TOWARDS A CERTIFIED PROOF ASSISTANT KERNEL

WHAT IT TAKES AND WHAT WE HAVE

Meven LENNON-BERTRAND
EuroProofNet WG6 Meeting - April 51" 2024

B UNIVERSITY OF
¥ CAMBRIDGE

Department of Computer
Science and Technology

1/30

A PLEA FOR STRONGER FRAMEWORKS

2/30

A PLEA FOR STRONGER FRAMEWORKS

The power of dependent type theory: Say what we mean.

2/30

A PLEA FOR STRONGER FRAMEWORKS

The power of dependent type theory: Say what we mean.

Fancy pattern-matching (Computable) univalence

(Strong) records

(Co)Inductive types , Proof irrelevance
Universes

2/30

A PLEA FOR STRONGER FRAMEWORKS

The power of dependent type theory: Say what we mean.

Fancy pattern-matching (Computable) univalence

(Strong) records

(Co)Inductive types , Proof irrelevance
Universes

Modatities Observational equalit Gradual typing
Subtyping | g

2/30

A PLEA FOR STRONGER FRAMEWORKS

The power of dependent type theory: Say what we mean.

Fancy pattern-matching (Computable) univalence

(Strong) records

(Co)Inductive types , Proof irrelevance
Universes

Modatities Observational equalit Gradual typing
Subtyping | g

We should embrace this...

2/30

PROOF ASSISTANTS SHOULD EAT THEMSELVES

... but also keep high safety guarantees.

3/30

PROOF ASSISTANTS SHOULD EAT THEMSELVES

.. but also keep high safety guarantees.

The de Bruijn architecture
3/30

PROOF ASSISTANTS SHOULD EAT THEMSELVES

.. but also keep high safety guarantees.

The de Bruijn architecture is a perfect target for certification!
3/30

WHAT IS SO HARD?

CoQ’s kernel is only ~20kLoC of pure functional code. Surely it can’t be that difficult?

4/30

WHAT IS SO HARD?

CoQ’s kernel is only ~20kLoC of pure functional code. Surely it can’t be that difficult?

Dependent type theowy + Inovariants

4/30

BIDIRECTIONAL TYPING

SPECIFYING PROOF ASSISTANTS

Metatheory, models , User manual
a o

Logical formalism: CIC, MLTT, HOL...

Proof assistant (kernel):
CoQ, AGDA, LEAN, ISABELLE, HOLA...

. ¢ > . .
Automation User interaction

5/30

SPECIFYING PROOF ASSISTANTS

Metatheory, models , User manual
; e

Dependent Type System: CIC, MLTT...

|

Bidirectional type-checking

{

Proof assistant (kernel):
CoqQ, AGDA, LEAN...

. < > . .
Automation User interaction

5/30

BOUNDARIES AND INVARIANTS

6/30

BOUNDARIES AND INVARIANTS

Atyping judgment I" ¢ : A has boundaries. What about their well-formation?

6/30

BOUNDARIES AND INVARIANTS

Atyping judgment I' =t : A has boundaries. What about their well-formation?

Cautiousness: globally enforce well-formation

FI (x:A)eTl ILx:AFt:B
I'—x:A I'Ax:At:TIx: AB

6/30

BOUNDARIES AND INVARIANTS

Atyping judgment I' =t : A has boundaries. What about their well-formation?

Cautiousness: globally enforce well-formation

FI (x:A)eTl ILx:AFt:B
I'—x:A I'Ax:At:TIx: AB

Uncautiousness? Well-formation as an invariant

(x:A)eT 'HA T, x:A-t:B
'—x:A I'-Ax:At:TIx: AB

6/30

WELL-FORMATION MUST FLOW

Inference and checking
I' =t : A separates into

inference: ' =t > A checking ' =t < A

Similar meaning, different modes: input/subject/output.

7/30

WELL-FORMATION MUST FLOW

Inference and checking
I' =t : A separates into

inference: ' =t > A checking ' =t < A

Similar meaning, different modes: input/subject/output.

