VERIFYING DEPENDENT TYPE-CHECKERS

WITS 2026

Meven LENNON-BERTRAND

A DISCLAIMER

I’ve written one type-checker in my life, and for a rather simple theory...

A DISCLAIMER

I’ve written one type-checker in my life, and for a rather simple theory...

so I’m going to do propaganda!

Because that type-checker was fully verified!

VERIFYING THE VERIFIER

We keep telling the world they should verify their critical code...

VERIFYING THE VERIFIER

We keep telling the world they should verify their critical code...
A lot of the verification ecosystem relies on proof assistant kernels/dependent type-checkers...

VERIFYING THE VERIFIER

We keep telling the world they should verify their critical code...
A lot of the verification ecosystem relies on proof assistant kernels/dependent type-checkers...

Why don’t we still have verified kernels?

VERIFYING THE VERIFIER

We keep telling the world they should verify their critical code...
A lot of the verification ecosystem relies on proof assistant kernels/dependent type-checkers...

Why don’t we still have verified kernels?

The programs are not that complicated...

VERIFYING THE VERIFIER

We keep telling the world they should verify their critical code...
A lot of the verification ecosystem relies on proof assistant kernels/dependent type-checkers...

Why don’t we still have verified kernels?

The programs are not that complicated...

But the reasons why they work are complicated!

Logical relations

No computational
content

Models

Algebraic

Presentation-free

Execution/Extraction
Efficiency
Algorithms
Invariants

Datastructures

Logical relations

No computational
content

Execution/Extraction
Efficiency

Algorithms

Models

Algebraic

Presentation-free

Invariants

Datastructures

ALL HAIL VERIFICATION

Much focus on the meta-theory side

ALL HAIL VERIFICATION

Much focus on the meta-theory side

But a lot of interesting questions on the verification side:
« What is the abstract specification of your type system?
« How do the datastructures you use relate to their abstract variants?
» What invariants do your code & datastructures rely on?

« What meta-theoretic properties are needed to verify these invariants?

ALL HAIL VERIFICATION

Much focus on the meta-theory side

But a lot of interesting questions on the verification side:
« What is the abstract specification of your type system?
« How do the datastructures you use relate to their abstract variants?
» What invariants do your code & datastructures rely on?

« What meta-theoretic properties are needed to verify these invariants?

Particularly worth asking for realistic implementations

THIS TALK

We should verify implementations even if we don’t do the meta-theory

THIS TALK

We should verify implementations even if we don’t do the meta-theory

A tour of case studies in that space:
« pattern-matching in MeTARocq
o Correct and Complete Type Checking and Certified Erasure for Coq, in Coq (JACM 2025)
o The Curious Case of Case: Correct & Efficient Representation of Case Analysis in Coq and MetaCoq
(WITS 2022)
« verifying untyped conversion

o Martin-Léf a la Coq (CPP 2024)
o What Does It Take to Certify a Conversion Checker? (FSCD 2025)

METAROCQ: THE CURIOUS CASE OF CASE

METAROCQ IN A NUTSHELL

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)
A dependent type theory with

« Crazy (co-)inductive types

» Pattern-matching and fixed-points

« Fancy universes + cumulativity

METAROCQ IN A NUTSHELL

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)

A dependent type theory with
« Crazy (co-)inductive types
» Pattern-matching and fixed-points

« Fancy universes + cumulativity

Roca, in Roca

» Formalised meta-theory of PCUIC
« Normalisation axiom to implement a verified type-checker
« Verified extraction

* Meta-programming

METAROCQ IN A NUTSHELL

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)
A dependent type theory with

« Crazy (co-)inductive types

« Pattern-matching and fixed-points

« Fancy universes + cumulativity

Roca, in Roca

» Formalised meta-theory of PCUIC
« Normalisation axiom to implement a verified type-checker
« Verified extraction

* Meta-programming

We found a bug in Roca!

