
AdapTT: Functoriality for Dependent Type Casts

POPL 2026

Arthur Adjedj, Meven Lennon-Bertrand, Thibaut Benjamin & Kenji Maillard



Arthur Adjedj Thibaut Benjamin Kenji Maillard

1



Many forms of type casting

and they’re quite broken complicated.

“It wouldn’t work without a nice notation system.”
– Damien Pous, 2 days ago

2



Many forms of type casting

and they’re quite broken complicated.

“It wouldn’t work without a nice notation system.”
– Damien Pous, 2 days ago

2



Many forms of type casting and they’re quite broken complicated.

“It wouldn’t work without a nice notation system.”
– Damien Pous, 2 days ago

2



Many forms of type casting

and they’re quite broken complicated.

“It wouldn’t work without a nice notation system.”
– Damien Pous, 2 days ago

2



Many forms of type casting

and they’re quite broken complicated.

“It wouldn’t work without a nice notation system.”
– Damien Pous, 2 days ago

2



Many forms of type casting

and they’re quite broken complicated.

“It wouldn’t work without a nice notation system.”
– Damien Pous, 2 days ago

2



Many forms of type casting

and they’re quite broken complicated.

“It wouldn’t work without a nice notation system.”
– Damien Pous, 2 days ago

2



Many forms of type casting

and they’re quite broken complicated.

“It wouldn’t work without a nice notation system.”
– Damien Pous, 2 days ago

2



What is type casting, anyway?



AdapTT

Adapters= “the data along which you can cast”

For the type theorists:

Cast
𝑎 : 𝐴 ⇒ 𝐴′ 𝑡 : 𝐴

𝑡⟨𝑎⟩ : 𝐴′

𝑡 : 𝐴
𝑡⟨id𝐴⟩ ≡ 𝑡 : 𝐴

𝑎 : 𝐴 ⇒ 𝐴′ 𝑎′ : 𝐴′ ⇒ 𝐴″ 𝑡 : 𝐴
𝑡⟨𝑎′ ∘ 𝑎⟩ ≡ 𝑡⟨𝑎⟩⟨𝑎′⟩ : 𝐴″

For the category theorists: like natural models/CwF, but with 𝗖𝗮𝘁-valued presheaves

• A category 𝗧𝘆Γ of types and adapters

• A functor 𝖳𝗆Γ : 𝗧𝘆Γ → 𝗦𝗲𝘁
A reinvention of (split) comprehension categories: see Coraglia, Najmaei.

3



AdapTT

Adapters= “the data along which you can cast”

For the type theorists:

Cast
𝑎 : 𝐴 ⇒ 𝐴′ 𝑡 : 𝐴

𝑡⟨𝑎⟩ : 𝐴′

𝑡 : 𝐴
𝑡⟨id𝐴⟩ ≡ 𝑡 : 𝐴

𝑎 : 𝐴 ⇒ 𝐴′ 𝑎′ : 𝐴′ ⇒ 𝐴″ 𝑡 : 𝐴
𝑡⟨𝑎′ ∘ 𝑎⟩ ≡ 𝑡⟨𝑎⟩⟨𝑎′⟩ : 𝐴″

For the category theorists: like natural models/CwF, but with 𝗖𝗮𝘁-valued presheaves

• A category 𝗧𝘆Γ of types and adapters

• A functor 𝖳𝗆Γ : 𝗧𝘆Γ → 𝗦𝗲𝘁
A reinvention of (split) comprehension categories: see Coraglia, Najmaei.

