Al

(A x. ¢) uis not even valid syntax!

Complete, by construction.

417

INFERRING AND CHECKABLE TERMS, IN THE SYNTAX

¢, A Bu=1i |0 |IIx: AB| Ax.c | > x: A.B|{c,c) | W x: A.B | sup(c,c)

it=cuAlx|ic|Ax: A |iq | g | (i,)x.p | iIndyw (s x.A;) | supy (i, c)

I'-A« I,x:A—t>B
'EAx:At>IIx: AB ''Fu<A
'\ x:A.t)uv Blu: Al

(A x.¢) uis not even valid syntax!

Complete, by construction.

417

REDUCTION AND CONVERSION

Beware of substitutions!

Ax:A.t)u— tlu] X

5/7

REDUCTION AND CONVERSION

Beware of substitutions!

Ox:ADu—tu=A]

5/7

REDUCTION AND CONVERSION

Beware of substitutions!

Ox:ADu—tu=A]

Annotations reduce, type-directed (see observational equality, gradual cast calculus..):

(Ox.t)zMIx:AB)u— (Ax:A. (t::B))u — (tu:: A]) = Blu:: A]

5/7

REDUCTION AND CONVERSION

Beware of substitutions!

Ox:ADu—tu=A]

Annotations reduce, type-directed (see observational equality, gradual cast calculus..):

(Ox.t)zMIx:AB)u— (Ax:A. (t::B))u — (tu:: A]) = Blu:: A]

Conversion, too, is bidirectional (Abel et al,, 2018):

THA=A’ and FT'c=cd <A but THn=n'v A

5/7

REDUCTION AND CONVERSION

Beware of substitutions!

Ox:ADu—tu=A]

Annotations reduce, type-directed (see observational equality, gradual cast calculus..):

(Ox.t)zMIx:AB)u— (Ax:A. (t::B))u — (tu:: A]) = Blu:: A]

Conversion, too, is bidirectional (Abel et al,, 2018):

THA=A’ and FT'c=cd <A but THn=n'v A

(Stuck) annotations should be ignored (TT°PS again):
'n=n'v A
'-n:A"=n"pb A

5/7

SHOULD WE COMPUTE ANNOTATIONS?

Annotation-free terms are exactly the normal/neutral forms:

¢, A Bu=i |0 |[IIx: AB|Ax.c|2x: AB|(c,c) | Wx: AB | sup(c,c)
= | x|ic| | i |ig | | indyy(i; x. A5 ¢) |

Why?

6/7

SHOULD WE COMPUTE ANNOTATIONS?

Annotation-free terms are exactly the normal/neutral forms:

¢, ABu=i |0 |IIx: AB|Ax.c|Zx:AB|{c,c) | Wx: AB | sup(c,c)

in= | x|ic]| |iq |ig | | indyw (5 x.A;¢) |

Why work hard to maintain annotations we know will disappear?

6/7

SHOULD WE COMPUTE ANNOTATIONS?

Annotation-free terms are exactly the normal/neutral forms:

¢, ABu=i |0 |IIx: AB|Ax.c|Zx:AB|{c,c) | Wx: AB | sup(c,c)

in= | x|ic]| |iq |ig | | indyw (5 x.A;¢) |

Why work hard to maintain annotations we know will disappear?

- Typable intermediate computation steps are nice...

- but if we only care about fast comparison, we should not bother.

6/7

WHERE ARE WE AT?

The plan is laid out... and the formalization is
ongoing.

717

WHERE ARE WE AT?

The plan is laid out... and the formalization is
ongoing.

Luckily, we already have formalized logical
relations for ~Solution 1, in Coq.

Listen to Kenji at 15:00!

717

THANK YOU!

BIBLIOGRAPHY

[1] Gilles Dowek. “Chapter 16 - Higher-Order Unification and Matching”. In: Handbook of
Automated Reasoning. Ed. by Alan Robinson and Andrei Voronkov. Handbook of
Automated Reasoning. North-Holland, 2001, pp. 1009-1062. DOI:
10.1016/B978-044450813-3/50018-7.

[2] Andreas Abel, Joakim Ohman, and Andrea Vezzosi. “Decidability of Conversion for
Type Theory in Type Theory”. In: Proc. ACM Program. Lang. (Jan. 2018). DOI:
10.1145/3158111.

https://doi.org/10.1016/B978-044450813-3/50018-7
https://doi.org/10.1145/3158111

	Appendix

