
WHAT DOES IT TAKE TO CERTIFY CONVERSION?

Meven LENNON-BERTRAND
FSCD 2025

1/12

WHAT AM I TRYING TO DO?

VERIFYING THE VERIFIER

We keep telling the world they should verify their critical code…

A lot of the verification ecosystem relies on proof assistant kernels…

Yet we still don’t have verified kernels!*

The programs are (relatively) simple…

But the reasons why they work are very complicated!

*For dependent types: CANDLE exists and it’s really cool

2/12

VERIFYING THE VERIFIER

We keep telling the world they should verify their critical code…
A lot of the verification ecosystem relies on proof assistant kernels…

Yet we still don’t have verified kernels!*

The programs are (relatively) simple…

But the reasons why they work are very complicated!

*For dependent types: CANDLE exists and it’s really cool

2/12

VERIFYING THE VERIFIER

We keep telling the world they should verify their critical code…
A lot of the verification ecosystem relies on proof assistant kernels…

Yet we still don’t have verified kernels!*

The programs are (relatively) simple…

But the reasons why they work are very complicated!

*For dependent types: CANDLE exists and it’s really cool

2/12

VERIFYING THE VERIFIER

We keep telling the world they should verify their critical code…
A lot of the verification ecosystem relies on proof assistant kernels…

Yet we still don’t have verified kernels!*

The programs are (relatively) simple…

But the reasons why they work are very complicated!

*For dependent types: CANDLE exists and it’s really cool

2/12

VERIFYING THE VERIFIER

We keep telling the world they should verify their critical code…
A lot of the verification ecosystem relies on proof assistant kernels…

Yet we still don’t have verified kernels!*

The programs are (relatively) simple…

But the reasons why they work are very complicated!

*For dependent types: CANDLE exists and it’s really cool

2/12

WHERE I’M COMING FROM

• METAROCQ: ROCQ in ROCQ
• Martin-Löf à la Coq: a place to experiment

Key characteristics:

• We care about the actual implementation
• We need to manipulate extrinsically typed terms
• We are fundamentally limited by Gödel’s 2nd incompleteness theorem

3/12

WHERE I’M COMING FROM

• METAROCQ: ROCQ in ROCQ
• Martin-Löf à la Coq: a place to experiment

Key characteristics:

• We care about the actual implementation
• We need to manipulate extrinsically typed terms
• We are fundamentally limited by Gödel’s 2nd incompleteness theorem

3/12

Meta-theory

Logical relations

Models

Irrelevant
computational content

Algebraic/
Presentation-free/
Intrinsically typed

Verification

Execution/Extraction

Datastructures

Invariants

?

4/12

Meta-theory

Logical relations

Models

Irrelevant
computational content

Algebraic/
Presentation-free/
Intrinsically typed

Verification

Execution/Extraction

Datastructures

Invariants

?

4/12

THE ALGORITHMS
(AND THEIR SPECIFICATION)

TYPING

Specification

Rules for each term/type former
(Π, Σ, Id, U ,ℕ, ⊥…) +

Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′

Γ ⊢ 𝑡 : 𝑇 ′

Algorithm

Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′

Γ ⊢ 𝑡 : 𝑇 ′

Bidirectional: rules for each term former
integrate (some) conversion.

5/12

TYPING

Specification

Rules for each term/type former
(Π, Σ, Id, U ,ℕ, ⊥…) +

Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′

Γ ⊢ 𝑡 : 𝑇 ′

Algorithm

Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′

Γ ⊢ 𝑡 : 𝑇 ′

Bidirectional: rules for each term former
integrate (some) conversion.

5/12

CONVERSION

Declarative specification

Arbitrarily mixing:
• Refl./Sym./Trans.
• Congruences
• Computation (β)
• Extensionality (η)

Typed!

Type-directed algo.

Alternate
1. β-reduction to whnf
2. Type-directed η
3. Head congruences

+ closer to specification
+ supports fancier rules
- slower

“Untyped” algo.

Alternate
1. β-reduction to whnf
2. Term-directed η
3. Head congruences

+ faster
+ simpler (?)
- further from spec.

6/12

CONVERSION

Declarative specification

Arbitrarily mixing:
• Refl./Sym./Trans.
• Congruences
• Computation (β)
• Extensionality (η)

Typed!

Type-directed algo.

Alternate
1. β-reduction to whnf
2. Type-directed η
3. Head congruences

+ closer to specification
+ supports fancier rules
- slower

“Untyped” algo.

Alternate
1. β-reduction to whnf
2. Term-directed η
3. Head congruences

+ faster
+ simpler (?)
- further from spec.

6/12

CONVERSION

Declarative specification

Arbitrarily mixing:
• Refl./Sym./Trans.
• Congruences
• Computation (β)
• Extensionality (η)

Typed!

