ADAPTERS

A TYPE-THEORETIC FOUNDATION FOR TYPE CASTING

Formath Seminar — November 24" 2025

Meven LENNON-BERTRAND

Have many form of type casting... and they’re quite complicated.

Parametrized coercions #2455

cogbot opened on Dec 6, 2010 Member

Note: the issue was created automatically with bugzilla2github tool

Original bug ID: BZ#2455
From: @robbertkrebbers
Reported version: trunk

CC: @Eelis, @JasonGross

©

l}) cogbot on Dec 6, 2010 Member Author

Comment author: @robbertkrebbers

Creating a parametrized coercion does not work. For example, [want to create a coercion from the positive elements of an
arbitrary ordered ring into that ring.

(* Running Coq trunk r13689 *)

Section test.
(* Imagine R to be an ordered Ring *)
Context (R: Type).

(* Here we define the positive elements using a sigma type)
(In this example we are lazy and just take them all :) *)
Definition Pos := sig (fun x : R => True).

o -

Assignees

No one assigned

Labels

part: coercions

Projects

No projects

Milestone

No milestone

Relationships
None yet
Development

& Code with agent mode -
No branches or pull requests
Notifications Customize

L subscribe

You're not receiving notifications from this
thread.

Coercions again #403 ©

Assignees
leodemoura opened on Apr 14, 2021 Member = =+

b

No one assigned

The Lean 4 coercions work much better than the Lean 3 ones, but they are still brittle and based on TC resolution.

"Bad" instances often trigger non-termination. Labels
We can't support coercions from A to a subtype of A without allowing TC to invoke tactics, and we really don't want TC to refactoring
invoke arbitrary tactics since it would make the system more complex, the caching mechanism will be less effective, and
users will probably abuse the feature and create performance problems. Type
Finally, the TC rules are to strict and prevent us from finding a coercion for
No type
structure Foo (A : Sort _) := (foo : A) [l Projects
structure Bar (A : Sort _) extends Foo A := (bar : A)
instance {A} : Coe (Bar A) (Foo A) := {coe := Bar.toFoo} No projects
def getFoo {A} (F : Foo A) := F.foo
def bar : Bar Nat := {foo := ©, bar := 1} .
Milestone
#icheck getFoo bar -- fails because the expected type 'Foo ?A’ contains a metavariable No milestone

One option is to write an extensible coercion resolution procedure. Relationships

Users would still be able to define (non-dependent) coercions using instance s, but the search and support for dependent None yet
coercions from Prop to Bool and A to subtype of A would be handwritten.
Development

& Code with agent mode -
No branches or pull requests

© & leodemoura added | refactoring on Apr 14, 2021
Customize

[a)

The norm_cast family of tactics.

A full description of the tactic, and the use of each theorem category, can be found at https://arxiv.org/abs/2001.10594.

def Lean.Elab.Tactic.NormCast.proveEqUsing
(s : Meta.SimpTheorems) (a b : Expr) :
MetaM (Option Meta.Simp.Result)

Proves a = b using the given simp set.

» Equations

source

def Lean.Elab.Tactic.NormCast.proveEqUsingDown
(a b : Expr) :
MetaM (Option Meta.Simp.Result)

» Equations

Proves a = b by simplifying using move and squash lemmas.

source

def Lean.Elab.Tactic.NormCast.mkCoe
(e ty : Expr) :
MetaM Expr

Constructs the expression (e : ty).

» Equations

source

def Lean.Elab.Tactic.NormCast.isCoe0f?
(e : Expr) :
MetaM (Option Expr)

» Equations

Checks whether an expression is the coercion of some other expression, and if so returns that expression.

source

return to top
source

» Imports
» Imported by

Lean.Elab.Tactic.NormCast.proveEqUsing
Lean.Elab.Tactic.NormCast.proveEqUsingDown
Lean.Elab.Tactic.NormCast.mkCoe
Lean.Elab.Tactic.NormCast.isCoeOf?
Lean.Elab.Tactic.NormCast.isNumeral?
Lean.Elab.Tactic.NormCast.splittingProcedure
Lean.Elab.Tactic.NormCast.prove
Lean.Elab.Tactic.NormCast.upwardAndElim
Lean.Elab.Tactic.NormCast.numeralToCoe
Lean.Elab.Tactic.NormCast.
elabNormCastConfig
Lean.Elab.Tactic.NormCast.derive
Lean.Elab.Tactic.NormCast.elabModCast
Lean.Elab.Tactic.NormCast.normCastTarget
Lean.Elab.Tactic.NormCast.normCastHyp
Lean.Elab.Tactic.NormCast.evalNormCastO
Lean.Elab.Tactic.NormCast.evalConvNormCast
Lean.Elab.Tactic.NormCast.evalPushCast
Lean.Elab.Tactic.NormCast.elabAddElim

- |
e e I

Polarities: subtyping for datatypes #65

‘

Assignees
& catalin-hritcu opened on Nov 29, 2014 Member) ==+
No one assigned
(x:int{x>1} * y:int{y>1}) is nota subtype of (int * int)
Labels
@) component/language-design
component/metatheory

component/typechecker (Rard)
© & catalin-hritcu added kind/bug on Nov 29, 2014 kind/enhancement status/wont-fix