3



AdapTT

Adapters= “the data along which you can cast”

For the type theorists:

Cast
𝑎 : 𝐴 ⇒ 𝐴′ 𝑡 : 𝐴

𝑡⟨𝑎⟩ : 𝐴′
𝑡 : 𝐴

𝑡⟨id𝐴⟩ ≡ 𝑡 : 𝐴
𝑎 : 𝐴 ⇒ 𝐴′ 𝑎′ : 𝐴′ ⇒ 𝐴″ 𝑡 : 𝐴

𝑡⟨𝑎′ ∘ 𝑎⟩ ≡ 𝑡⟨𝑎⟩⟨𝑎′⟩ : 𝐴″

For the category theorists: like natural models/CwF, but with 𝗖𝗮𝘁-valued presheaves

• A category 𝗧𝘆Γ of types and adapters

• A functor 𝖳𝗆Γ : 𝗧𝘆Γ → 𝗦𝗲𝘁
A reinvention of (split) comprehension categories: see Coraglia, Najmaei.

3



Many examples

A whole family of type theories:

• Subtyping:
𝐴 ⇒ 𝐵 means “𝐴 is a subtype of 𝐵” → Uniqueness!

• Observational equality
• Cast calculi for gradual typing

• …

• Full function space:
given any 𝑓 : 𝐴 → 𝐵 we get 𝑓 : 𝐴 ⇒ 𝐵 (and 𝑡⟨𝑓 ⟩ ≡ 𝑓 𝑡)

Non-unique, non-full

4



Many examples

A whole family of type theories:

• Subtyping:
𝐴 ⇒ 𝐵 means “𝐴 is a subtype of 𝐵” → Uniqueness!

• Observational equality
• Cast calculi for gradual typing

• …

• Full function space:
given any 𝑓 : 𝐴 → 𝐵 we get 𝑓 : 𝐴 ⇒ 𝐵 (and 𝑡⟨𝑓 ⟩ ≡ 𝑓 𝑡)

Non-unique, non-full

4



Many examples

A whole family of type theories:

• Subtyping:
𝐴 ⇒ 𝐵 means “𝐴 is a subtype of 𝐵” → Uniqueness!

• Observational equality
• Cast calculi for gradual typing

• …

• Full function space:
given any 𝑓 : 𝐴 → 𝐵 we get 𝑓 : 𝐴 ⇒ 𝐵 (and 𝑡⟨𝑓 ⟩ ≡ 𝑓 𝑡)

Non-unique, non-full

4



Many examples

A whole family of type theories:

• Subtyping:
𝐴 ⇒ 𝐵 means “𝐴 is a subtype of 𝐵” → Uniqueness!

• Observational equality
• Cast calculi for gradual typing
• …

• Full function space:
given any 𝑓 : 𝐴 → 𝐵 we get 𝑓 : 𝐴 ⇒ 𝐵 (and 𝑡⟨𝑓 ⟩ ≡ 𝑓 𝑡)

Non-unique, non-full

4



Structural casts and functorial types



Structural casts everywhere

Coercive subtyping:
cast along subtyping derivations

Γ ⊢ 𝐴′ ≼ 𝐴 Γ ⊢ 𝐵 ≼ 𝐵′

Γ ⊢ 𝐴 → 𝐵 ≼ 𝐴′ → 𝐵′ Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑎′ : 𝐴′

Γ ⊢ (coe𝐴→𝐵,𝐴′→𝐵′ 𝑓 ) 𝑎′ ≡ coe𝐵,𝐵′(𝑓 coe𝐴′ ,𝐴 𝑎) : 𝐵′

Observational equality:
cast along equality proofs

Γ ⊢ 𝑒𝐴 : 𝐴′ = 𝐴 Γ ⊢ 𝑒𝐵 : 𝐵 = 𝐵′

Γ ⊢ 𝑒′ := … : 𝐴 → 𝐵 = 𝐴′ → 𝐵′ Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑎′ : 𝐴′

Γ ⊢ trans𝐴→𝐵,𝐴′→𝐵′(𝑒′, 𝑓 ) 𝑎′ ≡ trans𝐵,𝐵′(𝑒𝐵 , 𝑓 trans𝐴′ ,𝐴(𝑒𝐴, 𝑎′)) : 𝐵′

Gradual typing:
casts always allowed, can fail

Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑎′ : 𝐴′

Γ ⊢ (⟨𝐴′ → 𝐵′ ⇐ 𝐴 → 𝐵⟩ 𝑓 ) 𝑎′ ≡ ⟨𝐵′ ⇐ 𝐵⟩(𝑓 ⟨𝐴 ⇐ 𝐴′⟩ 𝑎′) : 𝐵′

Func
toria

lity!

