VERIFIED META-THEORY AT SCALE
FOR A CERTIFIED PROOF ASSISTANT

Meven LENNON-BERTRAND
INI Big Specification Program - 17/10/24

B UNIVERSITY OF
¢¥ CAMBRIDGE

& T

Very useful!

7 40d o,
@ T T E

Very useful! But what makes them usable?

‘ 7 Agdo ﬁ [VN é

Very useful! But what makes them usable?

Pattern-matching (Computational) univalence

(Sioig) reeerds Termination checking

(Co)Inductive types , ,
Universes Proof irrelevance

‘ 7 Agdo ﬁ [VN &

Very useful! But what makes them usable?

Pattern-matching (Computational) univalence

(Sioig) reeerds Termination checking

(Co)Inductive types , ,
Universes Proof irrelevance

. . . Gradual typing
Modalities Observational equality Ui

‘ 7 Agdo ﬁ [VN é

Very useful! But what makes them usable?

Pattern-matching (Computational) univalence

(Sioig) reeerds Termination checking

(Co)Inductive types , ,
Universes Proof irrelevance

N . _ Gradual typing
Modalities Observational equality Subtyping

Real proof assistants are complicated!

»
‘g7
THE METACOQ PROJECT U

MetaCoq is developed by (left to right) Abhishek Anand, Danil Annenkov, Simon Boulier, Cyril Cohen,
Yannick Forster, Jason Gross, Meven Lennon-Bertrand, Kenji Maillard, Gregory Malecha, Jakob Botsch
Nielsen, Matthieu Sozeau, Nicolas Tabareau and Théo Winterhalter.

THE PICTURE

unquote PCUICToTemplate

Metatheory

Template "~ Certified
Coq type-checker

Erasure +
extraction

gluetE TemplateToPCUIC

MALFUNCTION

(= 0CAML)

THE PICTURE

Correct and Complete Type Checking and Certified Erasure
for Coaq, in Coq statheory
MATTHIEU SOZEAU, Inria, France

YANNICK FORSTER, Inria, France “ertified
MEVEN LENNON-BERTRAND, University of Cambridge, United Kingdom
JAKOB BOTSCH NIELSEN, Concordium Blockchain Research Center, Denmark e-Cc h ec ke r

NICOLAS TABAREAU, Inria, France
THEO WINTERHALTER, Inria, France

CoQ is built around a well-delimited kernel that performs type checking for definitions in a variant of the
Calculus of Inductive Constructions (CIC). Although the metatheory of CIC is very stable and reliable, the
correctness of its implementation in CoQ is less clear. Indeed, implementing an efficient type checker for CIC
is a rather complex task, and many parts of the code rely on implicit invariants which can easily be broken
by further evolution of the code. Therefore, on average, one critical bug has been found every year in CoQ.
This paper presents the first implementation of a type checker for the kernel of Cog (without the module
system, template polymorphism and n-conversion), which is proven sound and complete in CoQ with respect
to its formal specification. Note that because of Gdel’s second incompleteness theorem, there is no hope to
prove letely the soundness of the specification of Cog inside Cog (in particular slmng normalization),
but it is possible to prove the correctness and leteness of the impl
the specification, thus moving from a trusted code base (TCB) to a trusted theory base (TTB) pd]’ddlgm Our

work is based on the METACOQ project which provides meta-programming facilities to work with terms and

declarations at the level of the kernel. We verify a relatively efficient type checker based on the specification of

the typing relation of the Polymorphic, Cumulative Calculus of Inductive Constructions (PCUIC) at the basis

of Cog. It is worth mentioning that during the verification process, we have found a source of incompleteness

in CoQ’s official type checker, which has then been fixed in Cog 8.14 thanks to our work. In addition to the

kernel implementation, another essential feature of CoQ is the so-called extraction mechanism: the production

of executable code in functional languages from Coq definitions. We present a verified version of this subtle

type and proof erasure step, therefore enabling the verified extraction of a safe type checker for Cog in the 4
future.