24 remaining items

Load more

Relationships

nikswamy on Mar 14, 2022
None yet
Addressing this issue requires more research. Closing as a wontfix until then.
Development
& Code with agent mode

No branches or pull requ

@ = nikswamy closed this as completed on Mar 14

Disable all subtyping by default? #4474

jespercockx opened on Feb 23, 2020 Member = ==+

In the light of historic and current issues involving subtyping (e.g. #1579 #2170 #2440 #3986 #4175 #4390 #4401) I am
starting to wonder whether it is a good idea to have subtyping enabled by default in Agda. All dependent type theories with
subtyping that are know either use coercive subtyping or restrict it to a very specific setting (i.e. cumulativity). On the other
hand, Agda now has a notion of material subtyping that is used for several features: irrelevance, erasure, sized types,
cumulativity, and cohesion. In particular, it seems that we do not yet fully understand how constraint solving and
metavariables in such a setting are supposed to work.

In this light, T would like to discuss whether it is a good idea to have (material) subtyping enabled by default. Maybe it would
be better to have a general flag --no-subtyping that disables material subtyping across the board? Things like irrelevance
and erasure should still function with this option, though it might be necessary to eta-expand some functions by hand. Sized
types and cumulativity would obviously not be compatible with this flag.

What do you think? Is this a good idea or do we need a less radical solution?

Q42

© @ jesp on Feb 23, 2020

kx added ing | type: di

nad on Feb 23, 2020 Contributor = *++

Tjust asked you a similar question.

In particular, it seems that we do not yet fully understand how constraint solving and metavariables in such a setting are

supposed to work.

o -

Assignees

No one assigned
Labels

subtyping | type: discussion
Type
No type

Projects

No projects

Milestone

© 261
Closed on Mar 16, 2020, 100% complete

Relationships

None yet
Development

& Code with agent mode -
No branches or pull requests

Notifications Customize

DEPENDENT TYPES IN ONE SLIDE

I'HA I'n:N
I'=VectAn

Types can contain terms:

DEPENDENT TYPES IN ONE SLIDE

'A I'n:N
Types can contain terms: A change with many consequences...

I'=VectAn

DEPENDENT TYPES IN ONE SLIDE

'A I'n:N
Types can contain terms: A change with many consequences...

I'=VectAn

'-f:llx:AB TFru:A
T+ fu: Blu/x]

Type well-formation ' -+ A Substitution during typing

DEPENDENT TYPES IN ONE SLIDE

'A I'n:N
Types can contain terms: A change with many consequences...

I'=VectAn

'-f:llx:AB TFru:A
T+ fu: Blu/x]

Type well-formation ' -+ A Substitution during typing

T't: A '-A=B8B
I't:B

Conversion/definitional equality

I,x:A+t:B I'+u:A
'\ x:At)u=t{u/x]: Blu/x]

Equivalence, congruent, and contains (at least) f§ rules

DEPENDENT TYPES IN ONE SLIDE

'A I'n:N
Types can contain terms: A change with many consequences...

I'=VectAn

'-f:llx:AB TFru:A
T+ fu: Blu/x]

Type well-formation ' -+ A Substitution during typing

T't: A '-A=B8B
I't:B

Conversion/definitional equality

I,x:A+t:B I'+u:A
'\ x:At)u=t{u/x]: Blu/x]

Equivalence, congruent, and contains (at least) f rules

Typing depends on the equational theory of the language!

WARMING-UP WITH SUBTYPING

Théo LAURENT Kenji MAILLARD

Definitional Functoriality for Dependent (Sub)Types, ESOP 2025
(and Théo’s PhD thesis)

IMPLICIT SUBTYPING

What users™ want:

Fhuypt: A Iy A A’

SuB

T t: A’

IMPLICIT SUBTYPING

What users™ want:

Fhuypt: A Iy A A’

SuB

Iy t: A
Think of < as (set) inclusion.
t = t
m m

Tm(A) C Tm(A”)

IMPLICIT SUBTYPING

What users™ want:

Fhuypt: A Iy A A’

SuB

T t: A’

Think of < as (set) inclusion.
t = t
m m

Tm(A) € Tm(A”)

Type theorists hate this:
« limited model: A” CA/\BCB - A—>BCA" > B
« difficult meta-theory

+ annoying to implement

IMPLICIT SUBTYPING

What users™ want:

Fhuypt: A Iy A A’

Sus
[b t: A’
Think of < as (set) inclusion.
t = t
m m

Tm(A) C Tm(A”)

Type theorists hate this:
« limited model: A” CA/\BCB - A—>BCA" > B

« difficult meta-theory
+ annoying to implement

Someone in the room would say: fibrations! This is not how we’ll cook it.

EXPLICIT SUBTYPING

What type theorists want you to do:

[heoet: A Iieoe A A
['beoe coey art s A

CoE

Explicit coe is much easier to model/study/implement!

EXPLICIT SUBTYPING

What type theorists want you to do:

Theoet: A Thge ASXA
[beoe coey art s A

CoE

Explicit coe is much easier to model/study/implement!