5



Structural casts everywhere

Coercive subtyping:
cast along subtyping derivations

Γ ⊢ 𝐴′ ≼ 𝐴 Γ ⊢ 𝐵 ≼ 𝐵′

Γ ⊢ 𝐴 → 𝐵 ≼ 𝐴′ → 𝐵′ Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑎′ : 𝐴′

Γ ⊢ (coe𝐴→𝐵,𝐴′→𝐵′ 𝑓 ) 𝑎′ ≡ coe𝐵,𝐵′(𝑓 coe𝐴′ ,𝐴 𝑎) : 𝐵′

Observational equality:
cast along equality proofs

Γ ⊢ 𝑒𝐴 : 𝐴′ = 𝐴 Γ ⊢ 𝑒𝐵 : 𝐵 = 𝐵′

Γ ⊢ 𝑒′ := … : 𝐴 → 𝐵 = 𝐴′ → 𝐵′ Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑎′ : 𝐴′

Γ ⊢ trans𝐴→𝐵,𝐴′→𝐵′(𝑒′, 𝑓 ) 𝑎′ ≡ trans𝐵,𝐵′(𝑒𝐵 , 𝑓 trans𝐴′ ,𝐴(𝑒𝐴, 𝑎′)) : 𝐵′

Gradual typing:
casts always allowed, can fail

Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑎′ : 𝐴′

Γ ⊢ (⟨𝐴′ → 𝐵′ ⇐ 𝐴 → 𝐵⟩ 𝑓 ) 𝑎′ ≡ ⟨𝐵′ ⇐ 𝐵⟩(𝑓 ⟨𝐴 ⇐ 𝐴′⟩ 𝑎′) : 𝐵′

Func
toria

lity!

5



Structural casts everywhere

Coercive subtyping:
cast along subtyping derivations

Γ ⊢ 𝐴′ ≼ 𝐴 Γ ⊢ 𝐵 ≼ 𝐵′

Γ ⊢ 𝐴 → 𝐵 ≼ 𝐴′ → 𝐵′ Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑎′ : 𝐴′

Γ ⊢ (coe𝐴→𝐵,𝐴′→𝐵′ 𝑓 ) 𝑎′ ≡ coe𝐵,𝐵′(𝑓 coe𝐴′ ,𝐴 𝑎) : 𝐵′

Observational equality:
cast along equality proofs

Γ ⊢ 𝑒𝐴 : 𝐴′ = 𝐴 Γ ⊢ 𝑒𝐵 : 𝐵 = 𝐵′

Γ ⊢ 𝑒′ := … : 𝐴 → 𝐵 = 𝐴′ → 𝐵′ Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑎′ : 𝐴′

Γ ⊢ trans𝐴→𝐵,𝐴′→𝐵′(𝑒′, 𝑓 ) 𝑎′ ≡ trans𝐵,𝐵′(𝑒𝐵 , 𝑓 trans𝐴′ ,𝐴(𝑒𝐴, 𝑎′)) : 𝐵′

Gradual typing:
casts always allowed, can fail

Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑎′ : 𝐴′

Γ ⊢ (⟨𝐴′ → 𝐵′ ⇐ 𝐴 → 𝐵⟩ 𝑓 ) 𝑎′ ≡ ⟨𝐵′ ⇐ 𝐵⟩(𝑓 ⟨𝐴 ⇐ 𝐴′⟩ 𝑎′) : 𝐵′

Func
toria

lity!