McBride: A rule is a server for its conclusion and a client for its premises.
- In a conclusion, you assume inputs are well-formed, and ensure outputs are
 In a premise, you ensure inputs are well-formed, and assume outputs are

« Modes guide invariant preservation

7/30

STRUCTURE!

I'~t:1Ix: A.B 'Fu:A
I'+—tu:Blu]

8/30

STRUCTURE!

't:IIx:AB TFru:A 't IIx:AB TFu<A
I'+tu:Blu] I'—tuv> Blu]

+ Clear information flow

8/30

STRUCTURE!

't:IIx:AB TFru:A 't IIx:AB TFu<A
I'+tu:Blu] I'—tuv> Blu]

I'—t:T I'—T=T’
F'—¢:T

+ Clear information flow

8/30

STRUCTURE!

't:IIx:AB TFru:A 't IIx:AB TFu<A
I'+tu:Blu] I'—tuv> Blu]

F'—t:T T+—T=T F'teT THT=T 'teT THT-S*T
F=t:T FHtaT’ FHto, T’

» Clear information flow
« Different modes command different computation judgments (—* vs =)

- No free conversion thanks to the judgments’ structure

8/30

NOTHING HAS CHANGED

9/30

NOTHING HAS CHANGED

Bidirectional typing is correct
Soundness: if =T and ' =t > T thenT' —=¢:T

9/30

NOTHING HAS CHANGED

Bidirectional typing is correct
Soundness: if=T'and 't T thenT' —¢:T

Completeness™: if I' -t : T, there exists T’ such thatI' =t > T and T T =T

*T&C apply

9/30

NOTHING HAS CHANGED

Bidirectional typing is correct
Soundness: if=T'and 't T thenT' —¢:T

Completeness™: if I' -t : T, there exists T’ such thatI' =t > T and T T =T

Key properties:

« injectivity: if T FIIx: A. B=TIx: A’. B thenTHFA=A"andT,x:A-B= B
« reduction finds constructors: if T =T = [Ix: A. BthenT T - [Ix: A’. B/

*T&C apply

9/30

ROADMAP

ROADMAP

Properties

Certified implementation

Normalisation

Injectivities

Systems
complexity

10/30

NORMALISATION

« every reduction path fy — £ — £y — ... is finite
- there is exactly one normal form t € Nf in each equivalence class for =

11/30

NORMALISATION

« every reduction path fy — £ — £y — ... is finite
- there is exactly one normal form t € Nf in each equivalence class for =

The mother of all properties:

« decidability of conversion
- canonicity

« consistency A\

11/30

ROADMAP

Properties

Certified implementation

Normalisation

Injectivities

Systems
complexity

12/30

PROOF-THEORETIC STRENGTH VS EXPRESSIVITY

Coq in Coq (Barras et al. 1997): certified type-checker for the CoC, in Coq.

13/30

PROOF-THEORETIC STRENGTH VS EXPRESSIVITY

Coq in Coq (Barras et al. 1997): certified type-checker for the CoC, in Coq.

CoC is proof-theoretically stronger than AGDA, close to CoqQ. Time to change subject?

13/30

PROOF-THEORETIC STRENGTH VS EXPRESSIVITY

Coq in Coq (Barras et al. 1997): certified type-checker for the CoC, in Coq.

CoC is proof-theoretically stronger than AGDA, close to CoqQ. Time to change subject?

Proof-theoretic strength is not the same as expressivity!

13/30

PROOF-THEORETIC STRENGTH VS EXPRESSIVITY

Coq in Coq (Barras et al. 1997): certified type-checker for the CoC, in Coq.

CoC is proof-theoretically stronger than AGDA, close to CoqQ. Time to change subject?
Proof-theoretic strength is not the same as expressivity!

Turing-completeness vs “real” language.

13/30

ROADMAP

Properties
Coqg in
. . . Coq
Certified implementation o
Normalisation
Injectivities
STAC CoC Coq, AGDA Systems

LEAN... complexity

14/30

GODEL’S 2"° INCOMPLETENESS THEOREM

Coq in CoqQ?

