
Verifying dependent type-checkers

WITS 2026

Meven Lennon-Bertrand

1

A disclaimer

I’ve written one type-checker in my life, and for a rather simple theory…

so I’m going to do propaganda!

Because that type-checker was fully verified!

2

A disclaimer

I’ve written one type-checker in my life, and for a rather simple theory…

so I’m going to do propaganda!

Because that type-checker was fully verified!

2

Verifying the verifier

We keep telling the world they should verify their critical code…

A lot of the verification ecosystem relies on proof assistant kernels/dependent type-checkers…

Why don’t we still have verified kernels?

The programs are not that complicated…

But the reasons why they work are complicated!

3

Verifying the verifier

We keep telling the world they should verify their critical code…
A lot of the verification ecosystem relies on proof assistant kernels/dependent type-checkers…

Why don’t we still have verified kernels?

The programs are not that complicated…

But the reasons why they work are complicated!

3

Verifying the verifier

We keep telling the world they should verify their critical code…
A lot of the verification ecosystem relies on proof assistant kernels/dependent type-checkers…

Why don’t we still have verified kernels?

The programs are not that complicated…

But the reasons why they work are complicated!

3

Verifying the verifier

We keep telling the world they should verify their critical code…
A lot of the verification ecosystem relies on proof assistant kernels/dependent type-checkers…

Why don’t we still have verified kernels?

The programs are not that complicated…

But the reasons why they work are complicated!

3

Verifying the verifier

We keep telling the world they should verify their critical code…
A lot of the verification ecosystem relies on proof assistant kernels/dependent type-checkers…

Why don’t we still have verified kernels?

The programs are not that complicated…

But the reasons why they work are complicated!

3

Meta-theory

Logical relations

Models

No computational
content

Algebraic

Presentation-free

Verification

Execution/Extraction

Efficiency

Algorithms

Datastructures

Invariants

?

4

Meta-theory

Logical relations

Models

No computational
content

Algebraic

Presentation-free

Verification

Execution/Extraction

Efficiency

Algorithms

Datastructures

Invariants

?

4

All hail verification

Much focus on the meta-theory side

But a lot of interesting questions on the verification side:

• What is the abstract specification of your type system?

• How do the datastructures you use relate to their abstract variants?

• What invariants do your code & datastructures rely on?

• What meta-theoretic properties are needed to verify these invariants?

Particularly worth asking for realistic implementations

5

All hail verification

Much focus on the meta-theory side

But a lot of interesting questions on the verification side:

• What is the abstract specification of your type system?

• How do the datastructures you use relate to their abstract variants?

• What invariants do your code & datastructures rely on?

• What meta-theoretic properties are needed to verify these invariants?

Particularly worth asking for realistic implementations

5

All hail verification

Much focus on the meta-theory side

But a lot of interesting questions on the verification side:

• What is the abstract specification of your type system?

• How do the datastructures you use relate to their abstract variants?

• What invariants do your code & datastructures rely on?

• What meta-theoretic properties are needed to verify these invariants?

Particularly worth asking for realistic implementations

5

This talk

We should verify implementations even if we don’t do the meta-theory

A tour of case studies in that space:
• pattern-matching in MetaRocq

∘ Correct and Complete Type Checking and Certified Erasure for Coq, in Coq (JACM 2025)
∘ The Curious Case of Case: Correct & Efficient Representation of Case Analysis in Coq and MetaCoq

(WITS 2022)

• verifying untyped conversion
∘ Martin-Löf à la Coq (CPP 2024)
∘ What Does It Take to Certify a Conversion Checker? (FSCD 2025)

6

This talk

We should verify implementations even if we don’t do the meta-theory

A tour of case studies in that space:
• pattern-matching in MetaRocq

∘ Correct and Complete Type Checking and Certified Erasure for Coq, in Coq (JACM 2025)
∘ The Curious Case of Case: Correct & Efficient Representation of Case Analysis in Coq and MetaCoq

(WITS 2022)

• verifying untyped conversion
∘ Martin-Löf à la Coq (CPP 2024)
∘ What Does It Take to Certify a Conversion Checker? (FSCD 2025)

6

MetaRocq: the curious case of case

MetaRocq in a nutshell

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)

A dependent type theory with

• Crazy (co-)inductive types

• Pattern-matching and fixed-points

• Fancy universes + cumulativity

Rocq, in Rocq

• Formalised meta-theory of PCUIC
• Normalisation axiom to implement a verified type-checker
• Verified extraction
• Meta-programming

We found a bug in Rocq!