This i the work of a compilen!

LET’S COMPILE, THEN!

e

users «——— MLTTqyp ~ oo~ MLTT0e

[t:A I_‘|_subA<A/ f'?er:A

kernel
models

Sus > CoEe

Thsup t: A T Fege coeAA,Z:A’

LET’S COMPILE, THEN!

— . T

users «———— MLT Ty, ~~~~~o~o~~~o~~~> MLT T kernel
models
Fhupt: A Iy A< A f'?er:A l:‘|_coeA<A/
SuB p; ~> CoE = o—
Fhwt:A (s @O s 0 2 AY

Unable to unify "t" with "t".

LET’S COMPILE, THEN!

— . T

users «———— MLT Ty, ~~~~~o~o~~~o~~~> MLT T kernel
models
Fhupt: A Iy A< A f'?er:A l:‘|_cof:A<Al
SuB p; ~> CoE = o—
Fhwt:A (s @O s 0 2 AY

Unable to unify "t" with "t".

Set Printing Coercions.
Unable to unify "t'" with "t''".

LET’S COMPILE, THEN!

M

users «——— MLTTqyp ~ oo~ MLTT0e

[t:A I_‘|_subA<A,
Ty t: A

SuB

Unable to unify "t" with "t".

Set Printing Coercions.
Unable to unify "t'" with "t''".

Compilation should be unambiguous.

Necessary for compilation to preserve typing.

kernel

models

LET’S COMPILE, THEN!

e

users «———— MLT Ty, ~~~~~o~o~~~o~~~> MLT T kernel
models
Fhupt: A Iy A< A f‘|_coet A f'?oeA<A
SuB p; ~> CoE = o—
Fhwt:A I'Fepe coeg it A

Unable to unify "t" with "t".

Set Printing Coercions.
Unable to unify "t'" with "t''".

Compilation should be unambiguous.
Necessary for compilation to preserve typing.

Coherence: If [t| = |u| thent = u.

LET’S COMPILE, THEN!

M

users «— MLTT 1 ~~~~~~~~~~~~> MLT T e kennel
models
Fhupt: A Iy A< A f'?er:A 1:|_covsA<A
Sus p; ~> Coe = s =
Fhwt:A (s @O s 0 2 AY

Unable to unify "t" with "t".

Set Printing Coercions.
Unable to unify "t'" with "t''".

Compilation should be unambiguous.
Necessary for compilation to preserve typing.

Coherence: If |t| = |u| thent = u.

What equations do we need?

LET’S COMPILE, THEN!

M

users «——— MLT T4}, ~~—~~~o~e~e~e~o~~~> MLT T e kernel
models
Fhupt: A Iy A< A f'?er:A l:|_C()EA<A,
Sus ~> Coe

Thsup t: A T oo coeA’A,Z:A’

Unable to unify "t" with "t".

Set Printing Coercions.
Unable to unify "t'" with "t''".

Compilation should be unambiguous.
Necessary for compilation to preserve typing.

Coherence: If |t| = |u| thent = u. A type-theoretic

. uestion
What equations do we need? d

NeEw EQUATIONS FOR STRUCTURAL SUBTYPING

STRUCTURAL SUBTYPING

Focus = structural subtyping:

A XA B< B
A—->B<A" > B

WHAT EQUATIONS DO WE NEED?

WHAT EQUATIONS DO WE NEED?

Computation equations:

[

coeist A List A’ []

(CoeA,A’ a): COCLjst A List A’ l

coerist A List A’ (@ = 1)

(coeqpa—p flu coep g (f (coear s u))

WHAT EQUATIONS DO WE NEED?

Computation equations:
coerist A List A’ []
coerist A List A’ (@ = 1)

(coeqpa—p flu

Functoriality equations:
coeys p» coey ol

coey 4l

[

(CoeA,A’ a): COCLjst A List A’ l

coep p(f (coeqr 4 u))

coey a1

NeEw EQUATIONS FOR NEUTRALS

CO€List AList A’ | := mapy ;i coeq ar 1

NeEw EQUATIONS FOR NEUTRALS

CO€List AList A’ | := mapy ;i coeq ar 1

Not in vanilla CIC/MLTT, where

mapy ;g f (mapy § x) # mapyg(feg)x
mapy;idx # x

NeEw EQUATIONS FOR NEUTRALS

CO€List AList A’ | := mapy ;i coeq ar 1

Not in vanilla CIC/MLTT, where

mapy ;g f (mapy § x) # mapyg(feg)x
mapy;idx # x

Can we add these functoriality equations in?

NEW

rXiv:1304.0809v3 [cs.PL] 17 Jun 2013

d

DRAFT

New Equations for Neutral Terms

A Sound and Complete Decision Procedure, Formalized

Guillaume Allais ~ Conor McBride

University of Strathclyde
{guillaume.allais, conor.mcbride} @strath.ac.uk

Abstract

‘The definitional equality of an intensional type theory is its test
of type compatibility. Today’s systems rely on ordinary evaluation
semantics to compare expressions in types, frustrating users with
type errors arising when evaluation fails to identify two obviously”
equal terms. If oly the machine could decide a richer theory! We

s s which supplement evaluation with
s of normal forms, and report

a successful initial experiment.

