ADAPT T: FUNCTORIALITY FOR DEPENDENT TYPE CASTS

POPL 2026

Arthur ApjEp), Meven LENNON-BERTRAND, Thibaut BENJAMIN & Kenji MAILLARD

Arthur Adjedj Thibaut Benjamin Kenji Maillard

UAgda | IWN
®ROCG FT Vldris

Many forms of type casting

“It wouldn’t work without a nice notation system.”
— Damien Pous, 2 days ago

U Agda VI
®ROCG JT ?ldris

Many forms of type casting and they’re quite breken complicated.

“It wouldn’t work without a nice notation system.”
— Damien Pous, 2 days ago

Parametrized coercions #2455

cogbot opened on Dec 6, 2010 Member

Note: the issue was created automatically with bugzilla2github tool

Original bug ID: BZ#2455
From: @robbertkrebbers
Reported version: trunk

CC: @Eelis, @JasonGross

©

l}) cogbot on Dec 6, 2010 Member = Author

Comment author: @robbertkrebbers

Creating a parametrized coercion does not work. For example, [want to create a coercion from the positive elements of an
arbitrary ordered ring into that ring.

(* Running Coq trunk r13689 *)

Section test.
(* Imagine R to be an ordered Ring *)
Context (R: Type).

(* Here we define the positive elements using a sigma type)
(In this example we are lazy and just take them all :) *)
Definition Pos := sig (fun x : R => True).

o -

Assignees

No one assigned

Labels

part: coercions

Projects

No projects

Milestone

No milestone

Relationships
None yet
Development

& Code with agent mode -
No branches or pull requests
Notifications Customize

2 subscribe

You're not receiving notifications from this
thread.

Coercions again #403 ©

Assignees
leodemoura opened on Apr 14, 2021 Member = =+

br

No one assigned

The Lean 4 coercions work much better than the Lean 3 ones, but they are still brittle and based on TC resolution.

"Bad" instances often trigger non-termination. Labels
We can't support coercions from A to a subtype of A without allowing TC to invoke tactics, and we really don't want TC to refactoring
invoke arbitrary tactics since it would make the system more complex, the caching mechanism will be less effective, and
users will probably abuse the feature and create performance problems. Type
Finally, the TC rules are to strict and prevent us from finding a coercion for
No type
structure Foo (A : Sort _) := (foo : A) [l Projects
structure Bar (A : Sort _) extends Foo A := (bar : A)
instance {A} : Coe (Bar A) (Foo A) := {coe := Bar.toFoo} No projects
def getFoo {A} (F : Foo A) := F.foo
def bar : Bar Nat := {foo := ©, bar := 1} .
Milestone
#icheck getFoo bar -- fails because the expected type "Foo ?A’ contains a metavariable No milestone

One option is to write an extensible coercion resolution procedure. Relationships

Users would still be able to define (non-dependent) coercions using instance s, but the search and support for dependent None yet
coercions from Prop to Bool and A to subtype of A would be handwritten.
Development

©

& Code with agent mode -

No branches or pull requests

© & leodemoura added ' refactoring on Apr 14, 2021
Customize

[a)

The norm_cast family of tactics.

A full description of the tactic, and the use of each theorem category, can be found at https://arxiv.org/abs/2001.10594.

def Lean.Elab.Tactic.NormCast.proveEqUsing
(s : Meta.SimpTheorems) (a b : Expr) :
MetaM (Option Meta.Simp.Result)

Proves a = b using the given simp set.

» Equations

source

def Lean.Elab.Tactic.NormCast.proveEqUsingDown
(a b : Expr) :
MetaM (Option Meta.Simp.Result)

» Equations

Proves a = b by simplifying using move and squash lemmas.

source

def Lean.Elab.Tactic.NormCast.mkCoe
(e ty : Expr) :
MetaM Expr

Constructs the expression (e : ty).