15/30

GODEL'S 2"° INCOMPLETENESS THEOREM

Coq in CoqQ?

15/30

GODEL'S 2"° INCOMPLETENESS THEOREM

Coa-n-Coa?
An object type theory 7 in a (slightly) stronger meta type theory 7.

15/30

ROADMAP

Properties
\
|
Coqg in li
: . . Coq '
Certified implementation o | Incompleteness
Normalisation N i
Injectivities
STAC ~ CoC CoqQ, AGDA Systems
LEAN... complexity

16/30

THE METACOQ PROJECT
JWW. M. SOZEAU, Y. FORSTER, J. BOTCH NIELSEN,

N. TABAREAU, T. WINTERHALTER...

METACOQ IN A NUTSHELL

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)
A dependent type theory with
« Very general (co-)inductive types

 Pattern-matching and fixed-points

- Complex universes + cumulativity

17/30

Inductive term : Type :=

tRel (n : nat)

tVar (id : ident)

tEvar (ev : nat) (args : list term)

tSort (s : sort)

tCast (t : term) (kind : cast_kind) (v : term)

tProd (na : aname) (ty : term) (body : term)

tLambda (na : aname) (ty : term) (body : term)

tLetIn (na : aname) (def : term) (def_ty : term) (body : term)

tApp (f : term) (args : list term)

tConst (c : kername) (u : Instance.t)

tInd (ind : inductive) (u : Instance.t)

tConstruct (ind : inductive) (idx : nat) (u : Instance.t)

tCase (ci : case_info) (type_info : predicate term)
(discr : term) (branches : 1list (branch term))

tProj (proj : projection) (t : term)

tFix (mfix : mfixpoint term) (idx : nat)

tCoFix (mfix : mfixpoint term) (idx : nat)

tInt (1 : PrimInt63.int)

tFloat (f : PrimFloat.float)

tArray (u : Level.t) (arr : list term) (default : term) (type : term).

18/30

METACOQ IN A NUTSHELL

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)
A dependent type theory with
« Very general (co-)inductive types

 Pattern-matching and fixed-points

- Complex universes + cumulativity

Coq, in Coq (bis)
 Formalized meta-theory of PCUIC
+ Normalization axiom to implement a certified type-checker (77 = 7 + Norm(7))

19/30

METACOQ IN A NUTSHELL

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)
A dependent type theory with
« Very general (co-)inductive types

 Pattern-matching and fixed-points

- Complex universes + cumulativity

Coq, in Coq (bis)
 Formalized meta-theory of PCUIC
+ Normalization axiom to implement a certified type-checker (77 = 7 + Norm(7))

« Certified extraction, meta-programming...

19/30

METACOQ IN A NUTSHELL

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)
A dependent type theory with
« Very general (co-)inductive types

 Pattern-matching and fixed-points

- Complex universes + cumulativity

Coq, in Coq (bis)
 Formalized meta-theory of PCUIC
+ Normalization axiom to implement a certified type-checker (

« Certified extraction, meta-programming...

19/30

ROADMAP

Properties
.
| s
Coq in ‘. N
. . 5 COq \
Certified implementation o | Incompleteness
Normalisation \\\
Injectivities
STAC CoC PCUIC Coq, AGDA Systems
LEAN... complexity

20/30

META-THEORY OF PCUIC

« Substitution lemmas (terms, universes)

« Confluence (parallel reduction a la Tait-Martin-Lof, following Takahashi '95)
* Injectivities & reduction finds constructors

* Preservation & progress

- Bidirectional typing

21/30

META-THEORY OF PCUIC

« Substitution lemmas (terms, universes)

« Confluence (parallel reduction a la Tait-Martin-Lof, following Takahashi '95)
* Injectivities & reduction finds constructors

* Preservation & progress

- Bidirectional typing

Main challenge = scaling standard techniques

21/30

META-THEORY OF PCUIC

« Substitution lemmas (terms, universes)

