WHAT DOES IT TAKE TO CERTIFY CONVERSION?

Meven LENNON-BERTRAND
FSCD 2025

BB UNIVERSITY OF
» CAMBRIDGE

Department of Computer
Science and Technology

1/12

WHAT AM | TRYING TO DO?

VERIFYING THE VERIFIER

We keep telling the world they should verify their critical code...

2/12

VERIFYING THE VERIFIER

We keep telling the world they should verify their critical code...
A lot of the verification ecosystem relies on proof assistant kernels...

2/12

VERIFYING THE VERIFIER

We keep telling the world they should verify their critical code...
A lot of the verification ecosystem relies on proof assistant kernels...

Yet we still don’t have verified kernels!”

*For dependent types: CANDLE exists and it's really cool

2/12

VERIFYING THE VERIFIER

We keep telling the world they should verify their critical code...
A lot of the verification ecosystem relies on proof assistant kernels...

Yet we still don’t have verified kernels!”

The programs are (relatively) simple...

2/12

VERIFYING THE VERIFIER

We keep telling the world they should verify their critical code...
A lot of the verification ecosystem relies on proof assistant kernels...

Yet we still don’t have verified kernels!”

The programs are (relatively) simple...

But the reasons why they work are very complicated!

2/12

WHERE I'M COMING FROM

« METAROCQ: ROCQ in RocaQ
 Martin-L6f a la Cog: a place to experiment

3/12

WHERE I'M COMING FROM

« METAROCQ: ROCQ in RocaQ
 Martin-L6f a la Cog: a place to experiment

Key characteristics:

» We care about the actual implementation
+ We need to manipulate extrinsically typed terms
- We are fundamentally limited by Godel's e incompleteness theorem

3/12

Logical relations

Irrelevant
computational content

Meta-theory

Models .
Algebraic/
Presentation-free/
Intrinsically typed

Execution/Extraction

Datastructures

Invariants

Logical relations

Irrelevant
computational content

?
Meta-theory ' @

Models Invariants
Algebraic/

Presentation-free/ Datastructures
Intrinsically typed

Execution/Extraction

4112

THE ALGORITHMS
(AND THEIR SPECIFICATION)

TYPING

Specification

Rules for each term/type former
(IL 2, Id, U, N, L..) +

I'—¢:T '=T=T’
T—t:T

5/12

TYPING

Specification Algorithm

Rules for each term/type former

(IL >, Id, ¢4, N, L) +) Iy r—T=T
F'e=¢t:T r=T=T’ /ﬁ\
F'=t¢t:T

Bidirectional: rules for each term former
integrate (some) conversion.

5/12

CONVERSION

Declarative specification

Arbitrarily mixing:
* Refl./Sym./Trans.
« Congruences
« Computation (B)
« Extensionality (n)

Typed!

6/12

CONVERSION

Declarative specification Type-directed algo.
Arbitrarily mixing: Alternate
* Refl./Sym./Trans. 1. B-reduction to whnf

+ Congruences
« Computation (B)
« Extensionality (n)

2. Type-directed n

3. Head congruences

Typed!

6/12

CONVERSION

Declarative specification

Arbitrarily mixing:
* Refl./Sym./Trans.
« Congruences
« Computation (B)
« Extensionality (n)

Typed!

Type-directed algo.

Alternate
1. B-reduction to whnf
2. Type-directed n

3. Head congruences

“Untyped” algo.

Alternate
1. B-reduction to whnf
2. Term-directed n

3. Head congruences

6/12

CONVERSION

Declarative specification Type-directed algo. “Untyped” algo.
Arbitrarily mixing: Alternate Alternate
* Refl./Sym./Trans. 1. B-reduction to whnf 1. B-reduction to whnf
) Congruen;es 2. Type-directed n 2. Term-directed n
« Computation (B)
. Extensionality () 3. Head congruences 3. Head congruences
Typed!) i
+ closer to specification + faster
+ supports fancier rules + simpler (?)
- slower - further from spec.

6/12

THE PLAN

WHAT'S IN A DECISION PROCEDURE?

P:D—P < p:D—B

7/12

WHAT'S IN A DECISION PROCEDURE?

P:D—P < p:D—B

0. decidability: (p d = true) v (p d = false)

7/12

WHAT'S IN A DECISION PROCEDURE?

P:D—P < p:D—B

0. decidability: (p d = true) v (p d = false)
1. soundness: p d = true = P d
2. completeness: Pd = p d = true

3. profit!