POST-MORTEM OF A BUG

Coaq 6.1 Pattern-matching (Cornes), representation chosen for backwards compatibility
Coaq 8.4 Universe polymorphism (Sozeau & Tabareau)
Coaq 8.7 Cumulative inductive types, theory for eliminators (Sozeau & Timany)

Meanwhile People like less and less the clunky pattern-matching representation

POST-MORTEM OF A BUG

Coaq 6.1 Pattern-matching (Cornes), representation chosen for backwards compatibility

Coaq 8.4 Universe polymorphism (Sozeau & Tabareau)

Coaq 8.7 Cumulative inductive types, theory for eliminators (Sozeau & Timany)
Meanwhile People like less and less the clunky pattern-matching representation

Nov. 20 We are trying to prove type-checking is complete

POST-MORTEM OF A BUG

' mattam82 addeq

“~hing (Cornes), representation chosen for backwards compatibility

on .
27 Noy 2020 Part; kerngy -"'Tabareau)
Coa 8./ .. king- i”Cons/ & Timany)
Meanwhile People like less ana ic.. ncy %/ .
abels

Nov. 20 We are trying to prove type-checking is cu...,

POST-MORTEM OF A BUG

Coaq 6.1 Pattern-matching (Cornes), representation chosen for backwards compatibility
Coaq 8.4 Universe polymorphism (Sozeau & Tabareau)
Coaq 8.7 Cumulative inductive types, theory for eliminators (Sozeau & Timany)
Meanwhile People like less and less the clunky pattern-matching representation
Nov. 20 We are trying to prove type-checking is complete
Coaq 8.13 Kernel bug! — quick and dirty fix
Coaq 8.14 Complete redesign, in parallel in Rocq and METAROCQ

IssSuE #13495

match s as x in Ind _ inds return P with

end

IssSuE #13495

match s as x in Ind _ inds return P with
end
6.1 - 8.13:

1. infer the type Ind Ff)ofs
2. “check” P against II(inds : Indicesyng| p], x : Ind p'inds). 05

bt

check th(ibranches
4. return Pis

IssSuE #13495

match s as x in Ind _ inds return P with
end
6.1 - 8.13:
1. infer the type Ind Ff)ofs
2. “check” P against I(inds : Indicesyg| p], x : Ind p'inds). O,

o infer the type of P
o check it is of the form ITA. [,

o check that A = (inds : Indices;,y[p], x : Ind 7inds)
check the;branches
4. return Pis

bt

IssSuE #13495

match s as x in Ind _ inds return P with

end

6.1 — 8.13: Can you spot the issue?
1. infer the type Ind Ff)ofs

2. “check” P against H(?ds) :Indicespyg[p], x : Ind Fﬁé) O,
o infer the type of P
o check it is of the form ITA. [,
o check that A = (inds : Indicesy,g[p], x : Ind 7inds)

3. check the branches

4. return Pis

IssSuE #13495

match s as x in Ind _ inds return P with

end

6.1 — 8.13: Can you spot the issue?
1. infer the type Ind Ff)ofs

2. “check” P against H(?ds) :Indicespyg[p], x : Ind Fﬁé) O,
o infer the type of P
o check it is of the form ITA. [,
o check that A = (inds : Indicesy,y[p], x : Ind 7inds)

3. check the branches

4. return Pis

IssSuE #13495

match s as x in Ind _ inds return P with
end
6.1 - 8.13:

1. infer the type Ind Ff)ofs

2. “check” P against II(inds : Indicesyng| p], x : Ind p'inds). 05
o infer the type of P
o check it is of the form ITA. [,

o check that A > (inds : Indices;,q[p], x : Ind 7inds)
check the;branches
4. return Pis

bt

ISSuE #13495

match s as x in Ind _ inds return P with
end
6.1 - 8.13:
1. infer the type Ind Ff)ofs
2. “check” P against II(inds : Indicesyng| p], x : Ind p'inds). 05

o infer the type of P
o check it is of the form ITA. [,

o check that A > (inds : Indices;,q[p], x : Ind 7inds)
3. check th(ibranches
4. return Pis