5



Structural casts everywhere

Coercive subtyping:
cast along subtyping derivations

Γ ⊢ 𝐴′ ≼ 𝐴 Γ ⊢ 𝐵 ≼ 𝐵′

Γ ⊢ 𝐴 → 𝐵 ≼ 𝐴′ → 𝐵′ Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑎′ : 𝐴′

Γ ⊢ (coe𝐴→𝐵,𝐴′→𝐵′ 𝑓 ) 𝑎′ ≡ coe𝐵,𝐵′(𝑓 coe𝐴′ ,𝐴 𝑎) : 𝐵′

Observational equality:
cast along equality proofs

Γ ⊢ 𝑒𝐴 : 𝐴′ = 𝐴 Γ ⊢ 𝑒𝐵 : 𝐵 = 𝐵′

Γ ⊢ 𝑒′ := … : 𝐴 → 𝐵 = 𝐴′ → 𝐵′ Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑎′ : 𝐴′

Γ ⊢ trans𝐴→𝐵,𝐴′→𝐵′(𝑒′, 𝑓 ) 𝑎′ ≡ trans𝐵,𝐵′(𝑒𝐵 , 𝑓 trans𝐴′ ,𝐴(𝑒𝐴, 𝑎′)) : 𝐵′

Gradual typing:
casts always allowed, can fail

Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑎′ : 𝐴′

Γ ⊢ (⟨𝐴′ → 𝐵′ ⇐ 𝐴 → 𝐵⟩ 𝑓 ) 𝑎′ ≡ ⟨𝐵′ ⇐ 𝐵⟩(𝑓 ⟨𝐴 ⇐ 𝐴′⟩ 𝑎′) : 𝐵′

Func
toria

lity!

5



Functorial type formers

Type former 𝐹 :

• acts on objects and arrows
• preserves identities and composition (critical! [ESOP24])

𝐹Γ : ?? → 𝗧𝘆Γ

1. Make types into a category ✓
2. Describe the source of type formers

✓

3. Functoriality of our favourite type formers

✓

4. Profit!

6



Functorial type formers

Type former 𝐹 :

• acts on objects and arrows

• preserves identities and composition (critical! [ESOP24])

𝐹Γ : ?? → 𝗧𝘆Γ

1. Make types into a category ✓
2. Describe the source of type formers

✓

3. Functoriality of our favourite type formers

✓

4. Profit!

6



Functorial type formers

Type former 𝐹 :

• acts on objects and arrows

• preserves identities and composition (critical! [ESOP24])

𝐹Γ : ?? → 𝗧𝘆Γ

1. Make types into a category ✓
2. Describe the source of type formers

✓

3. Functoriality of our favourite type formers

✓

4. Profit!

6



What is in a type former

A type former is specified by a context, with

• type variables: ΓList := 𝑋 : 𝖳𝗒 Γ→ := (𝑋 : 𝖳𝗒), (𝑌 : 𝖳𝗒)

• dependent type variables: ΓΠ, ΓΣ, ΓW := (𝑋 : 𝖳𝗒), (𝑌 : 𝑋 . 𝖳𝗒)
• term variables: Γ= := (𝑋 : 𝖳𝗒), (𝑥: 𝑋), (𝑦 : 𝑋) ΓVec := (𝑋 : 𝖳𝗒), (𝑛: 𝐍)

Yoneda magic:

Γ ⊢ 𝐴 Γ ⊢ 𝐵
Γ ⊢ 𝐴 → 𝐵

Γ ⊢ 𝐴 Γ ⊢ 𝐵
Γ ⊢ (𝐴, 𝐵) : Γ→

7



What is in a type former

A type former is specified by a context, with

• type variables: ΓList := 𝑋 : 𝖳𝗒 Γ→ := (𝑋 : 𝖳𝗒), (𝑌 : 𝖳𝗒)
• dependent type variables: ΓΠ, ΓΣ, ΓW := (𝑋 : 𝖳𝗒), (𝑌 : 𝑋 . 𝖳𝗒)

