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I’ve written one type-checker in my life, and for a rather simple theory...

so I’m going to do propaganda!

Because that type-checker was fully verified!
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VERIFYING THE VERIFIER

We keep telling the world they should verify their critical code...
A lot of the verification ecosystem relies on proof assistant kernels/dependent type-checkers...

Why don’t we still have verified kernels?

The programs are not that complicated...

But the reasons why they work are complicated!
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ALL HAIL VERIFICATION

Much focus on the meta-theory side

But a lot of interesting questions on the verification side:
« What is the abstract specification of your type system?
« How do the datastructures you use relate to their abstract variants?
» What invariants do your code & datastructures rely on?

« What meta-theoretic properties are needed to verify these invariants?

Particularly worth asking for realistic implementations
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THIS TALK

We should verify implementations even if we don’t do the meta-theory

A tour of case studies in that space:
« pattern-matching in MeTARocq
o Correct and Complete Type Checking and Certified Erasure for Coq, in Coq (JACM 2025)
o The Curious Case of Case: Correct & Efficient Representation of Case Analysis in Coq and MetaCoq
(WITS 2022)
« verifying untyped conversion

o Martin-Léf a la Coq (CPP 2024)
o What Does It Take to Certify a Conversion Checker? (FSCD 2025)
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The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)
A dependent type theory with

« Crazy (co-)inductive types

« Pattern-matching and fixed-points

« Fancy universes + cumulativity

Roca, in Roca

» Formalised meta-theory of PCUIC
« Normalisation axiom to implement a verified type-checker
« Verified extraction

* Meta-programming

We found a bug in Roca!
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POST-MORTEM OF A BUG

Coaq 6.1 Pattern-matching (Cornes), representation chosen for backwards compatibility
Coaq 8.4 Universe polymorphism (Sozeau & Tabareau)
Coaq 8.7 Cumulative inductive types, theory for eliminators (Sozeau & Timany)
Meanwhile People like less and less the clunky pattern-matching representation
Nov. 20 We are trying to prove type-checking is complete
Coaq 8.13 Kernel bug! — quick and dirty fix
Coaq 8.14 Complete redesign, in parallel in Rocq and METAROCQ
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IssSuE #13495

match s as x in Ind _ inds return P with
end
6.1 - 8.13:
1. infer the type Ind ;_f?ofs
2. “check” P against II(inds : Indicesyng| p], x : Ind p'inds). 05

o infer the type of P
o check it is of the form ITA. [,

o check that A > (inds : Indices;,q[ p], x : Ind 7inds)
3. check thgbranches
4. return Pis

8.14 - 9.x: check that P is a type in a context extended by inds : Indiceslnd[}_)] ,x:Ind EM)

Subtle implementation mis-design, on a combination of advanced features
Never described on paper or formalised



WHAT DO WE WANT TO VERIFY?
WHAT DOES IT TAKE?
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CONVERSION CHECKING

Declarative specification

Arbitrarily mixing:
 Refl./Sym./Trans.
« Congruences
» Computation ()
« Extensionality (n)

Typed!

Type-directed algo.

Alternate
1. B-reduction to whnf
2. Type-directed n

3. Head congruences

+ closer to specification
+ supports fancier rules

- slower

“Untyped” algo.

Alternate
1. B-reduction to whnf
2. Term-directed n

3. Head congruences

+ faster
+ simpler

- further from spec.

10
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WHAT TO VERIFY?

P:D->P < p:D—B

0. decidability: (p d = true) v (p d = false)

How do we know the type-checker terminates?
1. soundness: pd = true = P d

Look at the trace of the type-checker
2. completeness: Pd = pd = true

reflexivity = termination

3. profit?

11
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WHAT TO VERIFY?

P:D—>P < p:D—B
1. positive soundness: p d = true = P d

Look at the trace of the type-checker

2. negative soundness: p d = false = = (P d)
Look (harder) at the trace of the type-checker

3. termination: (p d = true) v (p d = false)
Still hard, of course...