7/12

WHAT'S IN A DECISION PROCEDURE?

P:D—P < p:D—B

0. decidability: (p d = true) v (p d = false)
1. soundness: p d = true = P d
2. completeness: Pd = p d = true

3. profit?

7/12

WHAT'S IN A DECISION PROCEDURE?

P:D—P < p:D—B

0. decidability: (p d = true) v (p d = false)
How do you know that the type-checker terminates?
1. soundness: p d = true = P d

2. completeness: Pd = p d = true

3. profit?

7/12

WHAT'S IN A DECISION PROCEDURE?

P:D—P < p:D— B

0. decidability: (p d = true) v (p d = false)

How do you know that the type-checker terminates?
1. soundness: pd = true = P d

Look at the trace of the type-checker
2. completeness: Pd = p d = true

3. profit?

7/12

WHAT'S IN A DECISION PROCEDURE?

P:D—P < p:D— B

0. decidability: (p d = true) v (p d = false)
How do you know that the type-checker terminates?

1. soundness: pd = true = P d
Look at the trace of the type-checker

2. completeness: P d = p d = true
reflexivity = normalisation

3. profit?

7/12

BETTER ABSTRACT NONSENSE

P:D—>P o p:D—B

1. positive soundness: p d = true = P d
Look at the trace of the type-checker

8/12

BETTER ABSTRACT NONSENSE

P:D—P < p:D—B

1. positive soundness: p d = true = P d
Look at the trace of the type-checker

2. negative soundness: p d = false = (P d)
Look (harder) at the trace of the type-checker

8/12

BETTER ABSTRACT NONSENSE

P:D—P < p:D—B

1. positive soundness: p d = true = P d
Look at the trace of the type-checker

2. negative soundness: p d = false = (P d)
Look (harder) at the trace of the type-checker

3. termination: (p d = true) v (p d = false)
Still hard, of course...

8/12

BETTER ABSTRACT NONSENSE

P:D—P < p:D—B

1. positive soundness: p d = true = P d
Look at the trace of the type-checker

2. negative soundness: p d = false = (P d)
Look (harder) at the trace of the type-checker

3. termination: (p d = true) v (p d = false)
Still hard, of course...

Now we have a plan

8/12

WHAT META-THEORY DO WE NEED?

THE GOOD PROPERTIES

Injectivity and no-confusion of type constructors
fT =T =T and T, T’ are weak-head normal form, then:

e T=N=T’
corT=Ix:ABT =1Ix: A’ B ,withTHA"=AandI,x:A”—B=DB
. or

« orT, T are both neutral, and T T =T :u

Any non-diagonal case is impossible (no-confusion).

9/12

THE GOOD PROPERTIES

Injectivity and no-confusion of type constructors
Injectivity and no-confusion at N
IfT —n=n":Nandn,n” are weak-head normal forms, then:

en=0=n’
corn=S(t),n =S) withT' —t=¢t:N
« orn,n’ are both neutral.

9/12

THE GOOD PROPERTIES

Injectivity and no-confusion of type constructors
Injectivity and no-confusion at N

Injectivity and no-confusion at ¢/

9/12

THE GOOD PROPERTIES

Injectivity and no-confusion of type constructors
Injectivity and no-confusion at N

Injectivity and no-confusion at &/

Injectivity of neutral eliminators
fT'—n=n":Tandnandn’ are neutrals, then
cn=x=n’
corn=mun’ =m’ v withm=m"andu = v’
- orn = recy(m, x.P,ty, x.y.ts), n’ = recy(m’, x.P’, 5, x.y.15), and ..

" See paper/talk to me for subtleties.

9/12

THE GOOD PROPERTIES

Injectivity and no-confusion of type constructors
Injectivity and no-confusion at N

Injectivity and no-confusion at &/

Injectivity of neutral eliminators”

Deep normalisation

Every well-typed term is deeply normalising at its type.
Every well-formed type is deeply normalising.

9/12

Positive Negative soundness Negative soundness L
. . Termination
soundness (typed conversion) (untyped conversion)
Injectivity of % x X X
type constructors

'Telrm—llgvlel x* «*

Injectivities
Normalisation X

" Not quite the same for neutrals

10/12

Positive Negative soundness Negative soundness L
. . Termination
soundness (typed conversion) (untyped conversion)
Injectivity of % X
type constructors

Term-level

injectivities
Normalisation X

10/12

Positive Negative soundness Negative soundness L
. . Termination
soundness (typed conversion) (untyped conversion)
Injectivity of % X
type constructors

Term-level

injectivities
Normalisation X

Injectivities are the important properties

10/12

Positive Negative soundness Negative soundness L
. . Termination
soundness (typed conversion) (untyped conversion)
Injectivity of % X
type constructors

Term-level

injectivities
Normalisation X

Injectivities are the important properties

Claim/conjecture: this analysis scales to realistic proof assistant kernels 1002

HOwW TO PROVE THE PROPERTIES?