» Equations

source

def Lean.Elab.Tactic.NormCast.isCoe0Of?
(e : Expr) :
MetaM (Option Expr)

» Equations

Checks whether an expression is the coercion of some other expression, and if so returns that expression.

source

return to top
source

» Imports
» Imported by

Lean.Elab.Tactic.NormCast.proveEqUsing
Lean.Elab.Tactic.NormCast.proveEqUsingDown
Lean.Elab.Tactic.NormCast.mkCoe
Lean.Elab.Tactic.NormCast.isCoeOf?
Lean.Elab.Tactic.NormCast.isNumeral?
Lean.Elab.Tactic.NormCast.splittingProcedure
Lean.Elab.Tactic.NormCast.prove
Lean.Elab.Tactic.NormCast.upwardAndElim
Lean.Elab.Tactic.NormCast.numeralToCoe
Lean.Elab.Tactic.NormCast.
elabNormCastConfig
Lean.Elab.Tactic.NormCast.derive
Lean.Elab.Tactic.NormCast.elabModCast
Lean.Elab.Tactic.NormCast.normCastTarget
Lean.Elab.Tactic.NormCast.normCastHyp
Lean.Elab.Tactic.NormCast.evalNormCastO
Lean.Elab.Tactic.NormCast.evalConvNormCast
Lean.Elab.Tactic.NormCast.evalPushCast
Lean.Elab.Tactic.NormCast.elabAddElim

- |
e e S

Polarities: subtyping for datatypes #65

‘

Assignees
& catalin-hritcu opened on Nov 29, 2014 Member) ==+
No one assigned
(x:int{x>1} * y:int{y>1}) is nota subtype of (int * int)
Labels
@) component/language-design
component/metatheory

component/typechecker (Rard)
© & catalin-hritcu added kind/bug on Nov 29, 2014 kind/enhancement status/wont-fix

24 remaining items

Load more

Relationships

nikswamy on Mar 14, 2022
None yet
Addressing this issue requires more research. Closing as a wontfix until then.
Development

& Code with agent mode

No branches or pull requ

@ = nikswamy closed this as completed on Mar 14

Disable all subtyping by default? #4474

jespercockx opened on Feb 23, 2020 Member = ==+

In the light of historic and current issues involving subtyping (e.g. #1579 #2170 #2440 #3986 #4175 #4390 #4401) I am
starting to wonder whether it is a good idea to have subtyping enabled by default in Agda. All dependent type theories with
subtyping that are know either use coercive subtyping or restrict it to a very specific setting (i.e. cumulativity). On the other
hand, Agda now has a notion of material subtyping that is used for several features: irrelevance, erasure, sized types,
cumulativity, and cohesion. In particular, it seems that we do not yet fully understand how constraint solving and
metavariables in such a setting are supposed to work.

In this light, Twould like to discuss whether it is a good idea to have (material) subtyping enabled by default. Maybe it would
be better to have a general flag --no-subtyping that disables material subtyping across the board? Things like irrelevance
and erasure should still function with this option, though it might be necessary to eta-expand some functions by hand. Sized
types and cumulativity would obviously not be compatible with this flag.

What do you think? Is this a good idea or do we need a less radical solution?

Q42

© @ jesp on Feb 23, 2020

kx added ing | type: di

nad on Feb 23, 2020 Contributor = *++

Tjust asked you a similar question.

In particular, it seems that we do not yet fully understand how constraint solving and metavariables in such a setting are

supposed to work.

o -

Assignees

No one assigned
Labels

subtyping | type: discussion
Type
No type

Projects

No projects

Milestone

© 261
Closed on Mar 16, 2020, 100% complete

Relationships

None yet
Development

& Code with agent mode -
No branches or pull requests

Notifications Customize

WHAT IS TYPE CASTING, ANYWAY?

ADAPTT

Adapters= “the data along which you can cast”

ADAPTT

Adapters= “the data along which you can cast”

For the type theorists:
a:A=A t: A
tay : A’

CAsT

ADAPTT

Adapters= “the data along which you can cast”

For the type theorists:

a:A= A t: A t: A a:A= A a A= A"

t:

CAsT

Hay: A Hidg)=t:A t{a’ o ay =t{a)a’) : A”

For the category theorists: like natural models/CwF, but with Cat-valued presheaves
« A category Tyr of types and adapters
« Afunctor Tmyp : Ty — Set

A reinvention of (split) comprehension categories: see Coraglia, Najmaei.

