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→

Great successes!
But what makes them usable?

(Co)Inductive types

Pattern-matching

Universes

(Strong) records

Proof irrelevance

Termination checking

(Computational) univalence

Modalities
Subtyping

Observational equality
Gradual typing

Real proof assistants are complicated
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Trusted
kernel

Big complicated
mess

The de Bruijn architecture

: a perfect target for verification

3



Trusted
Verified
kernel

Big complicated
mess

The de Bruijn architecture: a perfect target for verification

3



Rocq’s kernel is only a few kLoC of pure functional code. Surely it can’t be that difficult?

Dependent type theory + Invariants
=
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Meta-theory

Verified type-checker

Verified
extraction

Verified
tactics

…

Bidirectional typing
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Martin-Löf
à la Coq

AÖV18…

Coq in
Coq

Expressivity

CoC MLTT
(includes η!)

PCUIC

η

Rocq,
Lean …

Agda

Theorems

Normalisation

Inversions

Fully verified
type-checker
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Expressivity?

Coq in Coq (Barras et al. 1997): verified type-checker for the CoC, in Coq.

CoC is proof-theoretically stronger than Agda, close to Rocq. Time to change subject?

Proof-theoretic strength does not measure expressivity

7



Expressivity?

Coq in Coq (Barras et al. 1997): verified type-checker for the CoC, in Coq.

CoC is proof-theoretically stronger than Agda, close to Rocq. Time to change subject?

Proof-theoretic strength does not measure expressivity

7



Expressivity?

Coq in Coq (Barras et al. 1997): verified type-checker for the CoC, in Coq.

CoC is proof-theoretically stronger than Agda, close to Rocq. Time to change subject?

Proof-theoretic strength does not measure expressivity

7



Gödel’s incompleteness

Rocq in Rocq?

The meta-theory of an object theory T in a (slightly) stronger ambient theory T ′.
Or: almost all the meta-theory of a theory T in T itself.
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A long shopping list:
• substitution for term variables

• substitution for universe variables

• weakening

• strengthening

• injectivity of type constructors

• confluence

• standardisation

• safety

• progress

• preservation/subject reduction

• uniqueness of types

• canonicity

• logical consistency

• normalisation

• decidability

What properties are needed to verify what?

How do we prove these properties?
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Dependent type theory



What’s type theory anyway?

Many answers

, but let’s say:

• a system of rules/a language
• intended to capture

∘ valid logical/mathematical inferences
∘ valid properties of programs

Curry-Howard: These are essentially the same!
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A system of rules

Γ ⊢ 𝑡 : 𝐴 → 𝐵 Γ ⊢ 𝑢 : 𝐴
Γ ⊢ 𝑡 𝑢 : 𝐵

Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ λ 𝑥: 𝐴.𝑡 : 𝐴 → 𝐵

Formally read as:

• inductively defined predicates on tree-like structures

• directly defining an algebraic structure
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Dependent type theory

Dependent types:

Γ ⊢ 𝐴 Γ ⊢ 𝑛 : ℕ
Γ ⊢ Vect 𝐴 𝑛

Γ ⊢ 𝑡 : Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 : 𝐴
Γ ⊢ 𝑡 𝑢 : 𝐵[𝑥 := 𝑢]

Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ λ 𝑥: 𝐴.𝑡 : Π 𝑥: 𝐴.𝐵

The real beast is conversion/definitional equality:

Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝐴 ≅ 𝐵
Γ ⊢ 𝑡 : 𝐵

Γ ⊢ [1; 2; 7] : Vectℕ (1 + 1 + 1) Γ ⊢ Vectℕ (1 + 1 + 1) ≅ Vectℕ 3
Γ ⊢ [1; 2; 7] : Vectℕ 3
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Definitional equality

The least equivalence relation

which is congruent, contains computation, and some more.

Refl
Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝑡 ≅ 𝑡 : 𝐴 Sym
Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴
Γ ⊢ 𝑢 ≅ 𝑡 : 𝐴 Trans

Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴 Γ ⊢ 𝑢 ≅ 𝑣 : 𝐴
Γ ⊢ 𝑡 ≅ 𝑣 : 𝐴

AppCong
Γ ⊢ 𝑡 ≅ 𝑡′ : Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ≅ 𝑢′ : 𝐴

Γ ⊢ 𝑡 𝑢 ≅ 𝑡′ 𝑢′ : 𝐵[𝑥 := 𝑢] …

βFun

Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵
Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵 Γ ⊢ 𝑢 : 𝐴

Γ ⊢ (λ 𝑥: 𝐴.𝑡) 𝑢 ≅ 𝑡[𝑥 := 𝑢] : 𝐵[𝑥 := 𝑢] ηFun
Γ ⊢ 𝑓 : Π 𝑥: 𝐴.𝐵

Γ ⊢ 𝑓 ≅ 𝜆𝑥: 𝐴.𝑓 𝑥 : Π 𝑥: 𝐴.𝐵 …

If we orient β-rules, we get reduction →.
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Bidirectional typing



Meta-theory

Verified type-checker

Verified
extraction

Verified
tactics

…

Bidirectional typing
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Information Must Flow

Inference and checking

Γ ⊢ 𝑡 : 𝐴 separates into

inference: Γ ⊢ 𝑡 ▷ 𝐴 checking: Γ ⊢ 𝑡 ◁ 𝐴
Similar “meaning”, different modes: input/subject/output.