« Confluence (parallel reduction a la Tait-Martin-Lof, following Takahashi '95)
* Injectivities & reduction finds constructors

* Preservation & progress

- Bidirectional typing

Main challenge = scaling standard techniques

Works because cumulativity is untyped and purely computational:

T U

I'-T<U VR l l

Tl <u U/

21/30

META-THEORY OF PCUIC

« Substitut

« Confluen Correct and Complete Type Checking and Certified Erasure 95)
* Injectiviti for Coq, in Coa

MATTHIEU SOZEAU, Inria, France
* Preserval YANNICK FORSTER, Inria, France
. Bidirectic MEVEN LENNON-BERTRAND, University of Cambridge, United Kingdom
JAKOB BOTSCH NIELSEN, Concordium Blockchain Research Center, Denmark
NICOLAS TABAREAU, Inria, France
Main challeng THEO WINTERHALTER, Inria, France

CogQ is built around a well-delimited kernel that performs type checking for definitions in a variant of the
W or | ks b ecaus Calculus of Inductive Constructions (CIC). Although the metatheory of CIC is very stable and reliable, the
< correctness of its implementation in Cog is less clear. Indeed, implementing an efficient type checker for CIC
is a rather complex task, and many parts of the code rely on implicit invariants which can easily be broken
by further evolution of the code. Therefore, on average, one critical bug has been found every year in CoQ.
This paper presents the first implementation of a type checker for the kernel of Cog (without the module
system, template polymorphism and n-conversion), which is proven sound and complete in CoQ with respect
to its formal specification. Note that because of Gdel’s second incompleteness theorem, there is no hope to
prove letely the soundness of the specification of CoQ inside Coq (in particular strong normalization),
but it is possible to prove the correctness and compl s of the impl ation d of
the specification, thus moving from a trusted code base (TCB) to a trusted theory base (TTB) pdrddlgm Our
work is based on the METACOQ project which provides meta-programming facilities to work with terms and
declarations at the level of the kernel. We verify a relatively efficient type checker based on the specification of
the typing relation of the Polymorphic, Cumulative Calculus of Inductive Constructions (PCUIC) at the basis
of Coq. It is worth mentioning that during the verification process, we have found a source of incompleteness
in CogQ’s official type checker, which has then been fixed in Coq 8.14 thanks to our work. In addition to the
kernel implementation, another essential feature of CoQ is the so-called extraction mechanism: the production
of executable code in functional languages from Coq definitions. We present a verified version of this subtle
type and proof erasure step, therefore enabling the verified extraction of a safe type checker for Cog in the 21 / 30
future.

CCS Concents: « Theorv of comnutation — Tvne theorv

A CORRECT AND COMPLETE KERNEL

Soundness

PCUIC Kernel

22/30

A CORRECT AND COMPLETE KERNEL

Soundness

/\Bidirectional

PCUIC Kernel

Presentation
\/ -

Completeness

22/30

A CORRECT AND COMPLETE KERNEL
/\Bidirectional

PCUIC Kernel

Presentation
\/ _/

Deep in the proof, we realized... it was false!

22/30

A CORRECT AND COMPLETE KERNEL
/\Bidirectional

PCUIC Kernel

Presentation
\/ _/

Deep in the proof, we realized... it was false!

@mattamaz added part: kernel {priority: high') @ UERUEMEEEE ELERNED [abels

on 27 Nov 2020

22/30

A CORRECT AND COMPLETE KERNEL
/\Bidirectional

PCUIC Kernel

Presentation
\/ _/

Deep in the proof, we realized... it was false!

@mattamaz added part: kernel {priority: high') @ UERUEMEEEE ELERNED [abels

on 27 Nov 2020

— re-design of pattern-matching in Coq, backed by MeTAaCOQ.

22/30

AND NOW?

We have a fully certified, extracted kernel!

23/30

AND NOW?

We have a fully certified, extracted kernel!

But:

* no normalisation;
« untyped conversion (not what semanticists like);

+ no extensionality equations (n-laws!).