7

MetaRocq in a nutshell

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)

A dependent type theory with

• Crazy (co-)inductive types

• Pattern-matching and fixed-points

• Fancy universes + cumulativity

Rocq, in Rocq

• Formalised meta-theory of PCUIC
• Normalisation axiom to implement a verified type-checker
• Verified extraction
• Meta-programming

We found a bug in Rocq!

7

MetaRocq in a nutshell

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)

A dependent type theory with

• Crazy (co-)inductive types

• Pattern-matching and fixed-points

• Fancy universes + cumulativity

Rocq, in Rocq

• Formalised meta-theory of PCUIC
• Normalisation axiom to implement a verified type-checker
• Verified extraction
• Meta-programming

We found a bug in Rocq!
7

Post-mortem of a bug

Coq 6.1 Pattern-matching (Cornes), representation chosen for backwards compatibility

Coq 8.4 Universe polymorphism (Sozeau & Tabareau)

Coq 8.7 Cumulative inductive types, theory for eliminators (Sozeau & Timany)

Meanwhile People like less and less the clunky pattern-matching representation

Nov. ’20 We are trying to prove type-checking is complete

Coq 8.13 Kernel bug! → quick and dirty fix

Coq 8.14 Complete redesign, in parallel in Rocq and MetaRocq

8

Post-mortem of a bug

Coq 6.1 Pattern-matching (Cornes), representation chosen for backwards compatibility

Coq 8.4 Universe polymorphism (Sozeau & Tabareau)

Coq 8.7 Cumulative inductive types, theory for eliminators (Sozeau & Timany)

Meanwhile People like less and less the clunky pattern-matching representation

Nov. ’20 We are trying to prove type-checking is complete

Coq 8.13 Kernel bug! → quick and dirty fix

Coq 8.14 Complete redesign, in parallel in Rocq and MetaRocq

8

Post-mortem of a bug

Coq 6.1 Pattern-matching (Cornes), representation chosen for backwards compatibility

Coq 8.4 Universe polymorphism (Sozeau & Tabareau)

Coq 8.7 Cumulative inductive types, theory for eliminators (Sozeau & Timany)

Meanwhile People like less and less the clunky pattern-matching representation

Nov. ’20 We are trying to prove type-checking is complete

Coq 8.13 Kernel bug! → quick and dirty fix

Coq 8.14 Complete redesign, in parallel in Rocq and MetaRocq

8

Post-mortem of a bug

Coq 6.1 Pattern-matching (Cornes), representation chosen for backwards compatibility

Coq 8.4 Universe polymorphism (Sozeau & Tabareau)

Coq 8.7 Cumulative inductive types, theory for eliminators (Sozeau & Timany)

Meanwhile People like less and less the clunky pattern-matching representation

Nov. ’20 We are trying to prove type-checking is complete

Coq 8.13 Kernel bug! → quick and dirty fix

Coq 8.14 Complete redesign, in parallel in Rocq and MetaRocq

8

Issue #13495

match s as x in Ind _ inds return P with
…
end

6.1 – 8.13:
1. infer the type Ind ⃖⃗𝑝 𝑖⃗ of 𝑠
2. “check” 𝑃 against Π(⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠).□?

∘ infer the type of 𝑃
∘ check it is of the form ΠΔ.□𝑙
∘ check that Δ ≡ (⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠)

3. check the branches
4. return 𝑃 𝑖⃗ 𝑠

8.14 – 9.x: check that 𝑃 is a type in a context extended by ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠
Subtle implementation mis-design, on a combination of advanced features
Never described on paper or formalised

9

Issue #13495

match s as x in Ind _ inds return P with
…
end

6.1 – 8.13:
1. infer the type Ind ⃖⃗𝑝 𝑖⃗ of 𝑠
2. “check” 𝑃 against Π(⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠).□?

∘ infer the type of 𝑃
∘ check it is of the form ΠΔ.□𝑙
∘ check that Δ ≡ (⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠)

3. check the branches
4. return 𝑃 𝑖⃗ 𝑠

8.14 – 9.x: check that 𝑃 is a type in a context extended by ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠
Subtle implementation mis-design, on a combination of advanced features
Never described on paper or formalised

9

Issue #13495

match s as x in Ind _ inds return P with
…
end

6.1 – 8.13:
1. infer the type Ind ⃖⃗𝑝 𝑖⃗ of 𝑠
2. “check” 𝑃 against Π(⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠).□?