ation d of

CCS Concents: « Theorv of comnutation — Tvne theorv

CERTIFYING COQ’S TYPE-CHECKER

« Smaller spec than what the people here typically do
« But still a real-life system!
+ The challenge is to prove things

TERMS

Inductive term : Type :=
| tRel (n : nat)
| tvar (id : ident) | tEvar (ev : nat) (args : list term)
| tLetIn (na : aname) (def : term) (def_ty : term) (body : term)
| tSort (s : sort)
| tProd (na : aname) (ty : term) (body : term)
| tLambda (na : aname) (ty : term) (body : term)
| tApp (u v : term)
| tConst (c : kername) (u : Instance.t)
| tInd (ind : inductive) (u : Instance.t)
| tConstruct (ind : inductive) (idx : nat) (u : Instance.t)
| tCase (ci : case_info) (type_info : predicate term)
(discr : term) (branches : list (branch term))
tProj (proj : projection) (t : term)
tFix (mfix : mfixpoint term) (idx : nat)
tCoFix (mfix : mfixpoint term) (idx : nat)
tPrim (prim : prim_val term). 6

TYPING

A few 100 lines of CoqQ:

TYPING

A few 100 lines of CoqQ:

Inductive typing “{checker_flags} (I : global_env_ext) (I : context)
: term > term > Type :=

| type_Lambda (na A t B) : lift_typing typing = I (j_vass na A) -
2 ;;;, F,, vassna Art : B>
> ;;; I+ tLambda na A t : tProd na A B

TYPING

A few 100 lines of CoqQ:

Inductive typing “{checker_flags} (I : global_env_ext) (I : context)
term > term > Type :=

| type_Lambda (na A t B) : lift_typing typing = I (j_vass na A) -
2 ;;;, F,, vassna Art : B>
> ;;; I+ tLambda na A t : tProd na A B

| type_Case : forall ci p c brs indices ps mdecl idecl,
let predctx := case_predicate_context ci.(ci_ind) mdecl idecl p in
let ptm := it_mkLambda_or_LetIn predctx p.(preturn) in
declared_inductive 3 ci.(ci_ind) mdecl idecl >
s ;;; T ,,, predctx + p.(preturn) : tSort ps -
S ;53 T+ c : mkApps (tInd ci.(ci_ind) p.(puinst)) (p.(pparams) ++ indices) -
case_side_conditions (fun = I = wf_local =) typing = I ci p ps

mdecl idecl indices predctx -
case_branch_typing (fun £ I = wf_local = I') typing I ci p ps
mdecl idecl ptm brs >

S ;;; T+ tCase ci p ¢ brs : mkApps ptm (indices + [c])

WHERE'S THE CATCH?

We can write a (minimalistic) kernel for Coq in a few kLoC of pure functional code.

Surely it can’t be that hard to certify?

1

WHERE'S THE CATCH?

We can write a (minimalistic) kernel for Coq in a few kLoC of pure functional code.

Surely it can’t be that hard to certify?

Dependent type theowy + Invariants

1

WHERE'S THE CATCH?

We can write a (minimalistic) kernel for Coq in a few kLoC of pure functional code.

Surely it can’t be that hard to certify?

Dependent type theowy + Invariants

.
2N
3 v &Ny ?

|

o

Similar issue if you try to prove safety = progress + preservation

1

WHAT WE HAVE — METATHEORY (1)

Substitution

 substitution calculus

- universe and term substitution for cumulativity, typing, etc.

Confluence & Simulation

t
t < u
* [/ \‘_-4 * U)
2] Iy i (5’
\-_I *x ,_J'l t/ < u/
u —=U

Injectivity (and no-confusion) of type constructors

« IflIx: AB=1Ix:A’.B’ then A= A’ and B= B’
o IfITx: A.B= N then L

WHAT WE HAVE — METATHEORY (I1)

Subject reduction/Preservation
Theorem subject_reduction S T t u T : wf I =

Z g M= 8T =22 g5 TEE = W=2 555 =W To
Progress

Lemma whnf_progress : V 3 t T, axiom_free I > wf I >
S [Tkt T>
{t'8z; [I1+-t >t} V whnf = [] t.