We study a simple A-calculus with primitive fold, map and ap-
pend operations on lists and develop in Agda a sound and complete
lecision procedure for an equational theory enriched with monoid,
functor and fusion laws.

Keywords Normalization by Evaluation. Logical Relations, Simply-
Typed Lambda Calculus, Map Fusion

1. Introduction

‘The programmer working in intensional type theory is no stranger
10 *obviously true’ equations she wishes held definitionally for her
program to typecheck without having to chase down ill-typed terms
and brutally coerce them. In this article, we present one way to relax
definitional equality, thus accommodating some of her longings.
We distinguish three types of fundamental relations between terms.

‘The first denotes computational rules: itis untyped, oriented and
denoted by ~ inits one step version or ~=* when the reflexive tran-
sitive congruence closure is considered. In Table[T] we introduce a
few such rules which correspond to the equations the programmer
writes to define functions. They are referred to as & (for definitions)
and ¢ (for pattern-matching on inductive data) rules and hold com-
putationally just like the more common f-rule.

The second is the judgmental equality (

it is typed, tracta

Pierre Boutillier

PPS - Paris Diderot
pierre boutillier@pps.univ-paris-diderot.fr

map : (a — b) — list a — list b
8]

map £ [1 -

map £ (x :: xs) ~ £ x :: map £ xs

(++) : list a — list a — list a

8] ++ys w ys

X i:xs 4 ys w x i (xs ++ ys)

fold : (a b —-b) - b — lista = b

fold ¢ n [J

fold cn (x :: xs) ~» ¢ x (fold ¢ n xs)
Table 1. §-rules - computational

I'-f=Xx fx taob

I Fp (mp,rr;p):axb

'ku i1

‘Table 2. 7-rules - canonicity

fied judgmentally. Table[3]shows a kit for building computationally
inert neutral terms growing layers of thwarted progress around a
variable which we dub the “nut’, together with some equations on
neutral terms which held only propositionally — until now. This pa-
per shows how to extend the judgmental equality with these new
“v-rules’. We gain, for example, that map swap . map swap
id, where swap swaps the elements of a pair.

B0dF0

rXiv:1304.0809v3 [cs.PL] 17 Jun 2013

d

DRAFT

New
A Sound an¢

Guillaume Allais ~ Con

University of Strathe
{guillaume.allais, conor.mcbrid:

Abstract

The definitional equality of an intensional ¢
of type compatibility. Today’s systems rely of
semantics to compare expressions in types.
type errors arising when evaluation fails to id
equal terms. If only the machine could decid
way to decide theories which suppl
earranging the neutral parts of nor
a successful initial experiment.

We study a simple A-calculus with primi]
pend operations on lists and develop in Agda
decision procedure for an equational theory ¢
functor and fusion laws.

Keywords Normalization by Evaluation, Loy
Typed Lambda Caleulus, Map Fusion

1. Introduction

‘The programmer working in intensional type
1o “obviously true’ equations she wishes el
program to typecheck without having to chase]
and brutally coerce them. In this article. we pr
definitional equality, thus accommodating s
We distinguish three types of fundamental rel

‘The first denotes computational rules: itis
denoted by ~~ inits one step version or ~* w
sitive congruence closure is considered. In T
few such rules which correspond to the equa
writes to define functions. They are referred i
and ¢ (for pattern-matching on inductive data|
putationally just like the more common A-rul

The second is the judgmental equality

Decidability of Conversion for Type Theory in Type Theory

ANDREAS ABEL, Gothenburg University, Sweden
JOAKIM OHMAN, IMDEA Software Institute, Spain
ANDREA VEZZOSI, Chalmers University of Technology, Sweden

Type theory should be able to handle its own meta-theory, both to justify its foundational claims and to obtain
a verified implementation. At the core of a type checker for intensional type theory lies an algorithm to check
equality of types, or in other words, to check whether two types are convertible. We have formalized in Agda
a practical conversion checking algorithm for a dependent type theory with one universe a la Russell, natural
numbers, and 7-equality for IT types. We prove the algorithm correct via a Kripke logical relation parameterized
by a suitable notion of equivalence of terms. We then instantiate the parameterized fundamental lemma twice:
once to obtain canonicity and injectivity of type formers, and once again to prove the completeness of the
algorithm. Our proof relies on inductive-recursive definitions, but not on the uniqueness of identity proofs.
Thus, it is valid in variants of intensional Martin-Léf Type Theory as long as they support induction-recursion,
for instance, Extensional, Observational, or Homotopy Type Theory.