A much better plan

12
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Positive Negative soundness  Negative soundness

soundness  (typed conversion)  (untyped conversion) Termination

Injectivity of

X X X X
type constructors
.T(.erm’—lc?v'el % x
injectivities
Normalisation X

Injectivities are the important properties
To verify “untyped” conversion, you still need typing invariants
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THE PROPERTIES

Injectivity of type constructors

IfT =T =T and T,T’ are weak-head normal form, then:

e T=N=T’
eorT=Ilx:ABT =1Ix: A’ B, withT' A’ =AandI,x:A’+-B=B
e OF..

e or T, T’ are both neutrals,andT' — T =T’ : OO

Any non-diagonal case is impossible (no-confusion).
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THE PROPERTIES

Injectivity of type constructors

Injectivity and no-confusion at N

IfT —n=n’:Nandn,n’ are weak-head normal forms, then:

. n:O:n’
e orn=S(),n =S@"),withT —t=¢":N

o orn,n’ are both neutrals.
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THE PROPERTIES

Injectivity of type constructors

Injectivity and no-confusion at N

Normalisation

Inductive predicate: “iterated weak-head normalisation and n-expansion terminates”.

14



UNDERSTANDING “UNTYPED” CONVERSION-CHECKING




WHAT META-THEORY DO WE NEED?

Positive Negative soundness  Negative soundness

soundness  (typed conversion)  (untyped conversion) [Eqitatt

Injectivity of

X X X X
type constructors
fermlevel X X
injectivities
Normalisation X

Injectivities are the important properties
To verify “untyped” conversion, you still need typing invariants

There is a catch on neutrals!

15



NEUTRALS

Traditional PL: evaluation of closed, first-order values
Dependent types: conversion under binders, must consider open terms

16



NEUTRALS

Traditional PL: evaluation of closed, first-order values
Dependent types: conversion under binders, must consider open terms

A neutral is:
o avariable
e or an elimination, stuck on a neutral
x:N = NxN,... - recy(m(x 7), P, by, bg) : P

16



NEUTRALS

Traditional PL: evaluation of closed, first-order values
Dependent types: conversion under binders, must consider open terms

A neutral is:
o avariable
e or an elimination, stuck on a neutral
x:N = NxN,... - recy(m(x 7), P, by, bg) : P

How does one compare neutrals? Where does one use neutral comparison?
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CONVERSION CHECKING

Declarative specification

Arbitrarily mixing:
» Refl./Sym./Trans.
« Congruences
« Computation (B)
« Extensionality (n)

Type-directed algo.

Alternate
1. B-reduction to whnf
2. Type-directed n

3. Head congruences

“Untyped” algo.

Alternate
1. B-reduction to whnf
2. Term-directed n

3. Head congruences
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COMPARING COMPARISONS

Type-directed conversion

(:N->N)ex:N—-N,y:N

x:N—>N,y:NFx~x:N—>N x:N->Ny:NFy=y:N

XN—=>NyNFxy~xy:N

xN-=>NyNFxy=xy:N

xxN->NFx=x:N >N

Term-directed conversion

Why does this work?

18
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NEUTRAL INJECTIVITY

Injectivity of neutral eliminators?
IfT—n=n’:T and n and n’ are neutrals, then
en=x=n'
eorn=mu,n’ =m’ v withTFm=m’:Ilx:ABandT+—u=u":A

e Or..

Does not always hold!

NYyWN->DxlkFx=y: (N> 1)x1

Neutral comparison is complete only at certain types

AGDA LEAN Roca
Type-directed Term-directed Term-directed
Short path for neutral functions Detect unit-like types Forbid unit-like types
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LOOKING BACK

Verification is very useful!

.

But:

Bug finding

Looking hard at the dark corners

Uncover & understand assumptions hidden in implementation subtleties
Documentation

Reduce folklore

And more

the cost is currently quite high...
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Lots of cool things happening in the space:
AGDACORE AGDA-style pattern-matching + termination-checker
LEAN4LEAN essentially the real kernel’s code, with a dedicated program logic
METAROCQ algebraic universes, nested inductive types...
A whole ecosystem of verified compilations

And more LoGREL-Rocq, LoGREL-MLTT/graded-type-theory, McTT, Liu & Weirich...

Lowering the cost?
» Reusable libraries and insight
o Automation (AUTOSUBST/SULFUR)

« Forkable flagship projects

How do we bridge the gap with meta-theory-oriented formalisations?

21



We can (should!) separate meta-theory and verification

Find the right interfaces, from synthetic methods to METAROcqQ and beyond

A lot is happening, stay tuned, or better: come join us!
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We can (should!) separate and
Find the right interfaces, from to

A lot is happening, , or better:

THANK YOU!
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