8.14 - 9.x: check that P is a type in a context extended by inds : Indicesyyq|p]. x : Ind ﬁ)M

IssSuE #13495

match s as x in Ind _ inds return P with
end
6.1 - 8.13:
1. infer the type Ind ;_f?ofs
2. “check” P against II(inds : Indicesyng| p], x : Ind p'inds). 05

o infer the type of P
o check it is of the form ITA. [,

o check that A > (inds : Indices;,q[p], x : Ind 7inds)
3. check thgbranches
4. return Pis

8.14 - 9.x: check that P is a type in a context extended by inds : Indiceslnd[}_)] ,x:Ind EM)

Subtle implementation mis-design, on a combination of advanced features
Never described on paper or formalised

WHAT DO WE WANT TO VERIFY?
WHAT DOES IT TAKE?

CONVERSION CHECKING

Declarative specification

Arbitrarily mixing:
 Refl./Sym./Trans.
» Congruences
« Computation (B)
« Extensionality (n)

Typed!

10

CONVERSION CHECKING

Declarative specification

Arbitrarily mixing:
 Refl./Sym./Trans.
« Congruences
« Computation (B)
« Extensionality (n)

Typed!

Type-directed algo.

Alternate
1. B-reduction to whnf
2. Type-directed n

3. Head congruences

10

CONVERSION CHECKING

Declarative specification

Arbitrarily mixing:
 Refl./Sym./Trans.
« Congruences
« Computation (B)
« Extensionality (n)

Typed!

Type-directed algo.

Alternate
1. B-reduction to whnf
2. Type-directed n

3. Head congruences

“Untyped” algo.

Alternate
1. B-reduction to whnf
2. Term-directed n

3. Head congruences

10

CONVERSION CHECKING

Declarative specification

Arbitrarily mixing:
 Refl./Sym./Trans.
« Congruences
» Computation ()
« Extensionality (n)

Typed!

Type-directed algo.

Alternate
1. B-reduction to whnf
2. Type-directed n

3. Head congruences

+ closer to specification
+ supports fancier rules

- slower

“Untyped” algo.

Alternate
1. B-reduction to whnf
2. Term-directed n

3. Head congruences

+ faster
+ simpler

- further from spec.

10

WHAT TO VERIFY?

P:D—>P

p:D—B

11

WHAT TO VERIFY?

P:D—>P

0. decidability: (p d = true) v (p d = false)

p:D—B

11

WHAT TO VERIFY?

P:D—>P

0. decidability: (p d = true) v (p d = false)
1. soundness: pd =true = P d
2. completeness: P d = p d = true

3. profit!

p:D—B

11

WHAT TO VERIFY?

P:D—>P

0. decidability: (p d = true) v (p d = false)
1. soundness: pd =true = P d
2. completeness: P d = p d = true

3. profit?

p:D—B

11

WHAT TO VERIFY?

P:D->P < p:D—B

0. decidability: (p d = true) v (p d = false)
How do we know the type-checker terminates?
1. soundness: pd =true = P d

2. completeness: P d = p d = true

3. profit?

11

WHAT TO VERIFY?

P:D->P < p:D—B

0. decidability: (p d = true) v (p d = false)

How do we know the type-checker terminates?

1. soundness: pd = true = P d
Look at the trace of the type-checker

2. completeness: P d = p d = true

3. profit?

11

WHAT TO VERIFY?

P:D->P < p:D—B

0. decidability: (p d = true) v (p d = false)

How do we know the type-checker terminates?
1. soundness: pd = true = P d

Look at the trace of the type-checker
2. completeness: Pd = pd = true

reflexivity = termination

3. profit?

11

WHAT TO VERIFY?

P:D—>P

1. positive soundness: p d = true = P d
Look at the trace of the type-checker

p:D—B

12

WHAT TO VERIFY?