∘ infer the type of 𝑃
∘ check it is of the form ΠΔ.□𝑙
∘ check that Δ ≡ (⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠)

3. check the branches
4. return 𝑃 𝑖⃗ 𝑠

8.14 – 9.x: check that 𝑃 is a type in a context extended by ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠
Subtle implementation mis-design, on a combination of advanced features
Never described on paper or formalised

9

Issue #13495

match s as x in Ind _ inds return P with
…
end

6.1 – 8.13: Can you spot the issue?

1. infer the type Ind ⃖⃗𝑝 𝑖⃗ of 𝑠
2. “check” 𝑃 against Π(⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠).□?

∘ infer the type of 𝑃
∘ check it is of the form ΠΔ.□𝑙
∘ check that Δ ≡ (⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠)

3. check the branches
4. return 𝑃 𝑖⃗ 𝑠

8.14 – 9.x: check that 𝑃 is a type in a context extended by ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠
Subtle implementation mis-design, on a combination of advanced features
Never described on paper or formalised

9

Issue #13495

match s as x in Ind _ inds return P with
…
end

6.1 – 8.13: Can you spot the issue?

1. infer the type Ind ⃖⃗𝑝 𝑖⃗ of 𝑠
2. “check” 𝑃 against Π(⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠).□?

∘ infer the type of 𝑃
∘ check it is of the form ΠΔ.□𝑙
∘ check that Δ ≡ (⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠)

3. check the branches
4. return 𝑃 𝑖⃗ 𝑠

8.14 – 9.x: check that 𝑃 is a type in a context extended by ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠
Subtle implementation mis-design, on a combination of advanced features
Never described on paper or formalised

9

Issue #13495

match s as x in Ind _ inds return P with
…
end

6.1 – 8.13:
1. infer the type Ind ⃖⃗𝑝 𝑖⃗ of 𝑠
2. “check” 𝑃 against Π(⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠).□?

∘ infer the type of 𝑃
∘ check it is of the form ΠΔ.□𝑙
∘ check that Δ ⪰ (⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠)

3. check the branches
4. return 𝑃 𝑖⃗ 𝑠

8.14 – 9.x: check that 𝑃 is a type in a context extended by ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠
Subtle implementation mis-design, on a combination of advanced features
Never described on paper or formalised

9

Issue #13495

match s as x in Ind _ inds return P with
…
end

6.1 – 8.13:
1. infer the type Ind ⃖⃗𝑝 𝑖⃗ of 𝑠
2. “check” 𝑃 against Π(⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠).□?

∘ infer the type of 𝑃
∘ check it is of the form ΠΔ.□𝑙
∘ check that Δ ⪰ (⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠)

3. check the branches
4. return 𝑃 𝑖⃗ 𝑠

8.14 – 9.x: check that 𝑃 is a type in a context extended by ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠

Subtle implementation mis-design, on a combination of advanced features
Never described on paper or formalised

9

Issue #13495

match s as x in Ind _ inds return P with
…
end

6.1 – 8.13:
1. infer the type Ind ⃖⃗𝑝 𝑖⃗ of 𝑠
2. “check” 𝑃 against Π(⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠).□?

∘ infer the type of 𝑃
∘ check it is of the form ΠΔ.□𝑙
∘ check that Δ ⪰ (⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠)

3. check the branches
4. return 𝑃 𝑖⃗ 𝑠

8.14 – 9.x: check that 𝑃 is a type in a context extended by ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠 : IndicesInd[⃖⃗𝑝], 𝑥 : Ind ⃖⃗𝑝 ⃖⃖ ⃖⃖ ⃖⃗𝑖𝑛𝑑𝑠
Subtle implementation mis-design, on a combination of advanced features
Never described on paper or formalised

9

What do we want to verify?
What does it take?

Conversion checking

Declarative specification

Arbitrarily mixing:

• Refl./Sym./Trans.

• Congruences

• Computation (β)

• Extensionality (η)

Typed!

Type-directed algo.

Alternate

1. β-reduction to whnf

2. Type-directed η

3. Head congruences

+ closer to specification

+ supports fancier rules

- slower

“Untyped” algo.

Alternate

1. β-reduction to whnf

2. Term-directed η

3. Head congruences

+ faster

+ simpler

- further from spec.

10

Conversion checking

Declarative specification

Arbitrarily mixing:

• Refl./Sym./Trans.

• Congruences

• Computation (β)

• Extensionality (η)

Typed!

Type-directed algo.

Alternate

1. β-reduction to whnf

2. Type-directed η

3. Head congruences

+ closer to specification

+ supports fancier rules

- slower

“Untyped” algo.

Alternate

1. β-reduction to whnf

2. Term-directed η

3. Head congruences

+ faster

+ simpler

- further from spec.