• term variables: Γ= := (𝑋 : 𝖳𝗒), (𝑥: 𝑋), (𝑦 : 𝑋) ΓVec := (𝑋 : 𝖳𝗒), (𝑛: 𝐍)

Yoneda magic:

Γ ⊢ 𝐴 Γ ⊢ 𝐵
Γ ⊢ 𝐴 → 𝐵

Γ ⊢ 𝐴 Γ ⊢ 𝐵
Γ ⊢ (𝐴, 𝐵) : Γ→

7



What is in a type former

A type former is specified by a context, with

• type variables: ΓList := 𝑋 : 𝖳𝗒 Γ→ := (𝑋 : 𝖳𝗒), (𝑌 : 𝖳𝗒)
• dependent type variables: ΓΠ, ΓΣ, ΓW := (𝑋 : 𝖳𝗒), (𝑌 : 𝑋 . 𝖳𝗒)
• term variables: Γ= := (𝑋 : 𝖳𝗒), (𝑥: 𝑋), (𝑦 : 𝑋) ΓVec := (𝑋 : 𝖳𝗒), (𝑛: 𝐍)

Yoneda magic:

Γ ⊢ 𝐴 Γ ⊢ 𝐵
Γ ⊢ 𝐴 → 𝐵

Γ ⊢ 𝐴 Γ ⊢ 𝐵
Γ ⊢ (𝐴, 𝐵) : Γ→

7



What is in a type former

A type former is specified by a context, with

• type variables: ΓList := 𝑋 : 𝖳𝗒 Γ→ := (𝑋 : 𝖳𝗒), (𝑌 : 𝖳𝗒)
• dependent type variables: ΓΠ, ΓΣ, ΓW := (𝑋 : 𝖳𝗒), (𝑌 : 𝑋 . 𝖳𝗒)
• term variables: Γ= := (𝑋 : 𝖳𝗒), (𝑥: 𝑋), (𝑦 : 𝑋) ΓVec := (𝑋 : 𝖳𝗒), (𝑛: 𝐍)

Yoneda magic:

Γ ⊢ 𝐴 Γ ⊢ 𝐵
Γ ⊢ 𝐴 → 𝐵

Γ ⊢ 𝐴 Γ ⊢ 𝐵
Γ ⊢ (𝐴, 𝐵) : Γ→

7



Transformations: where the magic happens

But wait! We have a way to relate two substitutions Γ ⊢ 𝜎, 𝜏 : Γ→
Adapters!

We need variance information:

Γ→ := (𝑋 : 𝖳𝗒−)(𝑌 : 𝖳𝗒+) ⇝ Γ ⊢ 𝑎 : 𝐴′ ⇒ 𝐴 Γ ⊢ 𝑏 : 𝐵 ⇒ 𝐵′

Γ ⊢ (𝑎, 𝑏) : (𝐴, 𝐵) ⇒Γ→ (𝐴′, 𝐵′)

A very general rule for transformations:
Γ ⊢ 𝐴 Δ ⊢ 𝜎, 𝜏 : Γ Δ ⊢ 𝜇 : 𝜎 ⇒Γ 𝜏

Δ ⊢ 𝐴J𝜇K : 𝐴[𝜎] ⇒ 𝐴[𝜏]

All types are functors

8



Transformations: where the magic happens

But wait! We have a way to relate two substitutions Γ ⊢ 𝜎, 𝜏 : Γ→
Adapters!

We need variance information:

Γ→ := (𝑋 : 𝖳𝗒−)(𝑌 : 𝖳𝗒+) ⇝ Γ ⊢ 𝑎 : 𝐴′ ⇒ 𝐴 Γ ⊢ 𝑏 : 𝐵 ⇒ 𝐵′

Γ ⊢ 𝑎 → 𝑏 : 𝐴 → 𝐵 ⇒ 𝐴′ → 𝐵′

A very general rule for transformations:
Γ ⊢ 𝐴 Δ ⊢ 𝜎, 𝜏 : Γ Δ ⊢ 𝜇 : 𝜎 ⇒Γ 𝜏

Δ ⊢ 𝐴J𝜇K : 𝐴[𝜎] ⇒ 𝐴[𝜏]

All types are functors

8



Transformations: where the magic happens

But wait! We have a way to relate two substitutions Γ ⊢ 𝜎, 𝜏 : Γ→
Adapters!