Logical relation Rewriting/Confluence Gluing/Nf Model Domain model
[AOV17; Adj+24] [Tak95]/METAROCQ [Ste21; BKS23] [CH18]
Syntax Raw Raw Intrinsic Raw (Intrinsic?)
Weak ambiant X v x v
theory
Normalisation 4 X v X
Scaling X v ? ?
n laws v X v v
- lored | i Formalisation y lored
ost explore nsane scaling it ol ery unexp o;e/12

HOwW TO PROVE THE PROPERTIES?

Logical relation Rewriting/Confluence Gluing/Nf Model Domain model

[AOV17; Adj+24] [Tak95]/MEeTAROCQ [Ste21; BKS23] [CH18]

Syntax

Weak ambiant
theory

Normalisation
Scaling

n laws

There is space for exploration!

1/12

HOwW TO PROVE THE PROPERTIES?

Logical relation Rewriting/Confluence Gluing/Nf Model Domain model

[AOV17; Adj+24] [Tak95]/MEeTAROCQ [Ste21; BKS23] [CH18]

Syntax

Weak ambiant
theory

Normalisation
Scaling

n laws

There is space for exploration!
.. but I have peculiar requirements.

1/12

You can (should!) separate meta-theory and implementation

Injectivity properties are key, more so that normalisation

You cannot beat Godel, but you can salvage a lot with negative soundness
There is space for new proof/formalisation techniques for meta-theory

12/12

You can (should!) separate meta-theory and implementation

Injectivity properties are key, more so that normalisation

You cannot beat Godel, but you can salvage a lot with negative soundness
There is space for new proof/formalisation techniques

THANK YOU!

BIBLIOGRAPHY

[AOV17]

[Adj+24]

[Takos]

[Soz+24]

[Ste21]

[BKS23]

[CH18]

Andreas Abel, Joakim Ohman, and Andrea Vezzosi. “Decidability of Conversion
for Type Theory in Type Theory”. In: Proc. ACM Program. Lang. POPL (Dec. 2017). DO
10.1145/3158111.

Arthur Adjedj et al. “Martin-Lof a la Coq". In: Proceedings of the 13th ACM SIGPLAN
International Conference on Certified Programs and Proofs. 2024. DO
10.1145/3636501.3636951.

M. Takahashi. “Parallel Reductions in A-Calculus”. In: Information and Computation
1(1995). pOI: 10.1006/inc0.1995.1057. URL: https:
//www.sciencedirect.com/science/article/pii/S0890540185710577.

Matthieu Sozeau et al. “Correct and Complete Type Checking and Certified
Erasure for Coq, in Coq". In: Journal of the ACM (Nov. 2024). pol: 10.1145/3706056.

Jonathan Sterling. “First Steps in Synthetic Tait Computability: The Objective
Metatheory of Cubical Type Theory”. PhD thesis. Carnegie Mellon University, Nov.
2021.p0I: 10.5281/zen0do.6990769.

Rafael Bocquet, Ambrus Kaposi, and Christian Sattler. “For the Metatheory of
Type Theory, Internal Sconing Is Enough”. In: 8th International Conference on
Formal Structures for Computation and Deduction, FSCD 2023. 2023. DOI:
10.4230/LIPICS.FSCD.2023.18.

Thierry Coquand and Simon Huber. “An Adequacy Theorem for Dependent Type
Theory". In: Theory of Computing Systems 4 (July 2018). DOI:

https://doi.org/10.1145/3158111
https://doi.org/10.1145/3636501.3636951
https://doi.org/10.1006/inco.1995.1057
https://www.sciencedirect.com/science/article/pii/S0890540185710577
https://www.sciencedirect.com/science/article/pii/S0890540185710577
https://doi.org/10.1145/3706056
https://doi.org/10.5281/zenodo.6990769
https://doi.org/10.4230/LIPICS.FSCD.2023.18
https://doi.org/10.1007/s00224-018-9879-9

	What am I trying to do?
	The algorithms (and their specification)
	The plan
	What meta-theory do we need?
	Appendix