Type-directed algo.

Alternate
1. β-reduction to whnf
2. Type-directed η
3. Head congruences

+ closer to specification
+ supports fancier rules
- slower

“Untyped” algo.

Alternate
1. β-reduction to whnf
2. Term-directed η
3. Head congruences

+ faster
+ simpler (?)
- further from spec.

6/12

CONVERSION

Declarative specification

Arbitrarily mixing:
• Refl./Sym./Trans.
• Congruences
• Computation (β)
• Extensionality (η)

Typed!

Type-directed algo.

Alternate
1. β-reduction to whnf
2. Type-directed η
3. Head congruences

+ closer to specification
+ supports fancier rules
- slower

“Untyped” algo.

Alternate
1. β-reduction to whnf
2. Term-directed η
3. Head congruences

+ faster
+ simpler (?)
- further from spec.

6/12

THE PLAN

WHAT’S IN A DECISION PROCEDURE?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 → 𝔹

0. decidability: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)

How do you know that the type-checker terminates?

1. soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑

Look at the trace of the type-checker

2. completeness: 𝑃 𝑑 ⇒ 𝑝 𝑑 = true

reflexivity ≃ normalisation

3. profit?

7/12

WHAT’S IN A DECISION PROCEDURE?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 → 𝔹

0. decidability: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)

How do you know that the type-checker terminates?
1. soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑

Look at the trace of the type-checker

2. completeness: 𝑃 𝑑 ⇒ 𝑝 𝑑 = true

reflexivity ≃ normalisation

3. profit?

7/12

WHAT’S IN A DECISION PROCEDURE?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 → 𝔹

0. decidability: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)

How do you know that the type-checker terminates?

1. soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑

Look at the trace of the type-checker

2. completeness: 𝑃 𝑑 ⇒ 𝑝 𝑑 = true

reflexivity ≃ normalisation

3. profit!

7/12

WHAT’S IN A DECISION PROCEDURE?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 → 𝔹

0. decidability: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)

How do you know that the type-checker terminates?

1. soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑

Look at the trace of the type-checker

2. completeness: 𝑃 𝑑 ⇒ 𝑝 𝑑 = true

reflexivity ≃ normalisation

3. profit?

7/12

WHAT’S IN A DECISION PROCEDURE?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 → 𝔹

0. decidability: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)
How do you know that the type-checker terminates?

1. soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑

Look at the trace of the type-checker

2. completeness: 𝑃 𝑑 ⇒ 𝑝 𝑑 = true

reflexivity ≃ normalisation

3. profit?

7/12

WHAT’S IN A DECISION PROCEDURE?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 ⇀ 𝔹

0. decidability: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)
How do you know that the type-checker terminates?

1. soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑
Look at the trace of the type-checker

2. completeness: 𝑃 𝑑 ⇒ 𝑝 𝑑 = true

reflexivity ≃ normalisation

3. profit?

7/12

WHAT’S IN A DECISION PROCEDURE?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 ⇀ 𝔹

0. decidability: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)
How do you know that the type-checker terminates?

1. soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑
Look at the trace of the type-checker

2. completeness: 𝑃 𝑑 ⇒ 𝑝 𝑑 = true
reflexivity ≃ normalisation

3. profit?

7/12

BETTER ABSTRACT NONSENSE

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 ⇀ 𝔹

1. positive soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑
Look at the trace of the type-checker

2. negative soundness: 𝑝 𝑑 = false ⇒ ¬(𝑃 𝑑)
Look (harder) at the trace of the type-checker

3. termination: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)
Still hard, of course…

Now we have a plan

8/12

BETTER ABSTRACT NONSENSE

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 ⇀ 𝔹

1. positive soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑
Look at the trace of the type-checker

2. negative soundness: 𝑝 𝑑 = false ⇒ ¬(𝑃 𝑑)
Look (harder) at the trace of the type-checker

3. termination: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)
Still hard, of course…

Now we have a plan

8/12

BETTER ABSTRACT NONSENSE

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 ⇀ 𝔹

1. positive soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑
Look at the trace of the type-checker

2. negative soundness: 𝑝 𝑑 = false ⇒ ¬(𝑃 𝑑)
Look (harder) at the trace of the type-checker

3. termination: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)
Still hard, of course…

Now we have a plan

8/12

BETTER ABSTRACT NONSENSE

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 ⇀ 𝔹

1. positive soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑
Look at the trace of the type-checker

2. negative soundness: 𝑝 𝑑 = false ⇒ ¬(𝑃 𝑑)
Look (harder) at the trace of the type-checker

3. termination: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)
Still hard, of course…

Now we have a plan

8/12

WHAT META-THEORY DO WE NEED?