We need variance information:

Γ→ := (𝑋 : 𝖳𝗒−)(𝑌 : 𝖳𝗒+) ⇝ Γ ⊢ 𝑎 : 𝐴′ ⇒ 𝐴 Γ ⊢ 𝑏 : 𝐵 ⇒ 𝐵′

Γ ⊢ (𝑎, 𝑏) : (𝐴, 𝐵) ⇒Γ→ (𝐴′, 𝐵′)

A very general rule for transformations:
Γ ⊢ 𝐴 Δ ⊢ 𝜎, 𝜏 : Γ Δ ⊢ 𝜇 : 𝜎 ⇒Γ 𝜏

Δ ⊢ 𝐴J𝜇K : 𝐴[𝜎] ⇒ 𝐴[𝜏]

All types are functors

8



Transformations: where the magic happens

But wait! We have a way to relate two substitutions Γ ⊢ 𝜎, 𝜏 : Γ→
Adapters!

We need variance information:

Γ→ := (𝑋 : 𝖳𝗒−)(𝑌 : 𝖳𝗒+) ⇝ Γ ⊢ 𝑎 : 𝐴′ ⇒ 𝐴 Γ ⊢ 𝑏 : 𝐵 ⇒ 𝐵′

Γ ⊢ (𝑎, 𝑏) : (𝐴, 𝐵) ⇒Γ→ (𝐴′, 𝐵′)

A very general rule for transformations:
Γ ⊢ 𝐴 Δ ⊢ 𝜎, 𝜏 : Γ Δ ⊢ 𝜇 : 𝜎 ⇒Γ 𝜏

Δ ⊢ 𝐴J𝜇K : 𝐴[𝜎] ⇒ 𝐴[𝜏]

All types are functors

8



Transformations: where the magic happens

But wait! We have a way to relate two substitutions Γ ⊢ 𝜎, 𝜏 : Γ→
Adapters!

We need variance information:

Γ→ := (𝑋 : 𝖳𝗒−)(𝑌 : 𝖳𝗒+) ⇝ Γ ⊢ 𝑎 : 𝐴′ ⇒ 𝐴 Γ ⊢ 𝑏 : 𝐵 ⇒ 𝐵′

Γ ⊢ (𝑎, 𝑏) : (𝐴, 𝐵) ⇒Γ→ (𝐴′, 𝐵′)

A very general rule for transformations:
Γ ⊢ 𝐴 Δ ⊢ 𝜎, 𝜏 : Γ Δ ⊢ 𝜇 : 𝜎 ⇒Γ 𝜏

Δ ⊢ 𝐴J𝜇K : 𝐴[𝜎] ⇒ 𝐴[𝜏]

All types are functors
8



Functorial type formers

Type former 𝐹 :

• acts on objects and arrows

• preserves identities and composition (critical! [ESOP24])

𝐹Γ : 𝗦𝘂𝗯(Γ, Γ𝐹 ) → 𝗧𝘆Γ

1. Make types into a category ✓
2. Describe the source of type formers ✓
3. Functoriality of our favourite type formers

✓

4. Profit!

9



Categorically

• A 2-category 𝗖𝘁𝘅 of contexts, substitutions and transformations

• A 2-functor 𝖳𝗒 : 𝗖𝘁𝘅 → 𝗖𝗮𝘁
• A dependent 2-functor 𝖳𝗆 : (Γ: 𝗖𝘁𝘅) → (𝖳𝗒(Γ) → 𝗦𝗲𝘁)
• Local representability data (term and type variables)

• a 2-functor ⋅− : 𝗖𝘁𝘅co → 𝗖𝘁𝘅
Lots of data and equations to unpack!