23/30

MARTIN-LOF A LA COQ
Jww. Arthur ADJEDJ, Kenji MAILLARD,

Pierre-Marie PEDROT and Loic PUJET

ROADMAP

Properties
'1 “:._:_'
| "N
Coqg in : p—
. . . Coq !
Certified implementation o | Incompleteness
Normalisation \\\\‘
Injectivities
STAC ~ CoC MLTT PCUIC Coq, AGDA Systems
LEAN... complexity

24/30

ROADMAP

Properties

Coqg in |I] U
. . . Coq
Certified implementation o

| Incompleteness
o WB18 AOVI8
Normalisation 0 ~

Injectivities

STAC CoC

MLTT PCUIC Coq,

AGDA Systems
LEAN...

complexity

24/30

ROADMAP

Properties

! »
| LRS.
. | o
Coq in Martin-L6f ! U

. .) Co ala Co ‘ |
Certified implementation N o @

Incompleteness
o WB18 AOVIi8
Normalisation

Injectivities

STAC CoC

MLTT PCUIC Coq,

AGDA Systems
LEAN...

complexity

24/30

TYPED CONVERSION

IT'Ht:A IT'Ht=u:A I't=u:A TFu=v:A
REFL ————————— SYM ———— TRANS
T't=t: A TFu=t:A THt=wv:A

25/30

TYPED CONVERSION

IT'Ht:A IT'Ht=u:A I't=u:A TFu=v:A
REFL ————————— SYM ———— TRANS
T'Ht=t:A TFu=t:A THt=wv:A

F't=t':TIx: A.B Tuz=u: A
APPCONG

IF'tu=t'u :Blul

'-A TI.,xtA-B

ILx:A-t:B Tru:A '~ f:IIx:A.B
BFUN nfu

I'Qux:At)u = t{u] : Blu]

N
' f=AcAfx:IIx:AB

25/30

TYPED CONVERSION

IT'Ht:A IT'Ht=u:A I't=u:A TFu=v:A
REFL. ———88 SYM ————— TRANS
I't=t:A IT'+u=t:A T'Ht=v:A
't=t':Tx:AB THuz=u A
APPCONG
IF'tu=t'u :Blul
'-A TI.,x:A+HB

I'x:A+1t:B F'u:A '~ f:IIx:AB
BFUN nFu

I'Qux:At)u = t{u] : Blu]

' ' f=AcAfx:IIx:AB

3t's bidinectional too!

25/30

CONVERSION CHECKS, NEUTRAL COMPARISON INFERS

Conversion = checks

F't—>"t":A Tru->"u:A THAS"A THUzZu<A
Fr—t=u<A

I'x:A-fx=gx<B 'Et=t'<N I'tbn=n'»>T
I'-f=,g<allx:A B I'=S@t) =, SE)<N F—n=yn’ <N

26/30

CONVERSION CHECKS, NEUTRAL COMPARISON INFERS

Conversion = checks

F't—>"t":A Tru->"u:A THAS"A THUzZu<A

F't=zu<A
I'x:A-fx=gx<B 'Et=t'<N I'tbn=n'»>T
' f=,g<lx:A B I'—S(>t) =, S(t) «N F'n=,n <N
Neutral comparison = infers
T'm=ne IIx:AB Trt=u<A (x:A)eT
I'-mt=nuv B[t] I'Fx=xv A

26/30

CORRECTNESS

27/30

CORRECTNESS

Soundness
Injectivity to preserve invariants.

27/30

CORRECTNESS

Soundness
Injectivity to preserve invariants.

Completeness
Symmetry, transitivity, conversion: tricky but doable...

Reflexivity: T't:A=TFt=t: A= Tkt =1<Aisbasically normalisation!

27/30

CORRECTNESS

Soundness
Injectivity to preserve invariants.

Completeness
Symmetry, transitivity, conversion: tricky but doable...

Reflexivity: T't:A=TFt=t: A= Tkt =1<Aisbasically normalisation!

One word: logical relations.