WHAT WE HAVE — METATHEORY (I1)

Subject reduction/Preservation

Theorem subject_reduction S T t u T : wf I =
Zogg P e T=22ggp TR = W22 353 FF W2 T,

Progress

Lemma whnf_progress : V 3 t T, axiom_free I > wf I >
S [Tkt T>
{t'8z; [I1+-t >t} V whnf = [] t.

+ normalisation =

Canonicity
Every closed term of an inductive type evaluates to a constructor of that type.

Consistency
There are no closed proofs of an empty inductive type.

WHAT WE CANNOT HAVE — NORMALISATION

14

WHAT WE CANNOT HAVE — NORMALISATION

Normalisation is axiomatized

14

WHAT WE CANNOT HAVE — NORMALISATION

Normalisation is axiomatized

Class GuardCheckerCorrect :=

{
guard_redl b ¥ I mfix mfix' idx :
> ;53 I F tFixCoFix b mfix idx -
tFixCoFix b mfix' idx =
guard b ¥ I mfix » guard b = I mfix' ;
fre

Axiom guard_checking_correct : GuardCheckerCorrect.

Axiom Normalization : forall = I t,
wf_ext ¥ > welltyped T I t > Acc (cored = I') t.

14

WHAT WE HAVE — TYPE-CHECKER

Soundness

PCUIC Kernel

WHAT WE HAVE — TYPE-CHECKER

Soundness

.

PCUIC Bidirectional Kernel

Presentation
\/ _/

Completeness

WHAT WE HAVE — TYPE-CHECKER
/\Bidirectional

PCUIC Kernel

Presentation
\—/ _/

Deep in the proof, we realized... it was false!

WHAT WE HAVE — TYPE-CHECKER
/\Bidirectional

PCUIC Kernel

Presentation
\/ _/

Deep in the proof, we realized... it was false!

9 mattam82 added part: kernel (priority: high kind: bug JEIES
on 27 Nov 2020

WHAT WE HAVE — TYPE-CHECKER
/\Bidirectional

PCUIC Kernel

Presentation
\/ _/

Deep in the proof, we realized... it was false!

9 mattam82 added part: kernel (priority: high kind: bug JEIES
on 27 Nov 2020

— re-design of pattern-matching in Coq, backed by MeTACOQ.

WHAT WE HAVE — CERTIFIED EXTRACTION

™

\
user syntax OCaml

(] e omem
AN . /
e) N\
%
Extraction:)
1. Erase proofs from programs: PCUIC - ACJ ’ \: Coq
. . - '
2. Compile AO to your favourite language (OCAML) o
,< !

Malfunction |-

/I
j/l
RN

‘ mlf file ocaml

.emx file L/

[

Extraction:
1. Erase proofs |
2. Compile A\ t«

ey

Verified Extraction from Coq to OCaml

YANNICK FORSTER, MATTHIEU SOZEAU, and NICOLAS TABAREALU, Inria, France

One of the central claims of fame of the Cog proof assistant is extraction, i.e., the ability to obtain efficient
programs in industrial programming languages such as OCaML, Haskell, or Scheme from programs written in
Cog’s expressive dependent type theory. Extraction is of great practical usefulness, used crucially e.g., in the
CompCert project. However, for such executables obtained by extraction, the extraction process is part of
the trusted code base (TCB), as are Coq’s kernel and the compiler used to compile the extracted code. The
extraction process contains intricate semantic transformation of programs that rely on subtle operational
features of both the source and target language. Its code has also evolved since the last theoretical exposition
in the seminal PhD thesis of Pierre Letouzey. Furthermore, while the exact correctness statements for the
execution of extracted code are described clearly in academic literature, the interoperability with unverified
code has never been investigated formally, and yet is used in virtually every project relying on extraction. In
this paper, we describe the development of a novel extraction pipeline from Cog to OCAML, implemented
and verified in Cog itself, with a clear correctness theorem and guarantees for safe interoperability. We build
our work on the METACOQ project, which aims at decreasing the TCB of CoQ’s kernel by re-implementing it
in Cog itself and proving it correct w.rt. a formal specification of Cog’s type theory in Cog. Since OCAML
does not have a formal specification, we make use of the MALFUNCTION project specifying the semantics of
the intermediate language of the OCAML compiler. Our work fills some gaps in the literature and highlights
important differences between the operational semantics of Cog programs and their extraction. In particular,
we focus on the guarantees that can be provided for interoperability with unverified code, and prove that
extracted programs of first-order data type are correct and can safely interoperate, whereas for higher-order
programs already simple interoperations can lead to incorrect behaviour and even outright segfaults.