10

Conversion checking

Declarative specification

Arbitrarily mixing:

• Refl./Sym./Trans.

• Congruences

• Computation (β)

• Extensionality (η)

Typed!

Type-directed algo.

Alternate

1. β-reduction to whnf

2. Type-directed η

3. Head congruences

+ closer to specification

+ supports fancier rules

- slower

“Untyped” algo.

Alternate

1. β-reduction to whnf

2. Term-directed η

3. Head congruences

+ faster

+ simpler

- further from spec.

10

Conversion checking

Declarative specification

Arbitrarily mixing:

• Refl./Sym./Trans.

• Congruences

• Computation (β)

• Extensionality (η)

Typed!

Type-directed algo.

Alternate

1. β-reduction to whnf

2. Type-directed η

3. Head congruences

+ closer to specification

+ supports fancier rules

- slower

“Untyped” algo.

Alternate

1. β-reduction to whnf

2. Term-directed η

3. Head congruences

+ faster

+ simpler

- further from spec.

10

What to verify?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 → 𝔹

0. decidability: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)

How do we know the type-checker terminates?

1. soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑

Look at the trace of the type-checker

2. completeness: 𝑃 𝑑 ⇒ 𝑝 𝑑 = true

reflexivity ⇒ termination

3. profit?

11

What to verify?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 → 𝔹

0. decidability: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)

How do we know the type-checker terminates?

1. soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑

Look at the trace of the type-checker

2. completeness: 𝑃 𝑑 ⇒ 𝑝 𝑑 = true

reflexivity ⇒ termination

3. profit?

11

What to verify?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 → 𝔹

0. decidability: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)

How do we know the type-checker terminates?

1. soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑

Look at the trace of the type-checker

2. completeness: 𝑃 𝑑 ⇒ 𝑝 𝑑 = true

reflexivity ⇒ termination

3. profit!

11

What to verify?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 → 𝔹

0. decidability: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)

How do we know the type-checker terminates?

1. soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑

Look at the trace of the type-checker

2. completeness: 𝑃 𝑑 ⇒ 𝑝 𝑑 = true

reflexivity ⇒ termination

3. profit?

11

What to verify?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 ⇀ 𝔹

0. decidability: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)
How do we know the type-checker terminates?

1. soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑

Look at the trace of the type-checker

2. completeness: 𝑃 𝑑 ⇒ 𝑝 𝑑 = true

reflexivity ⇒ termination

3. profit?

11

What to verify?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 ⇀ 𝔹

0. decidability: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)
How do we know the type-checker terminates?

1. soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑
Look at the trace of the type-checker

2. completeness: 𝑃 𝑑 ⇒ 𝑝 𝑑 = true

reflexivity ⇒ termination

3. profit?

11

What to verify?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 ⇀ 𝔹

0. decidability: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)
How do we know the type-checker terminates?

1. soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑
Look at the trace of the type-checker

2. completeness: 𝑃 𝑑 ⇒ 𝑝 𝑑 = true
reflexivity ⇒ termination

3. profit?

11

What to verify?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 ⇀ 𝔹
1. positive soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑

Look at the trace of the type-checker

2. negative soundness: 𝑝 𝑑 = false ⇒ ¬ (𝑃 𝑑)
Look (harder) at the trace of the type-checker

3. termination: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)
Still hard, of course…

A much better plan

12

What to verify?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 ⇀ 𝔹
1. positive soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑

Look at the trace of the type-checker

2. negative soundness: 𝑝 𝑑 = false ⇒ ¬ (𝑃 𝑑)
Look (harder) at the trace of the type-checker

3. termination: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)
Still hard, of course…

A much better plan

12

What to verify?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 ⇀ 𝔹
1. positive soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑

Look at the trace of the type-checker

2. negative soundness: 𝑝 𝑑 = false ⇒ ¬ (𝑃 𝑑)
Look (harder) at the trace of the type-checker

3. termination: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)
Still hard, of course…

A much better plan

12

What to verify?

𝑃 : 𝐷 → ℙ ?⇔ 𝑝 :𝐷 ⇀ 𝔹
1. positive soundness: 𝑝 𝑑 = true ⇒ 𝑃 𝑑

Look at the trace of the type-checker

2. negative soundness: 𝑝 𝑑 = false ⇒ ¬ (𝑃 𝑑)
Look (harder) at the trace of the type-checker

3. termination: (𝑝 𝑑 = true) ∨ (𝑝 𝑑 = false)
Still hard, of course…

A much better plan

12

What meta-theory do we need?