27/30

CORRECTNESS

Soundness
Injecti- -~

Compl
Symm

Reflex

One wc

- mmmmimia il

Decidability of Conversion for Type Theory in Type Theory

ANDREAS ABEL, Gothenburg University, Sweden
JOAKIM OHMAN, IMDEA Software Institute, Spain
ANDREA VEZZOSI, Chalmers University of Technology, Sweden

Type theory should be able to handle its own meta-theory, both to justify its foundational claims and to obtain
a verified implementation. At the core of a type checker for intensional type theory lies an algorithm to check
equality of types, or in other words, to check whether two types are convertible. We have formalized in Agda
a practical conversion checking algorithm for a dependent type theory with one universe a la Russell, natural
numbers, and #-equality for IT types. We prove the algorithm correct via a Kripke logical relation parameterized
by a suitable notion of equivalence of terms. We then instantiate the parameterized fundamental lemma twice:
once to obtain canonicity and injectivity of type formers, and once again to prove the completeness of the
algorithm. Our proof relies on inductive-recursive definitions, but not on the uniqueness of identity proofs.
Thus, it is valid in variants of intensional Martin-Léf Type Theory as long as they support induction-recursion,
for instance, Extensional, Observational, or Homotopy Type Theory.

CCS Concepts: « Theory of computation — Type theory; Proof theory;
Additional Key Words and Phrases: Dependent types, Logical relations, Formalization, Agda
ACM Reference Format:

yormalisation!

CORRECTNESS

Soundness

Injecti
Compl
Symm

Reflex

One wc

Decic

ANDRE
JOAKIA
ANDRE

Type thec
a verified
equality (
a practice
numbers,
by a suite
once to ¢
algorithn
Thus, it i
for instar

CCS Con
Addition:
ACM Re

Martin-Lof a la Cog

Arthur Adjedj
ENS Paris Saclay, Université
Paris-Saclay
Gif-sur-Yvette, France

Pierre-Marie Pédrot
Inria
Nantes, France

Abstract

We present an extensive mechanization of the metatheory
of Martin-L3f Type Theory (MLTT) in the Cog proof assis-
tant. Our development builds on pre-existing work in Acpa
to show not only the decidability of conversion, but also
the decidability of type checking, using an approach guided
by bidirectional type checking. From our proof of decidabil-
ity, we obtain a certified and executable type checker for
a full-fledged version of MLTT with support for II, X, N,
and Id types, and one universe. Our development does not
rely on impredicativity, induction-recursion or any axiom
beyond MLTT extended with indexed inductive types and a
handful of predicalive universes, thus narrowing the gap be-
tween the object theory and the metatheory to a mere differ-
ence in universes. Furthermore, our formalization choices
are geared towards a modular development that relies on
Coq’s features, eg. universe polymorphism and metapro-
gramming with tactics.

Keywords: Dependent type system, Bidirectional typing, Log-
ical relations

1 Introduction

Self-certification of proof assistants is a long-standing and
very enticing goal. Since proof assistant kernels are by con-

Meven Lennon-Bertrand
University of Cambridge Inria
Cambridge, United Kingdom

Kenji Maillard

Nantes, France

Loic Pujet
University of Stockholm
Stockholm, Sweden

checker is spent on establishing meta-theoretic properties,
which are necessary to ensure termination of the type checker
but have little to do with its concrete implementation.
Acknowledging this tension leads to two radically differ-
ent approaches. On the one hand, one can simply postu-
late nor to better on the
faced when certifying a realistic type-checker. The most am-
bitious project to date that follows this approach is MeTa-
Cogq [Sozeau, Anand, et al. 2020; Sozeau, Forster, et al. 2023],
which formalizes a nearly complete fragment of Cog’s type
system and provides a certified type checker aiming for ex-
ecution in a realistic context, after extraction. On the other
hand, one can concentrate on normalization and decidabil-
ity of conversion, which are the most difficult theoretical
problems. The most advanced formalizations on that end
are Abel, Ohman, et al. [2017] and Wieczorek and Biernacki
[2018]. The first, in Acpa, shows decidability of conversion,
but does not provide an executable conversion checker. The
second, in Cog, certifies a conversion checker designed for
exccution after extraction, but supports a type theory that is
less powerful than the former, e.g. it does not feature large
elimination of inductive types. Neither formalization pro-
vide a type checker.

tion!