C€CS Concepts: - Software and its engineering — Compilers; Functional languages; Formal software
verification; + Theory of computation — Type theory.
Additional Key Words and Phrases: Coq, verified compilation, extraction, functional programming

ACM Reference Format:
Yannick Forster, Matthieu Sozeau, and Nicolas Tabareau. 2024. Verified Extraction from Coq to OCaml. Proc.
ACM Program. Lang. 8, PLDI, Article 149 (June 2024), 24 pages. https://doi.org/10.1145

1 INTRODUCTION

S

c
~
)
L/
D)
<
LD paranet
™
|
D pro n:
= Coq
=) tructos
L
> inplenent
) name annotati
L
N
)
) compiiation
tion |
//
R
‘ile OCaml

16

AND NOW?

We have a fully certified, extracted kernel!

AND NOW?

We have a fully certified, extracted kernel!

But:

« axiomatized normalisation - no guarantees on the guard;
« untyped conversion (not what semanticists like);
+ missing some fancy features of Coa:

* nrules
« Sort/template polymorphism
+ Modules

MARTIN-LOF A LA COQ

A DIFFERENT ANGLE

Properties

! | —
Certified implementation

| Incompleteness
\
Normalisation

Confluence-like

CoC PCUIC Coq,

LEAN...

AGDA Expressivity

A DIFFERENT ANGLE

Properties

o i
| vy

Martin-Lof ! N’

. . . alaCo !
Certified implementation o “ | Incompleteness
Normalisation \\\ |
Confluence-like
CoC MLTT PCUIC Coq, AGDA Expressivity
LEAN...

THE PROJECT IN TWO WORDS

« Even smaller system (not real life any more)
+ But fancier proofs!
« Already miserable...

19

SOME LESSONS WE LEARNED
(OR WE SHOULD HAVE LEARNED)

The good

« it's doable, now!
« we even found a bug in Coq: it's apparently useful to do the proofs
- starting to drive the design of the kernel

20

The good

- it's doable, now!
« we even found a bug in Coq: it's apparently useful to do the proofs
« starting to drive the design of the kernel

The bad

« still very heroic (>1y to change pattern-matching...)

- terrible proof engineering

« too little automation
« too many features of CoQ

« very difficult to experiment (no modularity)
« how hard is the last yard going to be?

20

MARTIN-LOF A LA CoQ

Tooling

+ AutoSubst 2 (OCAML implementation)

» Winterhalter's PARTIALFUN library for partial functions
« fancy induction stuff

+ We could do so much more...

21

MARTIN-LOF A LA CoQ

Tooling

+ AutoSubst 2 (OCAML implementation)

» Winterhalter's PARTIALFUN library for partial functions
« fancy induction stuff

+ We could do so much more...

Meta-theory # certification

« two very different problems
- ongoing: separating them cleanly

21

MARTIN-LOF A LA CoQ

Tooling
+ AutoSubst 2 (OCAML implementation)
» Winterhalter's PARTIALFUN library for partial functions

« fancy induction stuff
» We could do so much more...

Meta-theory # certification

« two very different problems
- ongoing: separating them cleanly

There must be a better way

* |RIS-style embedded logic?
+ quotient inductive-inductive types, second order generalized algebraic theory,

synthetic Tait computability...
» Modularity, modularity, modularity
21

THANK YOU!

	The MetaCoq project
	Martin-Löf à la Coq
	Some lessons we learned (or we should have learned)