Positive
soundness

Negative soundness
(typed conversion)

Negative soundness
(untyped conversion) Termination

Injectivity of
type constructors × × × ×

Term-level
injectivities × ×

Normalisation ×

Injectivities are the important properties
To verify “untyped” conversion, you still need typing invariants

There is a catch on neutrals!

13

What meta-theory do we need?

Positive
soundness

Negative soundness
(typed conversion)

Negative soundness
(untyped conversion) Termination

Injectivity of
type constructors × × × ×

Term-level
injectivities × ×

Normalisation ×
Injectivities are the important properties

To verify “untyped” conversion, you still need typing invariants

There is a catch on neutrals!

13

What meta-theory do we need?

Positive
soundness

Negative soundness
(typed conversion)

Negative soundness
(untyped conversion) Termination

Injectivity of
type constructors × × × ×

Term-level
injectivities × ×

Normalisation ×
Injectivities are the important properties

To verify “untyped” conversion, you still need typing invariants

There is a catch on neutrals!

13

The properties

Injectivity of type constructors

If Γ ⊢ 𝑇 ≡ 𝑇 ′ and 𝑇 , 𝑇 ′ are weak-head normal form, then:

• 𝑇 = ℕ = 𝑇 ′
• or 𝑇 = Π 𝑥: 𝐴.𝐵, 𝑇 ′ = Π𝑥: 𝐴′.𝐵′, with Γ ⊢ 𝐴′ ≡ 𝐴 and Γ, 𝑥: 𝐴′ ⊢ 𝐵 ≡ 𝐵′
• or …

• or 𝑇 , 𝑇 ′ are both neutrals, and Γ ⊢ 𝑇 ≡ 𝑇 ′ :□
Any non-diagonal case is impossible (no-confusion).

Injectivity and no-confusion at ℕ

…

Normalisation
Inductive predicate: “iterated weak-head normalisation and η-expansion terminates”.

14

The properties

Injectivity of type constructors

Injectivity and no-confusion at ℕ
If Γ ⊢ 𝑛 ≡ 𝑛′ :ℕ and 𝑛, 𝑛′ are weak-head normal forms, then:

• 𝑛 = 0 = 𝑛′
• or 𝑛 = S(𝑡), 𝑛′ = S(𝑡′), with Γ ⊢ 𝑡 ≡ 𝑡′ :ℕ
• or 𝑛, 𝑛′ are both neutrals.

…

Normalisation
Inductive predicate: “iterated weak-head normalisation and η-expansion terminates”.

14

The properties

Injectivity of type constructors

Injectivity and no-confusion at ℕ

…

Normalisation
Inductive predicate: “iterated weak-head normalisation and η-expansion terminates”.

14

Understanding “untyped” conversion-checking

What meta-theory do we need?

Positive
soundness

Negative soundness
(typed conversion)

Negative soundness
(untyped conversion) Termination

Injectivity of
type constructors × × × ×

Term-level
injectivities × ×

Normalisation ×
Injectivities are the important properties

To verify “untyped” conversion, you still need typing invariants

There is a catch on neutrals!
15

Neutrals

Traditional PL: evaluation of closed, first-order values
Dependent types: conversion under binders, must consider open terms

A neutral is:

• a variable

• or an elimination, stuck on a neutral

𝑥:ℕ → ℕ ×ℕ, … ⊢ recℕ(𝜋1(𝑥 7), 𝑃 , 𝑏0, 𝑏𝑆) : 𝑃

How does one compare neutrals? Where does one use neutral comparison?

16

Neutrals

Traditional PL: evaluation of closed, first-order values
Dependent types: conversion under binders, must consider open terms

A neutral is:

• a variable

• or an elimination, stuck on a neutral

𝑥:ℕ → ℕ ×ℕ, … ⊢ recℕ(𝜋1(𝑥 7), 𝑃 , 𝑏0, 𝑏𝑆) : 𝑃

How does one compare neutrals? Where does one use neutral comparison?

16

Neutrals

Traditional PL: evaluation of closed, first-order values
Dependent types: conversion under binders, must consider open terms

A neutral is:

• a variable

• or an elimination, stuck on a neutral

𝑥:ℕ → ℕ ×ℕ, … ⊢ recℕ(𝜋1(𝑥 7), 𝑃 , 𝑏0, 𝑏𝑆) : 𝑃

How does one compare neutrals? Where does one use neutral comparison?

16

Conversion checking

Declarative specification

Arbitrarily mixing:

• Refl./Sym./Trans.

• Congruences

• Computation (β)

• Extensionality (η)

Typed!

Type-directed algo.

Alternate

1. β-reduction to whnf

2. Type-directed η

3. Head congruences

+ closer to specification

+ supports fancier rules

- slower

“Untyped” algo.