CORRECTNESS

Soundness
Injecti- -~

echanisina teduclbill

Compl
Symmi D PFOO
Al
Reflex N tion!

Ty 0{0@. gget

One wc nu

27/30

LLIGALION UL PIOUL ASSISLALLS 13 4 10Mg-StALUIE Anu
ACM Re very enticing goal. Since proof assistant kernels are by con-

BACK TO UNTYPED CONVERSION

But CoQ's cumulativity check is untyped?

28/30

BACK TO UNTYPED CONVERSION

But CoQ's cumulativity check is untyped?

T

MLTT Typed . l
specification Algorithm erne
Untype ,

Algorithm WIP Kernel

28/30

WRAPPING UP

WRAPPING UP

smecliieian Bidirectional

Presentation(s) Ermel

29/30

WRAPPING UP

smecliieian Bidirectional

Presentation(s) Ermel

« METACOQ: focus on gory issues of a real system
« MLTT a la CoqQ: go as far as possible in an axiom-free way

29/30

WRAPPING UP

/\Bidirectional

Specification . l
P Presentation(s) Sl

« METACOQ: focus on gory issues of a real system
« MLTT a la CoqQ: go as far as possible in an axiom-free way

What now?
MEeTACOQ ? MLTT a la CoQ
Typed conversion? How far can we scale?
Injectivity with n-laws? What practical/theoretical
All of CoqQ? And more? tools do we need? /
29/30

A QUESTION FOR THE AUDIENCE

Take MLTT with typed conversion, I with and n, and Type : Type.

Can you show I types are injective?

30/30

Properties
ll ’
Coq in Martin-L6f

Certified implementation Incompleteness
Normalisation
Injectivities
STAC CoC MLTT PCUIC Coq, AGDA Systems
LEAN... complexity

THANK YOU!

BIBLIOGRAPHY

[AGvi8] Andreas Abel, Joakim Ohman, and Andrea Vezzosi. “Decidability of Conversion
for Type Theory in Type Theory". In: Proc. ACM Program. Lang. (Jan. 2018). pol:
10.1145/3158111.

[(WB18] Pawet Wieczorek and Dariusz Biernacki. “A Coq Formalization of Normalization
by Evaluation for Martin-Lof Type Theory”. In: Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs. CPP 2018. Los Angeles, CA,
USA: Association for Computing Machinery, 2018, pp. 266-279. ISBN: 9781450355865. DOI:
10.1145/3167091.

[BW97] Bruno Barras and Benjamin Werner. “Coq in Coq”. 1997. UrL: http:
//www.lix.polytechnique.fr/Labo/Bruno.Barras/publi/cogincoq.pdf.

[soz+23] Matthieu Sozeau et al. “Correct and Complete Type Checking and Certified
Erasure for Coq, in Coq". Preprint. Apr. 2023. URL:
https://inria.hal.science/hal-04077552.

[Adj+24] Arthur Adjedj et al. “Martin-Lof a la Coq". In: Certified Programs and Proofs (2024).
URL: https://inria.hal.science/hal-04214008.

https://doi.org/10.1145/3158111
https://doi.org/10.1145/3167091
http://www.lix.polytechnique.fr/Labo/Bruno.Barras/publi/coqincoq.pdf
http://www.lix.polytechnique.fr/Labo/Bruno.Barras/publi/coqincoq.pdf
https://inria.hal.science/hal-04077552
https://inria.hal.science/hal-04214008

	Bidirectional typing
	Roadmap
	The MetaCoq project Jww. M. Sozeau, Y. Forster, J. Botch Nielsen, N. Tabareau, T. Winterhalter…
	Martin-Löf à la Coq Jww. Arthur Adjedj, Kenji Maillard, Pierre-Marie Pédrot and Loïc Pujet
	Wrapping up
	Appendix