THE GOOD PROPERTIES

Injectivity and no-confusion of type constructors
If Γ ⊢ 𝑇 ≅ 𝑇 ′ and 𝑇 , 𝑇 ′ are weak-head normal form, then:
• 𝑇 = ℕ = 𝑇 ′
• or 𝑇 = Π 𝑥: 𝐴.𝐵, 𝑇 ′ = Π𝑥: 𝐴′.𝐵′, with Γ ⊢ 𝐴′ ≅ 𝐴 and Γ, 𝑥: 𝐴′ ⊢ 𝐵 ≅ 𝐵′
• or …
• or 𝑇 , 𝑇 ′ are both neutral, and Γ ⊢ 𝑇 ≅ 𝑇 ′ : U

Any non-diagonal case is impossible (no-confusion).

Injectivity and no-confusion at ℕ
Injectivity and no-confusion at U

Injectivity of neutral eliminators*

Deep normalisation
Every well-typed term is deeply normalising at its type.
Every well-formed type is deeply normalising.

9/12

THE GOOD PROPERTIES

Injectivity and no-confusion of type constructors

Injectivity and no-confusion at ℕ
If Γ ⊢ 𝑛 ≅ 𝑛′ :ℕ and 𝑛, 𝑛′ are weak-head normal forms, then:
• 𝑛 = 0 = 𝑛′
• or 𝑛 = S(𝑡), 𝑛′ = S(𝑡′), with Γ ⊢ 𝑡 ≅ 𝑡′ :ℕ
• or 𝑛, 𝑛′ are both neutral.

Injectivity and no-confusion at U

Injectivity of neutral eliminators*

Deep normalisation
Every well-typed term is deeply normalising at its type.
Every well-formed type is deeply normalising.

9/12

THE GOOD PROPERTIES

Injectivity and no-confusion of type constructors

Injectivity and no-confusion at ℕ

Injectivity and no-confusion at U
…

Injectivity of neutral eliminators*

Deep normalisation
Every well-typed term is deeply normalising at its type.
Every well-formed type is deeply normalising.

9/12

THE GOOD PROPERTIES

Injectivity and no-confusion of type constructors

Injectivity and no-confusion at ℕ
Injectivity and no-confusion at U

Injectivity of neutral eliminators*

If Γ ⊢ 𝑛 ≅ 𝑛′ : 𝑇 and 𝑛 and 𝑛′ are neutrals, then
• 𝑛 = 𝑥 = 𝑛′
• or 𝑛 = 𝑚 𝑢, 𝑛′ = 𝑚′ 𝑢′ with 𝑚 ≅ 𝑚′ and 𝑢 ≅ 𝑢′
• or 𝑛 = recℕ(𝑚, 𝑥.𝑃 , 𝑡0, 𝑥.𝑦 .𝑡S), 𝑛′ = recℕ(𝑚′, 𝑥.𝑃 ′, 𝑡′0, 𝑥.𝑦 .𝑡′S), and …

* See paper/talk to me for subtleties.

Deep normalisation
Every well-typed term is deeply normalising at its type.
Every well-formed type is deeply normalising.

9/12

THE GOOD PROPERTIES

Injectivity and no-confusion of type constructors

Injectivity and no-confusion at ℕ

Injectivity and no-confusion at U

Injectivity of neutral eliminators*

Deep normalisation
Every well-typed term is deeply normalising at its type.
Every well-formed type is deeply normalising.

9/12

Positive
soundness

Negative soundness
(typed conversion)

Negative soundness
(untyped conversion) Termination

Injectivity of
type constructors × × × ×

Term-level
injectivities ×* ×*

Normalisation ×

Rocq

(Ap)Pro
ved

* Not quite the same for neutrals

Injectivities are the important properties
Claim/conjecture: this analysis scales to realistic proof assistant kernels

10/12

Positive
soundness

Negative soundness
(typed conversion)

Negative soundness
(untyped conversion) Termination

Injectivity of
type constructors × × × ×

Term-level
injectivities ×* ×*

Normalisation ×

Rocq

(Ap)Pro
ved

Injectivities are the important properties
Claim/conjecture: this analysis scales to realistic proof assistant kernels

10/12

Positive
soundness

Negative soundness
(typed conversion)

Negative soundness
(untyped conversion) Termination

Injectivity of
type constructors × × × ×

Term-level
injectivities ×* ×*

Normalisation ×

Rocq

(Ap)Pro
ved

Injectivities are the important properties

Claim/conjecture: this analysis scales to realistic proof assistant kernels

10/12

Positive
soundness

Negative soundness
(typed conversion)

Negative soundness
(untyped conversion) Termination

Injectivity of
type constructors × × × ×

Term-level
injectivities ×* ×*

Normalisation ×

Rocq

(Ap)Pro
ved

Injectivities are the important properties
Claim/conjecture: this analysis scales to realistic proof assistant kernels 10/12

HOW TO PROVE THE PROPERTIES?