McBride: A rule is a server for its conclusion and a client for its premises.

• Modes guide invariant preservation

• In a conclusion, you assume inputs are well-formed, and ensure outputs are

• In a premise, you ensure inputs are well-formed, and assume outputs are

16



Structure!

⊢ Γ (𝑥: 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴

(𝑥: 𝐴) ∈ Γ
Γ ⊢ 𝑥 ▷ 𝐴

Γ ⊢ 𝑡 : Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 : 𝐴
Γ ⊢ 𝑡 𝑢 : 𝐵[𝑥 := 𝑢]

Γ ⊢ 𝑡 ▷h Π𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ◁ 𝐴
Γ ⊢ 𝑡 𝑢 ▷ 𝐵[𝑥 := 𝑢]

Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′

Γ ⊢ 𝑡 : 𝑇 ′
Γ ⊢ 𝑡 ▷ 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′◁

Γ ⊢ 𝑡 ◁ 𝑇 ′
Γ ⊢ 𝑡 ▷ 𝑇 Γ ⊢ 𝑇 →⋆ 𝑇 ′

Γ ⊢ 𝑡 ▷h 𝑇 ′

• Globally enforce well-formation

→ Well-formation as an invariant

• Clear information flow

• Unconstrained conversion → Computation (→⋆ or ≅) guided by the mode

17
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Γ ⊢ 𝑡 𝑢 : 𝐵[𝑥 := 𝑢]

Γ ⊢ 𝑡 ▷h Π𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ◁ 𝐴
Γ ⊢ 𝑡 𝑢 ▷ 𝐵[𝑥 := 𝑢]

Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′

Γ ⊢ 𝑡 : 𝑇 ′
Γ ⊢ 𝑡 ▷ 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′◁

Γ ⊢ 𝑡 ◁ 𝑇 ′
Γ ⊢ 𝑡 ▷ 𝑇 Γ ⊢ 𝑇 →⋆ 𝑇 ′

Γ ⊢ 𝑡 ▷h 𝑇 ′

• Globally enforce well-formation → Well-formation as an invariant

• Clear information flow

• Unconstrained conversion → Computation (→⋆ or ≅) guided by the mode

17



Information Must Flow

Inference and checking

Γ ⊢ 𝑡 : 𝐴 separates into

inference: Γ ⊢ 𝑡 ▷ 𝐴 checking: Γ ⊢ 𝑡 ◁ 𝐴
Similar “meaning”, different modes: input/subject/output.

McBride: A rule is a server for its conclusion and a client for its premises.

• Modes guide invariant preservation

• In a conclusion, you assume inputs are well-formed, and ensure outputs are

• In a premise, you ensure inputs are well-formed, and assume outputs are

18



Specifying bidirectional typing

Positive soundness
If the algorithm answers yes (i.e. Γ ⊢ 𝑡 ▷ 𝑇 ) and its preconditions are met, then Γ ⊢ 𝑡 : 𝑇 .

Negative soundness

If the algorithm answers no (i.e. Γ ⊢ 𝑡 ▷  ) and its preconditions are met, then 𝑡 is not typable.

Totality

If its preconditions are met, the algorithm always answers.

Positive soundness + Negative soundness + Totality ⇒

Completeness the answer is always yes on typable terms

Decidability
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MetaRocq
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MetaRocq in a nutshell

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)

A dependent type theory with

• Very general (co-)inductive types

• Pattern-matching and fixed-points

• Complex universes + cumulativity

What real users need!

Rocq, in Rocq

• Formalised meta-theory of PCUIC

• Normalisation axiom to implement a verified type-checker

• Verified extraction, meta-programming…

Evaluation terminates. Consequences:
• totality
• logical consistency
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MetaRocq

Martin-Löf
à la Coq

AÖV18…

Coq in
Coq

ExpressivityCoC

MLTT
(includes η!)

PCUIC

η

Rocq,
Lean …

Agda

Theorems

Normalisation

Inversions

Fully verified
type-checker

23



The $1000 question: inversion

If you know 𝑇 ≅ 𝑇 ′, what can you conclude?

• 𝑇 ≅ Π 𝑥: 𝐴.𝐵 ?⇒ 𝑇 →⋆ Π𝑥: 𝐴′.𝐵′?

• Π 𝑥: 𝐴.𝐵 ≅ Π 𝑥: 𝐴′.𝐵′ ?⇒ 𝐴 ≅ 𝐴′ ∧ 𝐵 ≅ 𝐵′?

