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WHAT AM I TRYING TO DO?



VERIFYING THE VERIFIER

We keep telling the world they should verify their critical code…

A lot of the verification ecosystem relies on proof assistant kernels…

Yet we still don’t have verified kernels!*

The programs are (relatively) simple…

But the reasons why they work are very complicated!

*For dependent types: CANDLE exists and it’s really cool
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WHERE I’M COMING FROM

• METAROCQ: ROCQ in ROCQ
• Martin-Löf à la Coq: a place to experiment

Key characteristics:

• We care about the actual implementation
• We need to manipulate extrinsically typed terms
• We are fundamentally limited by Gödel’s 2nd incompleteness theorem
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Logical relations

Models

Irrelevant
computational content

Algebraic/
Presentation-free/
Intrinsically typed

Verification
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THE ALGORITHMS
(AND THEIR SPECIFICATION)



TYPING

Specification

Rules for each term/type former
(Π, Σ, Id, U ,ℕ, ⊥…) +

Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′

Γ ⊢ 𝑡 : 𝑇 ′

Algorithm

Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′

Γ ⊢ 𝑡 : 𝑇 ′

Bidirectional: rules for each term former
integrate (some) conversion.
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CONVERSION

Declarative specification

Arbitrarily mixing:
• Refl./Sym./Trans.
• Congruences
• Computation (β)
• Extensionality (η)

Typed!

Type-directed algo.

Alternate
1. β-reduction to whnf
2. Type-directed η
3. Head congruences

+ closer to specification
+ supports fancier rules
- slower

“Untyped” algo.

Alternate
1. β-reduction to whnf
2. Term-directed η
3. Head congruences

+ faster
+ simpler (?)
- further from spec.

6/12



CONVERSION

Declarative specification

Arbitrarily mixing:
• Refl./Sym./Trans.
• Congruences
• Computation (β)
• Extensionality (η)

Typed!

Type-directed algo.

Alternate
1. β-reduction to whnf
2. Type-directed η
3. Head congruences

+ closer to specification
+ supports fancier rules
- slower

“Untyped” algo.

Alternate
1. β-reduction to whnf
2. Term-directed η
3. Head congruences

+ faster
+ simpler (?)
- further from spec.

6/12



CONVERSION

Declarative specification

Arbitrarily mixing:
• Refl./Sym./Trans.
• Congruences
• Computation (β)
• Extensionality (η)

Typed!

Type-directed algo.

Alternate
1. β-reduction to whnf
2. Type-directed η
3. Head congruences

+ closer to specification
+ supports fancier rules
- slower

“Untyped” algo.

Alternate
1. β-reduction to whnf
2. Term-directed η
3. Head congruences

+ faster
+ simpler (?)
- further from spec.

6/12



CONVERSION

Declarative specification

Arbitrarily mixing:
• Refl./Sym./Trans.
• Congruences
• Computation (β)
• Extensionality (η)

Typed!

Type-directed algo.

Alternate
1. β-reduction to whnf
2. Type-directed η
3. Head congruences

+ closer to specification
+ supports fancier rules
- slower

“Untyped” algo.

Alternate
1. β-reduction to whnf
2. Term-directed η
3. Head congruences

+ faster
+ simpler (?)
- further from spec.

6/12



THE PLAN



WHAT’S IN A DECISION PROCEDURE?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 → 𝔹

0. decidability: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)

How do you know that the type-checker terminates?

1. soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑

Look at the trace of the type-checker

2. completeness: 𝑃 𝑑 ⇒ 𝑝 𝑑 = true

reflexivity ≃ normalisation

3. profit?
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BETTER ABSTRACT NONSENSE

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 ⇀ 𝔹

1. positive soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑
Look at the trace of the type-checker

2. negative soundness: 𝑝 𝑑 = false ⇒ ¬(𝑃 𝑑)
Look (harder) at the trace of the type-checker

3. termination: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)
Still hard, of course…

Now we have a plan
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WHAT META-THEORY DO WE NEED?



THE GOOD PROPERTIES

Injectivity and no-confusion of type constructors
If Γ ⊢ 𝑇 ≅ 𝑇 ′ and 𝑇 , 𝑇 ′ are weak-head normal form, then:
• 𝑇 = ℕ = 𝑇 ′
• or 𝑇 = Π 𝑥: 𝐴.𝐵, 𝑇 ′ = Π𝑥: 𝐴′.𝐵′, with Γ ⊢ 𝐴′ ≅ 𝐴 and Γ, 𝑥: 𝐴′ ⊢ 𝐵 ≅ 𝐵′
• or …
• or 𝑇 , 𝑇 ′ are both neutral, and Γ ⊢ 𝑇 ≅ 𝑇 ′ : U

Any non-diagonal case is impossible (no-confusion).

Injectivity and no-confusion at ℕ
Injectivity and no-confusion at U

Injectivity of neutral eliminators*

Deep normalisation
Every well-typed term is deeply normalising at its type.
Every well-formed type is deeply normalising.
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* See paper/talk to me for subtleties.
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Positive
soundness

Negative soundness
(typed conversion)

Negative soundness
(untyped conversion) Termination

Injectivity of
type constructors × × × ×

Term-level
injectivities ×* ×*

Normalisation ×

Rocq

(Ap)Pro
ved

* Not quite the same for neutrals

Injectivities are the important properties
Claim/conjecture: this analysis scales to realistic proof assistant kernels
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HOW TO PROVE THE PROPERTIES?

Logical relation Rewriting/Confluence Gluing/Nf Model Domain model

[AÖV17; Adj+24] [Tak95]/METAROCQ [Ste21; BKS23] [CH18]

Syntax Raw Raw Intrinsic Raw (Intrinsic?)

Weak ambiant
theory × ✓ × ✓

Normalisation ✓ × ✓ ×
Scaling × ✓ ? ?

η laws ✓ × ✓ ✓
Most explored Insane scaling

Formalisation
currently difficult Very unexplored

There is space for exploration!
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Most explored Insane scaling

Formalisation
currently difficult Very unexplored

There is space for exploration!

… but I have peculiar requirements.
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• You can (should!) separate meta-theory and implementation
• Injectivity properties are key, more so that normalisation
• You cannot beat Gödel, but you can salvage a lot with negative soundness
• There is space for new proof/formalisation techniques for meta-theory

Thank you!
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