Alternate

1. β-reduction to whnf

2. Term-directed η

3. Head congruences

+ faster

+ simpler

- further from spec.

17

Comparing comparisons

Type-directed conversion

(𝑥:ℕ → ℕ) ∈ 𝑥:ℕ → ℕ, 𝑦 :ℕ
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 ∼ 𝑥 :ℕ → ℕ

…
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑦 ≡ 𝑦 :ℕ

𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 𝑦 ∼ 𝑥 𝑦 :ℕ

𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 𝑦 ≡ 𝑥 𝑦 :ℕ

𝑥:ℕ → ℕ ⊢ 𝑥 ≡ 𝑥 :ℕ → ℕ

Term-directed conversion

𝑥 ∼ 𝑥
𝑥 ≡ 𝑥

Why does this work?

18

Comparing comparisons

Type-directed conversion

(𝑥:ℕ → ℕ) ∈ 𝑥:ℕ → ℕ, 𝑦 :ℕ
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 ∼ 𝑥 :ℕ → ℕ

…
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑦 ≡ 𝑦 :ℕ

𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 𝑦 ∼ 𝑥 𝑦 :ℕ

𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 𝑦 ≡ 𝑥 𝑦 :ℕ
𝑥:ℕ → ℕ ⊢ 𝑥 ≡ 𝑥 :ℕ → ℕ

Term-directed conversion

𝑥 ∼ 𝑥
𝑥 ≡ 𝑥

Why does this work?

18

Comparing comparisons

Type-directed conversion

(𝑥:ℕ → ℕ) ∈ 𝑥:ℕ → ℕ, 𝑦 :ℕ
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 ∼ 𝑥 :ℕ → ℕ

…
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑦 ≡ 𝑦 :ℕ

𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 𝑦 ∼ 𝑥 𝑦 :ℕ

𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 𝑦 ≡ 𝑥 𝑦 :ℕ
𝑥:ℕ → ℕ ⊢ 𝑥 ≡ 𝑥 :ℕ → ℕ

Term-directed conversion

𝑥 ∼ 𝑥
𝑥 ≡ 𝑥

Why does this work?

18

Comparing comparisons

Type-directed conversion

(𝑥:ℕ → ℕ) ∈ 𝑥:ℕ → ℕ, 𝑦 :ℕ
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 ∼ 𝑥 :ℕ → ℕ

…
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑦 ≡ 𝑦 :ℕ

𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 𝑦 ∼ 𝑥 𝑦 :ℕ
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 𝑦 ≡ 𝑥 𝑦 :ℕ
𝑥:ℕ → ℕ ⊢ 𝑥 ≡ 𝑥 :ℕ → ℕ

Term-directed conversion

𝑥 ∼ 𝑥
𝑥 ≡ 𝑥

Why does this work?

18

Comparing comparisons

Type-directed conversion

(𝑥:ℕ → ℕ) ∈ 𝑥:ℕ → ℕ, 𝑦 :ℕ
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 ∼ 𝑥 :ℕ → ℕ

…
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑦 ≡ 𝑦 :ℕ

𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 𝑦 ∼ 𝑥 𝑦 :ℕ
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 𝑦 ≡ 𝑥 𝑦 :ℕ
𝑥:ℕ → ℕ ⊢ 𝑥 ≡ 𝑥 :ℕ → ℕ

Term-directed conversion

𝑥 ∼ 𝑥
𝑥 ≡ 𝑥

Why does this work?

18

Comparing comparisons

Type-directed conversion

(𝑥:ℕ → ℕ) ∈ 𝑥:ℕ → ℕ, 𝑦 :ℕ
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 ∼ 𝑥 :ℕ → ℕ

…
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑦 ≡ 𝑦 :ℕ

𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 𝑦 ∼ 𝑥 𝑦 :ℕ
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 𝑦 ≡ 𝑥 𝑦 :ℕ
𝑥:ℕ → ℕ ⊢ 𝑥 ≡ 𝑥 :ℕ → ℕ

Term-directed conversion

𝑥 ∼ 𝑥
𝑥 ≡ 𝑥

Why does this work?

18

Comparing comparisons

Type-directed conversion

(𝑥:ℕ → ℕ) ∈ 𝑥:ℕ → ℕ, 𝑦 :ℕ
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 ∼ 𝑥 :ℕ → ℕ

…
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑦 ≡ 𝑦 :ℕ

𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 𝑦 ∼ 𝑥 𝑦 :ℕ
𝑥:ℕ → ℕ, 𝑦 :ℕ ⊢ 𝑥 𝑦 ≡ 𝑥 𝑦 :ℕ
𝑥:ℕ → ℕ ⊢ 𝑥 ≡ 𝑥 :ℕ → ℕ

Term-directed conversion

𝑥 ∼ 𝑥
𝑥 ≡ 𝑥

Why does this work?