P:D—>P <

1. positive soundness: p d = true = P d
Look at the trace of the type-checker

2. negative soundness: p d = false = = (P d)
Look (harder) at the trace of the type-checker

p:D—B

12

WHAT TO VERIFY?

P:D—>P PN

1. positive soundness: p d = true = P d
Look at the trace of the type-checker

2. negative soundness: p d = false = = (P d)
Look (harder) at the trace of the type-checker
3. termination: (p d = true) v (p d = false)
Still hard, of course...

p:D—B

12

WHAT TO VERIFY?

P:D—>P < p:D—B
1. positive soundness: p d = true = P d

Look at the trace of the type-checker

2. negative soundness: p d = false = = (P d)
Look (harder) at the trace of the type-checker

3. termination: (p d = true) v (p d = false)
Still hard, of course...

A much better plan

12

WHAT META-THEORY DO WE NEED?

Positive Negative soundness Negative soundness L
. . Termination
soundness (typed conversion) (untyped conversion)
Injectivity of x % % x
type constructors

QTgrm'—Igv'el % X

injectivities
Normalisation X

13

WHAT META-THEORY DO WE NEED?

Positive Negative soundness Negative soundness
soundness (typed conversion) (untyped conversion)

Termination

Injectivity of
type constructors

Term-level
injectivities

Normalisation

X X X

Injectivities are the important properties

13

WHAT META-THEORY DO WE NEED?

Positive Negative soundness Negative soundness

soundness (typed conversion) (untyped conversion) Termination

Injectivity of

X X X X
type constructors
.T(.erm’—lc?v'el % x
injectivities
Normalisation X

Injectivities are the important properties
To verify “untyped” conversion, you still need typing invariants

13

THE PROPERTIES

Injectivity of type constructors

IfT =T =T and T,T’ are weak-head normal form, then:

e T=N=T’
eorT=Ilx:ABT =1Ix: A’ B, withT' A’ =AandI,x:A’+-B=B
e OF..

e or T, T’ are both neutrals,andT' — T =T’ : OO

Any non-diagonal case is impossible (no-confusion).

14

THE PROPERTIES

Injectivity of type constructors

Injectivity and no-confusion at N

IfT —n=n’:Nandn,n’ are weak-head normal forms, then:

. n:O:n’
e orn=S(),n =S@"),withT —t=¢":N

o orn,n’ are both neutrals.

14

THE PROPERTIES

Injectivity of type constructors

Injectivity and no-confusion at N

Normalisation

Inductive predicate: “iterated weak-head normalisation and n-expansion terminates”.

14

UNDERSTANDING “UNTYPED” CONVERSION-CHECKING

WHAT META-THEORY DO WE NEED?

Positive Negative soundness Negative soundness

soundness (typed conversion) (untyped conversion) [Eqitatt

Injectivity of

X X X X
type constructors
fermlevel X X
injectivities
Normalisation X

Injectivities are the important properties
To verify “untyped” conversion, you still need typing invariants

There is a catch on neutrals!

15

NEUTRALS

Traditional PL: evaluation of closed, first-order values
Dependent types: conversion under binders, must consider open terms

16

NEUTRALS

Traditional PL: evaluation of closed, first-order values
Dependent types: conversion under binders, must consider open terms

A neutral is:
o avariable
e or an elimination, stuck on a neutral
x:N = NxN,... - recy(m(x 7), P, by, bg) : P

16

NEUTRALS

Traditional PL: evaluation of closed, first-order values
Dependent types: conversion under binders, must consider open terms

A neutral is:
o avariable
e or an elimination, stuck on a neutral
x:N = NxN,... - recy(m(x 7), P, by, bg) : P

How does one compare neutrals? Where does one use neutral comparison?

16

CONVERSION CHECKING

Declarative specification

Arbitrarily mixing:
» Refl./Sym./Trans.
« Congruences
« Computation (B)
« Extensionality (n)

Type-directed algo.