CCS Concepts: « Theory of computation — Type theory; Proof theory;
Additional Key Words and Phrases: Dependent types, Logical relations, Formalization, Agda

ACM Reference Format:
Andreas Abel, Joakim Ohman, and Andrea Vezzosi. 2018. Decidability of Conversion for Type Theory in Type
Theory. Proc. ACM Program. Lang. 2, POPL, Article 23 (January 2018), 29 pages. https://doi.org/10.1145/3158111

1 INTRODUCTION

NEW

DRAFT

New
A Sound an¢

Guillaume Allais Con|

Martin-Lof a la CoQ ype Theory

Arthur Adjedj Meven Lennon-Bertrand Kenji Maillard
A ENS Paris Saclay, Université University of Cambridge Intia
T Paris-Saclay Cambridge, United Kingdom Nantes, France

Gif-sur-Yvette, France

Pierre-Marie Pédrot Loic Pujet
Inria University of Stockholm
K Nantes, France Stockholm, Sweden

Abstract

I claims and to obtain
an algorithm to check

checker is spent on establishing meta-theoretic properties, ve formalized in Agda

[cs.PL] 17 Jun 2013

,,
3
Sx

S5 4=

rXiv:1304.0809v

d

We present an extensive mechanization of the metatheory
of Martin-L5f Type Theory (MLTT) in the Cog proof assis-
tant. Our development builds on pre-existing work in Acpa
to show not only the decidability of conversion, but also
the decidability of type checking, using an approach guided
by bidirectional type checking. From our proof of decidabil-
ity, we obtain a certified and executable type checker for
a full-fledged version of MLTT with support for II, X, N,
and Id types, and one universe. Our development does not
rely on impredicativity, induction-recursion or any axiom
beyond MLTT extended with indexed inductive types and a
handful of predicative universes, thus narrowing the gap be-
tween the object theory and the metatheory to a mere differ-
ence in universes. Furthermore, our formalization choices
are geared towards a modular development that relies on
Cog’s features, e.g. universe polymorphism and metapro-
gramming with tactics.

Keywords: Dependent type system, Bidirectional typing, Log-

which are necessary to ensure termination of the type checker
but have little to do with its concrete implementation.
Acknowledging this tension leads to two radically differ-
ent approaches. On the one hand, one can simply postu-
late nor to better on the
faced when certifying a realistic type-checker. The most am-
bitious project to date that follows this approach is MeTa-
CoQ [Sozeau, Anand, et al. 2020; Sozeau, Forster, et al. 2023],
which formalizes a nearly complete fragment of Cog’s type
system and provides a certified type checker aiming for ex-
ecution in a realistic context, after extraction. On the other
hand, one can concentrate on normalization and decidabil-
ity of conversion, which are the most difficult theoretical
problems. The most advanced formalizations on that end
are Abel, Ohman, et al. [2017] and Wieczorek and Biernacki
[2018]. The first, in AGpa, shows decidability of conversion,
but does not provide an executable conversion checker. The
second, in Cog, certifies a conversion checker designed for
execution after extraction, but supports a type theory that is

Ise a la Russell, natural
elation parameterized
| lemma twice:

le completeness of the
ess of identity proofs.
t induction-recursion,

Agda

Type Theory in Type
bi.org/10.1145/3158111

THEOREMS!

MLTT_,. is a nice type theory
We can design MLTT,. with all these equations and good type theoretic properties:

« logical consistency
« decidability of conversion and type-checking
Featuring List (02), Mmxw,+-=.. (ﬂ’)

10

THEOREMS!

MLTT_,. is a nice type theory
We can design MLTT,. with all these equations and good type theoretic properties:
« logical consistency

« decidability of conversion and type-checking
Featuring List &), 1,5, W, +, =... (8

And it is a good target

There is an elaboration MLT T}, » MLTT_,. which preserves conversion and typing.
Moreover, it is an inverse of erasure, and elaboration is thus coherent.

10

“To compile structural implicit subtyping,
you need exactly functoriality equations.”

1

“To compile structural implicit subtyping,
you need exactly functoriality equations.”

But: missing a general framework.

1

STRUCTURAL CASTS AND FUNCTORIAL TYPES

Arthur AbpJED) Thibaut BENJAMIN Kenji MAILLARD

AdapTT: Functoriality for Dependent Type Casts, POPL 2026

12

(STRUCTURAL) CASTS EVERYWHERE

Explicit subtyping:
cast along subtyping derivations.

'A< A T+-BDB
I'HrA—>B< A ->F I'-f:A->B TI'-a' : A

I+ (coeq pap f)a =coegp(f coey ya): B

13

(STRUCTURAL) CASTS EVERYWHERE

'A< A T+-BDB
Explicit subtyping: [FA->B<A'>B TrFf:A>B I'ad A

cast along subtyping derivations. I+ (coeq pap f)a =coegp(f coey ya): B

The,: A=A Tre:B=FH

Wl el caralfi I'+¢:=...A>B=A"->B Trf:A>B Trad:A
cast along equality proofs.

T' & trans, 4 p (€', f) @’ = transgp (e, f trans,, 4(es,a’)) : B

D . L '-f:A—>B I'a : A
ynamic typing:
cast always allowed (might fail). I'-(A >B <A->Byf)aa=(B <B(f(A<=A")d): B

13

(STRUCTURAL) CASTS EVERYWHERE

'HA’<A THBXDB
Explicit subtyping: [FA->B<A >B TrFf:A>B I'-ad: A

cast along subtyping derivations. I+ (coeq pap f)a =coegp(f coey ya): B

The,: A=A Tre:B=FH

Wl el caralfi I'+¢:=...A>B=A"->B Trf:A>B Trad:A
cast along equality proofs.