18

Neutral injectivity

Injectivity of neutral eliminators?

If Γ ⊢ 𝑛 ≡ 𝑛′ : 𝑇 and 𝑛 and 𝑛′ are neutrals, then

• 𝑛 = 𝑥 = 𝑛′
• or 𝑛 = 𝑚 𝑢, 𝑛′ = 𝑚′ 𝑢′ with Γ ⊢ 𝑚 ≡ 𝑚′ : Π 𝑥: 𝐴.𝐵 and Γ ⊢ 𝑢 ≡ 𝑢′ : 𝐴
• or…

Does not always hold!
𝑥, 𝑦 : (ℕ → 𝟙) × 𝟙 ⊢ 𝑥 ≡ 𝑦 : (ℕ → 𝟙) × 𝟙

Neutral comparison is complete only at certain types

Agda
Type-directed
Short path for neutral functions

Lean
Term-directed
Detect unit-like types

Rocq
Term-directed
Forbid unit-like types

19

Neutral injectivity

Injectivity of neutral eliminators?

If Γ ⊢ 𝑛 ≡ 𝑛′ : 𝑇 and 𝑛 and 𝑛′ are neutrals, then

• 𝑛 = 𝑥 = 𝑛′
• or 𝑛 = 𝑚 𝑢, 𝑛′ = 𝑚′ 𝑢′ with Γ ⊢ 𝑚 ≡ 𝑚′ : Π 𝑥: 𝐴.𝐵 and Γ ⊢ 𝑢 ≡ 𝑢′ : 𝐴
• or…

Does not always hold!
𝑥, 𝑦 : (ℕ → 𝟙) × 𝟙 ⊢ 𝑥 ≡ 𝑦 : (ℕ → 𝟙) × 𝟙

Neutral comparison is complete only at certain types

Agda
Type-directed
Short path for neutral functions

Lean
Term-directed
Detect unit-like types

Rocq
Term-directed
Forbid unit-like types

19

Neutral injectivity

Injectivity of neutral eliminators?

If Γ ⊢ 𝑛 ≡ 𝑛′ : 𝑇 and 𝑛 and 𝑛′ are neutrals, then

• 𝑛 = 𝑥 = 𝑛′
• or 𝑛 = 𝑚 𝑢, 𝑛′ = 𝑚′ 𝑢′ with Γ ⊢ 𝑚 ≡ 𝑚′ : Π 𝑥: 𝐴.𝐵 and Γ ⊢ 𝑢 ≡ 𝑢′ : 𝐴
• or…

Does not always hold!
𝑥, 𝑦 : (ℕ → 𝟙) × 𝟙 ⊢ 𝑥 ≡ 𝑦 : (ℕ → 𝟙) × 𝟙

Neutral comparison is complete only at certain types

Agda
Type-directed
Short path for neutral functions

Lean
Term-directed
Detect unit-like types

Rocq
Term-directed
Forbid unit-like types

19

Neutral injectivity

Injectivity of neutral eliminators?

If Γ ⊢ 𝑛 ≡ 𝑛′ : 𝑇 and 𝑛 and 𝑛′ are neutrals, then

• 𝑛 = 𝑥 = 𝑛′
• or 𝑛 = 𝑚 𝑢, 𝑛′ = 𝑚′ 𝑢′ with Γ ⊢ 𝑚 ≡ 𝑚′ : Π 𝑥: 𝐴.𝐵 and Γ ⊢ 𝑢 ≡ 𝑢′ : 𝐴
• or…

Does not always hold!
𝑥, 𝑦 : (ℕ → 𝟙) × 𝟙 ⊢ 𝑥 ≡ 𝑦 : (ℕ → 𝟙) × 𝟙

Neutral comparison is complete only at certain types

Agda
Type-directed
Short path for neutral functions

Lean
Term-directed
Detect unit-like types

Rocq
Term-directed
Forbid unit-like types

19

Wrapping up

Looking back

Verification is very useful!

• Bug finding

• Looking hard at the dark corners

• Uncover & understand assumptions hidden in implementation subtleties

• Documentation

• Reduce folklore

• And more

But: the cost is currently quite high…

20

Looking back

Verification is very useful!