Alternate
1. B-reduction to whnf
2. Type-directed n

3. Head congruences

“Untyped” algo.

Alternate
1. B-reduction to whnf
2. Term-directed n

3. Head congruences

17

COMPARING COMPARISONS

Type-directed conversion

xxN->NFx=x:N >N

18

COMPARING COMPARISONS

Type-directed conversion

xN->NyNFxy=xy:N

xxN->NFx=x:N >N

18

COMPARING COMPARISONS

Type-directed conversion

xN-=>NyNFxy=xy:N

xxN->NFx=x:N >N

18

COMPARING COMPARISONS

Type-directed conversion

XN—=>NyNFxy~xy:N

xN-=>NyNFxy=xy:N

xxN->NFx=x:N >N

18

COMPARING COMPARISONS

Type-directed conversion

(:N->N)ex:N—-N,y:N

x:N—>N,y:NFx~x:N—>N x:N->Ny:NFy=y:N

XN—=>NyNFxy~xy:N

xN-=>NyNFxy=xy:N

xxN->NFx=x:N >N

18

COMPARING COMPARISONS

Type-directed conversion

(:N->N)ex:N—-N,y:N

x:N—>N,y:NFx~x:N—>N x:N->Ny:NFy=y:N

XN—=>NyNFxy~xy:N

xN-=>NyNFxy=xy:N

xxN->NFx=x:N >N

Term-directed conversion

18

COMPARING COMPARISONS

Type-directed conversion

(:N->N)ex:N—-N,y:N

x:N—>N,y:NFx~x:N—>N x:N->Ny:NFy=y:N

XN—=>NyNFxy~xy:N

xN-=>NyNFxy=xy:N

xxN->NFx=x:N >N

Term-directed conversion

Why does this work?

18

NEUTRAL INJECTIVITY

Injectivity of neutral eliminators?
IfT'—n=n’:T and n and n’ are neutrals, then
en=x=n
eorn=mu,n’ =m’ v withTFm=m’:Ilx:ABandT+—u=u":A

e Or...

19

NEUTRAL INJECTIVITY

Injectivity of neutral eliminators?
IfT'—n=n’:T and n and n’ are neutrals, then
en=x=n’
eorn=mu,n’ =m’ v withTFm=m’:Ilx:ABandT+—u=u":A

e Or...

Does not always hold!

NYyWN->DxlkFx=y: (N> 1)x1

19

NEUTRAL INJECTIVITY

Injectivity of neutral eliminators?
IfT—n=n’:T and n and n’ are neutrals, then
en=x=n'
eorn=mu,n’ =m’ v withTFm=m’:Ilx:ABandT+—u=u":A

e Or..

Does not always hold!

NYyWN->DxlkFx=y: (N> 1)x1

Neutral comparison is complete only at certain types

19

NEUTRAL INJECTIVITY

Injectivity of neutral eliminators?
IfT—n=n’:T and n and n’ are neutrals, then
en=x=n'
eorn=mu,n’ =m’ v withTFm=m’:Ilx:ABandT+—u=u":A

e Or..

Does not always hold!

NYyWN->DxlkFx=y: (N> 1)x1

Neutral comparison is complete only at certain types

AGDA LEAN Roca
Type-directed Term-directed Term-directed
Short path for neutral functions Detect unit-like types Forbid unit-like types

19

WRAPPING UP

LOOKING BACK

Verification is very useful!
» Bug finding
» Looking hard at the dark corners

« Uncover & understand assumptions hidden in implementation subtleties

20

LOOKING BACK

Verification is very useful!

.

.

Bug finding

Looking hard at the dark corners

Uncover & understand assumptions hidden in implementation subtleties
Documentation

Reduce folklore

And more

20

LOOKING BACK

Verification is very useful!

.

But:

Bug finding

Looking hard at the dark corners

Uncover & understand assumptions hidden in implementation subtleties
Documentation

Reduce folklore

And more

the cost is currently quite high...