T' & trans, 4 p (€', f) @’ = transgp (e, f trans,, 4(es,a’)) : B

D . L '-f:A—>B T'ta : A
ynamic typing:
cast always allowed (might fail). I'-(A >B <A->Byf)aa=(B <B(f(A<=A")d): B

There’s a general pattern!

13

(STRUCTURAL) CASTS EVERYWHERE

'A< A T+-BDB
Explicit subtyping: [FA->B<A'>B TrFf:A>B I'ad A

cast along subtyping derivations. I+ (coeq pap f)a =coegp(f coey ya): B

The,: A=A Tre:B=FH

Wl el caralfi I'+¢:=...A>B=A"->B Trf:A>B Trad:A
cast along equality proofs.

T' & trans, 4 p (€', f) @’ = transgp (e, f trans,, 4(es,a’)) : B

D . L '-f:A—>B T'ta : A
ynamic typing:
cast always allowed (might fail). I'-(A >B <A->Byf)aa=(B <B(f(A<=A")d): B

There’s a general pattern! Functoriality?

13

UNDERSTANDING FUNCTORIAL TYPE FORMERS

Functor = a mapping between two categories:
« acts on objects and arrows

« preserves identities and composition

14

UNDERSTANDING FUNCTORIAL TYPE FORMERS

Functor = a mapping between two categories:

- 2P F

« acts on objects and arrows

« preserves identities and composition

Make types into a category

Describe the source of type formers

Show functoriality for our favourite type formers
Profit!

14

UNDERSTANDING FUNCTORIAL TYPE FORMERS

Functor = a mapping between two categories:

- 2P F

« acts on objects and arrows

« preserves identities and composition

Make types into a category

Describe the source of type formers

Show functoriality for our favourite type formers
Profit!

14

THE CATEGORY OF TYPES AND ADAPTERS

Adapters = “the data along which you can cast”
a: A=A’ t A t A
Ha): A’ Kidg)=t: A

a:A= A a A= A"

t:

Ha' oa) =t{a)a’) : A”

15

THE CATEGORY OF TYPES AND ADAPTERS

Adapters = “the data along which you can cast”

a:A= A t: A t: A a:A= A a A= A"

t:

Ha): A’ Kidg)=t: A Ha' oa) =t{a)a’) : A”

A family of type theories:
o Subtyping: A = B corresponds to A < B. Uniqueness!

15

THE CATEGORY OF TYPES AND ADAPTERS

Adapters = “the data along which you can cast”

a:A= A t: A t: A a:A= A a A= A"

t:

Ha): A’ Kidg)=t: A Ha' oa) =t{a)a’) : A”

A family of type theories:
« Subtyping: A = B corresponds to A < B. Uniqueness!
o Full function space: givenany f : A—> Bweget f: A= B(andt(f) = ft)

15

THE CATEGORY OF TYPES AND ADAPTERS

Adapters = “the data along which you can cast”

a:A= A t: A t: A a:A= A a A= A"

t:

Ha): A’ Kidg)=t: A Ha' oa) =t{a)a’) : A”

A family of type theories:
« Subtyping: A = B corresponds to A < B. Uniqueness!
« Full function space: given any f : A —> Bweget f: A= B(andt(f) = f 1)
» Observational equality: givene: A = Bwegete: A= B
e Dynamic typing: A = B always inhabited

15

THE CATEGORY OF TYPES AND ADAPTERS

Adapters = “the data along which you can cast”
a:A=A i: A i: A a:A=A a: A = A" t: A
Ha): A’ Kidg)=t: A Ha' oa) =t{a)a’) : A”

A family of type theories:
« Subtyping: A = B corresponds to A < B. Uniqueness!
« Full function space: given any f : A —> Bweget f: A= B(andt(f) = f 1)
» Observational equality: givene: A = Bwegete: A= B

. . . . Need non-uniqueness too
« Dynamic typing: A = B always inhabited

15

THE CATEGORY OF TYPES AND ADAPTERS

Adapters = “the data along which you can cast”
a:A=A i: A i: A a:A=A a: A = A" t: A
Ha): A’ Kidg)=t: A Ha' oa) =t{a)a’) : A”

A family of type theories:
« Subtyping: A = B corresponds to A < B. Uniqueness!
« Full function space: given any f : A —> Bweget f: A= B(andt(f) = f 1)
» Observational equality: givene: A = Bwegete: A= B

. . . . Need non-uniqueness too
« Dynamic typing: A = B always inhabited

Abstractly:
« acategory Tyr of types and adapters
o Tmp : Typ — Set s a functor

(CwF-style reinvention of comprehension categories, see also Coraglia, Najmaei.)

15

UNDERSTANDING FUNCTORIAL TYPE FORMERS

Functor = a mapping between two categories:

> PP 5

« acts on objects and arrows

« preserves identities and composition

Make types into a category
Describe the source of type formers

Show functoriality for our favourite type formers
Profit!