• Π 𝑥: 𝐴.𝐵 ≅ ℕ ?⇒ ⊥?

• S𝑚 ≅ S 𝑛 ?⇒ 𝑚 ≅ 𝑛?
• S𝑚 ≅ 0 ?⇒ ⊥?

• …

The derivation of 𝑇 ≅ 𝑇 ′ might be quite complicated…

Confluence
(after Tait, Martin-Löf, Takahashi)

*Only works for a rather poor notion of conversion…
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Martin-Löf à la Coq



Arthur Adjedj Kenji Maillard Pierre-Marie Pédrot Loïc Pujet
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Extensionality rules

ηFun
Γ ⊢ 𝑓 : Π 𝑥: 𝐴.𝐵

Γ ⊢ 𝑓 ≅ 𝜆𝑥: 𝐴.𝑓 𝑥 : Π 𝑥: 𝐴.𝐵

ηProp
Γ ⊢ 𝑃 : SProp Γ ⊢ 𝑝 : 𝑃 Γ ⊢ 𝑝′ : 𝑃

Γ ⊢ 𝑝 ≅ 𝑝′ : 𝑃

Might look easy (?), but:

• crucial in practice

• does not really work with confluence

• a very typed notion

Rocq has a clever untyped implementation, but what’s its specification?

27



Extensionality rules

ηFun
Γ ⊢ 𝑓 : Π 𝑥: 𝐴.𝐵

Γ ⊢ 𝑓 ≅ 𝜆𝑥: 𝐴.𝑓 𝑥 : Π 𝑥: 𝐴.𝐵 ηProp
Γ ⊢ 𝑃 : SProp Γ ⊢ 𝑝 : 𝑃 Γ ⊢ 𝑝′ : 𝑃

Γ ⊢ 𝑝 ≅ 𝑝′ : 𝑃

Might look easy (?), but:

• crucial in practice

• does not really work with confluence

• a very typed notion

Rocq has a clever untyped implementation, but what’s its specification?

27



Extensionality rules

ηFun
Γ ⊢ 𝑓 : Π 𝑥: 𝐴.𝐵

Γ ⊢ 𝑓 ≅ 𝜆𝑥: 𝐴.𝑓 𝑥 : Π 𝑥: 𝐴.𝐵 ηProp
Γ ⊢ 𝑃 : SProp Γ ⊢ 𝑝 : 𝑃 Γ ⊢ 𝑝′ : 𝑃

Γ ⊢ 𝑝 ≅ 𝑝′ : 𝑃

Might look easy (?), but:

• crucial in practice

• does not really work with confluence

• a very typed notion

Rocq has a clever untyped implementation, but what’s its specification?

27



Extensionality rules

ηFun
Γ ⊢ 𝑓 : Π 𝑥: 𝐴.𝐵

Γ ⊢ 𝑓 ≅ 𝜆𝑥: 𝐴.𝑓 𝑥 : Π 𝑥: 𝐴.𝐵 ηProp
Γ ⊢ 𝑃 : SProp Γ ⊢ 𝑝 : 𝑃 Γ ⊢ 𝑝′ : 𝑃

Γ ⊢ 𝑝 ≅ 𝑝′ : 𝑃

Might look easy (?), but:

• crucial in practice

• does not really work with confluence

• a very typed notion

Rocq has a clever untyped implementation, but what’s its specification?

27



MetaRocq

Martin-Löf
à la Coq

AÖV18…

Coq in
Coq

ExpressivityCoC MLTT
(includes η!)

PCUIC

η

Rocq,
Lean …

Agda

Theorems

Normalisation

Inversions

Fully verified
type-checker

28



MetaRocq

Martin-Löf
à la Coq

AÖV18…

Coq in
Coq

ExpressivityCoC MLTT
(includes η!)

PCUIC

η

Rocq,
Lean …

Agda

Theorems

Normalisation

Inversions

Fully verified
type-checker

28



Conversion is bidirectional too !

even if it does not compute types!

The important part is invariant preservation.
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A fine-grained analysis

Positive soundness
Requires inversion for types.

Negative soundness

Requires inversion for types and terms.

In particular: no normalisation!
Conjecture: requires low logical power.

Termination
Requires inversion for types and normalisation.
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How to prove the properties?

Logical relation Gluing/Nf Model Rewriting/Confluence Domain model

[AÖV17; Adj+24] [Ste21; BKS23] [Tak95]/MetaRocq [CH18]

Weak ambiant
theory × × ✓ ✓

Normalisation ✓ ✓ × ×
η laws ✓ ✓ × ✓

Formalised ✓ ✓/ × ✓ ×
Most explored

Difficult to scale
Formalisation

currently difficult Insane scaling Very unexplored

There is space for exploration!
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… but I have peculiar requirements.
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Thank you!
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