Coming back: models in presheaves over a model of AdapTT

10



Categorically

• A 2-category 𝗖𝘁𝘅 of contexts, substitutions and transformations

• A 2-functor 𝖳𝗒 : 𝗖𝘁𝘅 → 𝗖𝗮𝘁
• A dependent 2-functor 𝖳𝗆 : (Γ: 𝗖𝘁𝘅) → (𝖳𝗒(Γ) → 𝗦𝗲𝘁)
• Local representability data (term and type variables)

• a 2-functor ⋅− : 𝗖𝘁𝘅co → 𝗖𝘁𝘅
Lots of data and equations to unpack!

Coming back: models in presheaves over a model of AdapTT

10



Our favourite type formers



Functorial type formers

Type former 𝐹 :

• acts on objects and arrows

• preserves identities and composition (critical! [ESOP24])

𝐹Γ : 𝗦𝘂𝗯(Γ, Γ𝐹 ) → 𝗧𝘆Γ

1. Make types into a category ✓
2. Describe the source of type formers ✓
3. Functoriality of our favourite type formers

✓

4. Profit!

11



Type specification recipe

1. Type formation rule 𝐴 → 𝐵
2. Constructor (𝜆) and eliminator (app)

3. Computation rule for each eliminator-constructor combination (β)

4. Extensionality rule (η) (optional)

5. Computation rule for the adapter

12



Type specification recipe

1. Give the type former’s context (Γ→), derive
1.1 type formation rule 𝐴 → 𝐵
1.2 adapter formation rule 𝑎 → 𝑏
1.3 functoriality equations

2. Constructor (𝜆) and eliminator (app)

3. Computation rule for each eliminator-constructor combination (β)

4. Extensionality rule (η) (optional)

5. Computation rule for the adapter

12



Our favourite type formers

Π, Σ: easy fit

(𝑓 ⟨Π 𝑎.𝑏⟩) 𝑢 ≡ (𝑓 𝑢⟨𝑎⟩)⟨𝑏[𝑢⟨𝑎⟩]⟩

Parameterised, indexed inductive types: a theory of signatures to generically derive everything

All the hard work was already done!

13



Our favourite type formers

Π, Σ: easy fit

(𝑓 ⟨Π 𝑎.𝑏⟩) 𝑢 ≡ (𝑓 𝑢⟨𝑎⟩)⟨𝑏[𝑢⟨𝑎⟩]⟩

Parameterised, indexed inductive types: a theory of signatures to generically derive everything

All the hard work was already done!

13



Our favourite type formers

Π, Σ: easy fit

(𝑓 ⟨Π 𝑎.𝑏⟩) 𝑢 ≡ (𝑓 𝑢⟨𝑎⟩)⟨𝑏[𝑢⟨𝑎⟩]⟩

Parameterised, indexed inductive types: a theory of signatures to generically derive everything

All the hard work was already done!

13



Wrapping up



Functorial type formers

Type former 𝐹 :

• acts on objects and arrows

• preserves identities and composition (critical! [ESOP24])

𝐹Γ : 𝗦𝘂𝗯(Γ, Γ𝐹 ) → 𝗧𝘆Γ

1. Make types into a category ✓
2. Describe the source of type formers ✓
3. Functoriality of our favourite type formers ✓
4. Profit!

14



There’s more cooking

• Meta-theory (normalisation)

• Alternative presentation of type variables

• Experimental implementation

• Instances of the framework (cumulativity, subset types, records…)

• Relation to binary parametricity?

Get in touch if you’re interested!

15



Adapters: a foundation for dependent type-casting

Structural casts ↔ Functorial type formers

Thanks to cool 2-categorical structure

General indexed inductive types

Thanks!


	What is type casting, anyway?
	Structural casts and functorial types
	Our favourite type formers
	Wrapping up