16

WHAT IS IN A TYPE FORMER

Inductive List (X : Type) : Type := ..

Inductive W (X : Type) (Y : X - Type) : Type := ..

A type former is specified by a context

WHAT IS IN A TYPE FORMER

Inductive List (X : Type) : Type := ..

Inductive W (X : Type) (Y : X - Type) : Type := ..

A type former is specified by a context , with
« type variables: T' i = X: Ty I, :=(X:Ty),(Y:Ty)

17

WHAT IS IN A TYPE FORMER

Inductive List (X : Type) : Type := ..

Inductive W (X : Type) (Y : X - Type) : Type := ..

A type former is specified by a context , with
« type variables: T' i = X: Ty I, :=(X:Ty),(Y:Ty)
« dependent type variables: Ty := (X: Ty), (Y: X. Ty)

17

WHAT IS IN A TYPE FORMER

Inductive List (X : Type) : Type := ..

Inductive W (X : Type) (Y : X - Type) : Type := ..

A type former is specified by a context, with
« type variables: T' i = X: Ty I, :=(X:Ty),(Y:Ty)
« dependent type variables: Ty := (X: Ty), (Y: X. Ty)
« term variables: T'— = (X: Ty), (x: X), (y: X)

17

WHAT IS IN A TYPE FORMER

Inductive List (X : Type) : Type := ..
Inductive W (X : Type) (Y : X - Type) : Type := ..

A type former is specified by a context, with
« type variables: T' i = X: Ty I, :=(X:Ty),(Y:Ty)
« dependent type variables: Ty := (X: Ty), (Y: X. Ty)
« term variables: T'— = (X: Ty), (x: X), (y: X)

I'A T+B T'A T+B
THA—B T+ (AB): T,

17

TRANSFORMATIONS: WHERE THE MAGIC HAPPENS

But wait! We have a way to relate two substitutions ' = o, 7 : T'_,:

(ldapters!

18

TRANSFORMATIONS: WHERE THE MAGIC HAPPENS

But wait! We have a way to relate two substitutionsT' - o,7 : I'_,: adwpteﬂ/b’

We need variance information, though:

THa: A= A I'b:B= B’

I, =(X:Ty_)(Y:T =
(X: Ty)(¥:Ty,) '+a—>b:A—>B=A"—>FB

18

TRANSFORMATIONS: WHERE THE MAGIC HAPPENS

But wait! We have a way to relate two substitutions ' = o, 7 : T'_,: &dapm’

We need variance information, though:

THa: A= A I'b:B= B

I, =Ty)(Y:Ty,) = T (@b (4B = (4.5)

18

TRANSFORMATIONS: WHERE THE MAGIC HAPPENS

But wait! We have a way to relate two substitutions ' = o, 7 : T'_,: &dapm’

We need variance information, though:

THa: A= A I'b:B= B

I, =Ty)(Y:Ty,) = T (@b (4B = (4.5)

A very general rule:

r=A Aro,r:T A-p:o=rr1
A+ A[y] : Alo] = Alr]

All types are functors

18

TRANSFORMATIONS: WHERE THE MAGIC HAPPENS

But wait! We have a way to relate two substitutions ' = o, 7 : T'_,: &dapm’

We need variance information, though:

THa: A= A I'b:B= B
'+ (a,b):(AB)=r_ (A,B)

I = (X:Ty)(Y:Ty,) =

A very general rule:

r=A Aro,r:T A-p:o=rr1
A+ A[y] : Alo] = Alr]

All types are functors, obtained compositionally from functoriality of each type former.

ADAPTT, CATEGORICALLY

o A 2-category Ctx of contexts, substitutions and transformations

+ A 2-functor Ty : Ctx — Cat (maps I to the category Ty, -[-] is the action on 2-arrows)
« A “dependent 2-functor” Tm : (T: Ctx) — (Ty(T') — Set);

« Local representability (type and term variables);

« a2-functor -~ : Ctx“® — Ctx to interpret negative variance.

Lots of data and equations to unpack!

19

UNDERSTANDING FUNCTORIAL TYPE FORMERS

Functor = a mapping between two categories:

> PP 5

« acts on objects and arrows

« preserves identities and composition

Make types into a category
Describe the source of type formers

Show functoriality for our favourite type formers
Profit!

20

MAKING A TYPE FORMER FUNCTORIAL

Type specification recipe

Type formation rule A — B
Constructor (1) and eliminator (app)

Computation rule for each constructor-destructor combination (f)

= 0P 5

Extensionality rule (n) (optional)

21

MAKING A TYPE FORMER FUNCTORIAL

Type specification recipe, adapted

1. Give the type former’s context (I'_,), and derive

1.1 the type formation rule A — B
1.2 the adapter formation rulea — b

. Constructor (4) and eliminator (app)
. Computation rule for each constructor-destructor combination (f3)

. Extensionality rule (n) (optional)

Ul &~ W N

. Computation rule for the adapter

(fla > b)) u=(f w(@)b)

21

OUR FAVOURITE TYPE FORMERS

I'p=X:Ty_),(Y: X.Ty,)