• Bug finding

• Looking hard at the dark corners

• Uncover & understand assumptions hidden in implementation subtleties

• Documentation

• Reduce folklore

• And more

But: the cost is currently quite high…

20

Looking back

Verification is very useful!

• Bug finding

• Looking hard at the dark corners

• Uncover & understand assumptions hidden in implementation subtleties

• Documentation

• Reduce folklore

• And more

But: the cost is currently quite high…

20

Looking forward

Lots of cool things happening in the space:

AgdaCore Agda-style pattern-matching + termination-checker

Lean4Lean essentially the real kernel’s code, with a dedicated program logic

MetaRocq algebraic universes, nested inductive types…

λ□ whole ecosystem of verified compilations

And more LogRel-Rocq, LogRel-MLTT/graded-type-theory, McTT, Liu & Weirich…

Lowering the cost?

• Reusable libraries and insight

• Automation (AutoSubst/Sulfur)

• Forkable flagship projects

How do we bridge the gap with meta-theory-oriented formalisations?

21

Looking forward

Lots of cool things happening in the space:

AgdaCore Agda-style pattern-matching + termination-checker

Lean4Lean essentially the real kernel’s code, with a dedicated program logic

MetaRocq algebraic universes, nested inductive types…

λ□ whole ecosystem of verified compilations

And more LogRel-Rocq, LogRel-MLTT/graded-type-theory, McTT, Liu & Weirich…

Lowering the cost?

• Reusable libraries and insight

• Automation (AutoSubst/Sulfur)

• Forkable flagship projects

How do we bridge the gap with meta-theory-oriented formalisations?

21

Looking forward

Lots of cool things happening in the space:

AgdaCore Agda-style pattern-matching + termination-checker

Lean4Lean essentially the real kernel’s code, with a dedicated program logic

MetaRocq algebraic universes, nested inductive types…

λ□ whole ecosystem of verified compilations

And more LogRel-Rocq, LogRel-MLTT/graded-type-theory, McTT, Liu & Weirich…

Lowering the cost?

• Reusable libraries and insight

• Automation (AutoSubst/Sulfur)

• Forkable flagship projects

How do we bridge the gap with meta-theory-oriented formalisations?

21

We can (should!) separate meta-theory and verification

Find the right interfaces, from synthetic methods to MetaRocq and beyond

A lot is happening, stay tuned, or better: come join us!

Thank you!

22

We can (should!) separate meta-theory and verification

Find the right interfaces, from synthetic methods to MetaRocq and beyond

A lot is happening, stay tuned, or better: come join us!

Thank you!

22

Bibliography

[1] Matthieu Sozeau et al. ‘Correct and Complete Type Checking and Certified Erasure for Coq, in Coq’.
In: Journal of the ACM (Jan. 2025). doi: 10.1145/3706056.

[2] Matthieu Sozeau, Meven Lennon-Bertrand and Yannick Forster. ‘The Curious Case of Case: Correct &
Efficient Representation of Case Analysis in Coq and MetaCoq’. Talk. 2022.

[3] Arthur Adjedj et al. ‘Martin-Löf à la Coq’. In: Proceedings of the 13th ACM SIGPLAN International
Conference on Certified Programs and Proofs. 2024. doi: 10.1145/3636501.3636951.

[4] Meven Lennon-Bertrand. ‘What Does It Take to Certify a Conversion Checker?’ In: 10th International
Conference on Formal Structures for Computation and Deduction (FSCD 2025). 2025. doi:
10.4230/LIPIcs.FSCD.2025.27.

[5] Andreas Abel, Joakim Öhman and Andrea Vezzosi. ‘Decidability of Conversion for Type Theory in
Type Theory’. In: Proc. ACM Program. Lang. POPL (Dec. 2017). doi: 10.1145/3158111.

[6] Junyoung Jang et al. ‘McTT: A Verified Kernel for a Proof Assistant’. In: Proceedings of the ACM on
Programming Languages ICFP (Aug. 2025). doi: 10.1145/3747511.

[7] Yiyun Liu, Jonathan Chan and Stephanie Weirich. ‘Functional Pearl: Short and Mechanized Logical
Relation for Dependent Type Theories’. 2025. url:
https://github.com/yiyunliu/mltt-consistency.

1

https://doi.org/10.1145/3706056
https://doi.org/10.1145/3636501.3636951
https://doi.org/10.4230/LIPIcs.FSCD.2025.27
https://doi.org/10.1145/3158111
https://doi.org/10.1145/3747511
https://github.com/yiyunliu/mltt-consistency

	: the curious case of case
	What do we want to verify? What does it take?
	Understanding “untyped” conversion-checking
	Wrapping up
	Appendix