Logical relation Rewriting/Confluence Gluing/Nf Model Domain model

[AÖV17; Adj+24] [Tak95]/METAROCQ [Ste21; BKS23] [CH18]

Syntax Raw Raw Intrinsic Raw (Intrinsic?)

Weak ambiant
theory × ✓ × ✓

Normalisation ✓ × ✓ ×
Scaling × ✓ ? ?

η laws ✓ × ✓ ✓
Most explored Insane scaling

Formalisation
currently difficult Very unexplored

There is space for exploration!

11/12

HOW TO PROVE THE PROPERTIES?

Logical relation Rewriting/Confluence Gluing/Nf Model Domain model

[AÖV17; Adj+24] [Tak95]/METAROCQ [Ste21; BKS23] [CH18]

Syntax Raw Raw Intrinsic Raw (Intrinsic?)

Weak ambiant
theory × ✓ × ✓

Normalisation ✓ × ✓ ×
Scaling × ✓ ? ?

η laws ✓ × ✓ ✓
Most explored Insane scaling

Formalisation
currently difficult Very unexplored

There is space for exploration!

11/12

HOW TO PROVE THE PROPERTIES?

Logical relation Rewriting/Confluence Gluing/Nf Model Domain model

[AÖV17; Adj+24] [Tak95]/METAROCQ [Ste21; BKS23] [CH18]

Syntax Raw Raw Intrinsic Raw (Intrinsic?)

Weak ambiant
theory × ✓ × ✓

Normalisation ✓ × ✓ ×
Scaling × ✓ ? ?

η laws ✓ × ✓ ✓
Most explored Insane scaling

Formalisation
currently difficult Very unexplored

There is space for exploration!

… but I have peculiar requirements.

11/12

• You can (should!) separate meta-theory and implementation
• Injectivity properties are key, more so that normalisation
• You cannot beat Gödel, but you can salvage a lot with negative soundness
• There is space for new proof/formalisation techniques for meta-theory

Thank you!

12/12

• You can (should!) separate meta-theory and implementation
• Injectivity properties are key, more so that normalisation
• You cannot beat Gödel, but you can salvage a lot with negative soundness
• There is space for new proof/formalisation techniques

THANK YOU!

12/12

BIBLIOGRAPHY

[AÖV17] Andreas Abel, Joakim Öhman, and Andrea Vezzosi. “Decidability of Conversion
for Type Theory in Type Theory”. In: Proc. ACM Program. Lang. POPL (Dec. 2017). DOI:
10.1145/3158111.

[Adj+24] Arthur Adjedj et al. “Martin-Löf à la Coq”. In: Proceedings of the 13th ACM SIGPLAN
International Conference on Certified Programs and Proofs. 2024. DOI:
10.1145/3636501.3636951.

[Tak95] M. Takahashi. “Parallel Reductions in 𝜆-Calculus”. In: Information and Computation
1 (1995). DOI: 10.1006/inco.1995.1057. URL: https:
//www.sciencedirect.com/science/article/pii/S0890540185710577.

[Soz+24] Matthieu Sozeau et al. “Correct and Complete Type Checking and Certified
Erasure for Coq, in Coq”. In: Journal of the ACM (Nov. 2024). DOI: 10.1145/3706056.

[Ste21] Jonathan Sterling. “First Steps in Synthetic Tait Computability: The Objective
Metatheory of Cubical Type Theory”. PhD thesis. Carnegie Mellon University, Nov.
2021. DOI: 10.5281/zenodo.6990769.

[BKS23] Rafaël Bocquet, Ambrus Kaposi, and Christian Sattler. “For the Metatheory of
Type Theory, Internal Sconing Is Enough”. In: 8th International Conference on
Formal Structures for Computation and Deduction, FSCD 2023. 2023. DOI:
10.4230/LIPICS.FSCD.2023.18.

[CH18] Thierry Coquand and Simon Huber. “An Adequacy Theorem for Dependent Type
Theory”. In: Theory of Computing Systems 4 (July 2018). DOI:
10.1007/s00224-018-9879-9.

https://doi.org/10.1145/3158111
https://doi.org/10.1145/3636501.3636951
https://doi.org/10.1006/inco.1995.1057
https://www.sciencedirect.com/science/article/pii/S0890540185710577
https://www.sciencedirect.com/science/article/pii/S0890540185710577
https://doi.org/10.1145/3706056
https://doi.org/10.5281/zenodo.6990769
https://doi.org/10.4230/LIPICS.FSCD.2023.18
https://doi.org/10.1007/s00224-018-9879-9

	What am I trying to do?
	The algorithms (and their specification)
	The plan
	What meta-theory do we need?
	Appendix