Ty = (X: Ty,), (Y: X. Ty,)

22

OUR FAVOURITE TYPE FORMERS

I'p=X:Ty_),(Y: X.Ty,)

AFa: A=A Ax:AFb:B[x{(a)/x] =B

Iy =(X:Ty,), (Y:X.Ty,)

AFa:A=A" Ax:AFb:B= B|[x{(a)/x]

A FTlab : (x: A).B = I(x: A’).B

AF3ab:3(x:A).B= 3(x:A").B

22

OUR FAVOURITE TYPE FORMERS

I'p=X:Ty),(Y: X.Ty,)

AFa: A=A Ax:A+b:B[x{(a)/x] =B

Iy =(X:Ty,),(Y:X.Ty,)

AFa:A=A" Ax:Arb:B= B[x(a)/x]

A FTlab : (x: A).B = I(x: A’).B

AF3ab:3(x:A).B= 3(x:A").B

22

OUR FAVOURITE TYPE FORMERS

I = (X: Ty), (V: X Ty,) Ts = (X:Ty,),(Y: X.Ty,)

AFa: A=A Ax:AFb:Blx(a)/x]=>B Ara:A=A" Ax:Arb:B= B[x(a)/x]

A+Tlab:II(x: A).B=II(x: A").B AFXab:3(x:A).B= X(x:A").B

ArFa: A=A A@:A)Fb:Blx{a)/x] =B AFf:II(x:A).B Aru:A
A+ f(ab)u=(f u(a))(blu/x]): B'lu/x]

Ara:A=A Ax:A)Fb:B=B[x(a)/x] AFp:3(x:A).B
A (p(Zab)) = (m pXa): A A+ m (pZab)) = (m, p)blmp/x]) : B'[(m p)a)/x]

22

OUR FAVOURITE TYPE FORMERS

I = (X: Ty), (V: X Ty,) Ts = (X:Ty,),(Y: X.Ty,)

AFa: A=A Ax:AFb:Blx(a)/x]=>B Ara:A=A" Ax:Arb:B= B[x(a)/x]

A+Tlab:II(x: A).B=II(x: A").B A+Xab:3(x:A).B= 3(x:A").B

ArFa: A=A A@:A)Fb:Blx{a)/x] =B AFf:II(x:A).B Aru:A
A+ f(ab)u=(f u(a))(blu/x]): B'lu/x]

Ara:A=A Ax:A)Fb:B=B[x(a)/x] AFp:3(x:A).B
A (p(Zab)) = (m pXa): A A+ m (pZab)) = (m, p)blmp/x]) : B'[(m p)a)/x]

A bit intense... but clear guidelines.

22

UNDERSTANDING FUNCTORIAL TYPE FORMERS

Functor = a mapping between two categories:

> PP 5

« acts on objects and arrows

« preserves identities and composition

Make types into a category

Describe the source of type formers

Show functoriality for our favourite type formers
Profit!

23

FUNCTORIAL INDUCTIVE TYPES

Inductive list (A :
| nil : list A

| cons (a : A) (1 :

Type)

list A) : A

Inductive eq (A :
| eq_refl (a :

| sup (a :

Type)

: Type := Inductive W (A : Type) (B :
A) (rec : Ba -> WA B)

: A -> A -> Type :

A) : eqAaa

A -> Type)

: Type :
: WAB

24

FUNCTORIAL INDUCTIVE TYPES

Inductive list (A : Type+) : Type+ := Inductive W (A : Type+) (B : A -> Type-)

: Type :

| nil : list A | sup (a : A) (rec : Ba ->WAB) : WAB

| cons (a : A) (1 : list A) : A

Inductive eq (A : Type) : A -> A -> Type :=
| eq_refl (a : A) : eq A aa

Idea:
1. Include variance in the types’ context
2. Derive the adapter’s type from the context

3. Derive the adapter’s computation rule from the constructors’ description

24

FUNCTORIAL INDUCTIVE TYPES

Inductive list (A : Type+) : Type+ := Inductive W (A : Type+) (B : A -> Type-)

: Type :

| nil : list A | sup (a : A) (rec : Ba ->WAB) : WAB

| cons (a : A) (1 : list A) : A

Inductive eq (A : Type) : A -> A -> Type :=
| eq_refl (a : A) : eq A aa

Idea:
1. Include variance in the types’ context
2. Derive the adapter’s type from the context

3. Derive the adapter’s computation rule from the constructors’ description

All the hard work is done!

24

WRAPPING UP

WHAT’S COOKING

* Meta-theory of AdapTT

« Alternative presentation of type variables?

« Experimental implementation

« Explore instances of the framework (cumulativity, subset types, records...)

» More category theory (Clean presentation of dependent variables?)

25

Structural casts <> Functorial type formers

26

Structural casts <> Functorial type formers

We can design better coercions...

26

Structural casts <> Functorial type formers

We can design better coercions...

... but we have to push conversion beyond mere computation!

26

Structural casts <= Functorial type formers
We can design

... but we have to push conversion

THANKS!

	Warming-up with subtyping
	New equations for structural subtyping
	Structural casts and functorial types
	Wrapping up