20

LOOKING FORWARD

Lots of cool things happening in the space:
AGDACORE AGDA-style pattern-matching + termination-checker
LEAN4LEAN essentially the real kernel’s code, with a dedicated program logic
METAROCQ algebraic universes, nested inductive types...

A whole ecosystem of verified compilations

And more LoGREL-Rocq, LoGREL-MLTT/graded-type-theory, McTT, Liu & Weirich...

21

LOOKING FORWARD

Lots of cool things happening in the space:
AGDACORE AGDA-style pattern-matching + termination-checker
LEAN4LEAN essentially the real kernel’s code, with a dedicated program logic
METAROCQ algebraic universes, nested inductive types...

A whole ecosystem of verified compilations

And more LoGREL-Rocq, LoGREL-MLTT/graded-type-theory, McTT, Liu & Weirich...

Lowering the cost?
» Reusable libraries and insight
o Automation (AUTOSUBST/SULFUR)

« Forkable flagship projects

21

LOOKING FORWARD

Lots of cool things happening in the space:
AGDACORE AGDA-style pattern-matching + termination-checker
LEAN4LEAN essentially the real kernel’s code, with a dedicated program logic
METAROCQ algebraic universes, nested inductive types...
A whole ecosystem of verified compilations

And more LoGREL-Rocq, LoGREL-MLTT/graded-type-theory, McTT, Liu & Weirich...

Lowering the cost?
» Reusable libraries and insight
o Automation (AUTOSUBST/SULFUR)

« Forkable flagship projects

How do we bridge the gap with meta-theory-oriented formalisations?

21

We can (should!) separate meta-theory and verification

Find the right interfaces, from synthetic methods to METAROcqQ and beyond

A lot is happening, stay tuned, or better: come join us!

22

We can (should!) separate and
Find the right interfaces, from to

A lot is happening, , or better:

THANK YOU!

BIBLIOGRAPHY

Matthieu Sozeau et al. ‘Correct and Complete Type Checking and Certified Erasure for Cog, in Coq’.
In: Journal of the ACM (Jan. 2025). poi: 10.1145/3706056.

Matthieu Sozeau, Meven Lennon-Bertrand and Yannick Forster. ‘The Curious Case of Case: Correct &
Efficient Representation of Case Analysis in Coq and MetaCoq’. Talk. 2022.

Arthur Adjedj et al. ‘Martin-Léf a la Coq’. In: Proceedings of the 13th ACM SIGPLAN International
Conference on Certified Programs and Proofs. 2024. por: 10.1145/3636501 .3636951.

Meven Lennon-Bertrand. ‘What Does It Take to Certify a Conversion Checker?’ In: 10th International
Conference on Formal Structures for Computation and Deduction (FSCD 2025). 2025. po:
10.4230/LIPIcs.FSCD.2025.27.

Andreas Abel, Joakim Ohman and Andrea Vezzosi. ‘Decidability of Conversion for Type Theory in
Type Theory’. In: Proc. ACM Program. Lang. POPL (Dec. 2017). poi: 10.1145/3158111.

Junyoung Jang et al. ‘McTT: A Verified Kernel for a Proof Assistant’. In: Proceedings of the ACM on
Programming Languages ICFP (Aug. 2025). poi: 10.1145/3747511.

Yiyun Liu, Jonathan Chan and Stephanie Weirich. ‘Functional Pearl: Short and Mechanized Logical
Relation for Dependent Type Theories’. 2025. URL:
https://github.com/yiyunliu/mltt-consistency.

https://doi.org/10.1145/3706056
https://doi.org/10.1145/3636501.3636951
https://doi.org/10.4230/LIPIcs.FSCD.2025.27
https://doi.org/10.1145/3158111
https://doi.org/10.1145/3747511
https://github.com/yiyunliu/mltt-consistency

	: the curious case of case
	What do we want to verify? What does it take?
	Understanding “untyped” conversion-checking
	Wrapping up
	Appendix