MANY EXAMPLES

A whole family of type theories:

» Subtyping:
A = B means “A is a subtype of B> — Uniqueness!

MANY EXAMPLES

A whole family of type theories:

« Subtyping:
A = B means “A is a subtype of B” — Uniqueness!

« Full function space:

givenanyf:A—>Bwegeti:A=>B(andt<f>Eft)

MANY EXAMPLES

A whole family of type theories:
+ Subtyping:
A = B means “A is a subtype of B” — Uniqueness!

» Observational equality N . full
on-unique, non-fu

Cast calculi for gradual typing

« Full function space:

givenanyf:A—)Bwegeti:A=>B(andt<f>Eft)

MANY EXAMPLES

A whole family of type theories:
+ Subtyping:
A = B means “A is a subtype of B” — Uniqueness!
» Observational equality

X . Non-unique, non-full
« Cast calculi for gradual typing

« Full function space:

givenanyf:A—)Bwegeti:A=>B(andt<f>Eft)

STRUCTURAL CASTS AND FUNCTORIAL TYPES

STRUCTURAL CASTS EVERYWHERE

'HAA<A THBXPB
'rA—->B<A - DB 'f:A>B Tha: A

Coercive subtyping:
cast along subtyping derivations T+ (coey gap f)a =coegp(f coey pa): B

STRUCTURAL CASTS EVERYWHERE

'HAA<A THBXPB

Coercive subtyping: 'HA—->B<A - B
cast along subtyping derivations

T-f:A>B TrFa:A

I+ (coe pap f)a =coegp(f coey 4a): B

'ey,: A=A T'e:B=DB

Observational equality: e =a—d=a =8
cast along equality proofs

'-f:A>B Tra:A
I trans, ,z 4 (€, f) @’ = transgp (ep, f transy 4(ey,a’)) : B

. THf:A—B Tha:A
Gradual typing:
casts always allowed, can fail I'-(A>B <A->B)f)aa=(B <B(f(A<=A)d): B

v 4

Coercive sub]

casts always a AYa'): B

Coercive sub

cast along equij

Gradual typi ; :
casts always a AYa'): B

FUNCTORIAL TYPE FORMERS

Type former F:
« acts on objects and arrows

« preserves identities and composition (critical! [ESOP24])

FUNCTORIAL TYPE FORMERS

Type former F:
« acts on objects and arrows

« preserves identities and composition (critical! [ESOP24])

Fr:?7?7 > Ty,

Make types into a category v
Describe the source of type formers

Functoriality of our favourite type formers
Profit!

= &P 5

FUNCTORIAL TYPE FORMERS

Type former F:
« acts on objects and arrows

« preserves identities and composition (critical! [ESOP24])

Fr:77 > Ty,

Make types into a category v
Describe the source of type formers
Functoriality of our favourite type formers
Profit!

= &P 5

WHAT IS IN A TYPE FORMER

A type former is specified by a context, with
« type variables: I' 5 := X: Ty I, =(X:Ty),(Y:Ty)

WHAT IS IN A TYPE FORMER

A type former is specified by a context, with
« type variables: I' 5 := X: Ty I, =(X:Ty),(Y:Ty)
« dependent type variables: I'r, I's, Iy == (X: Ty), (Y: X. Ty)

WHAT IS IN A TYPE FORMER

A type former is specified by a context, with
« type variables: I' 5 := X: Ty I, =(X:Ty),(Y:Ty)
« dependent type variables: I'r, I's, Iy == (X: Ty), (Y: X. Ty)
« term variables: T_ := (X: Ty), (x: X), (y: X) Tyee == (X:Ty), (n:N)

WHAT IS IN A TYPE FORMER

A type former is specified by a context, with
« type variables: I' 5 := X: Ty I, =(X:Ty),(Y:Ty)
« dependent type variables: I'r, I's, Iy == (X: Ty), (Y: X. Ty)
« term variables: T_ := (X: Ty), (x: X), (y: X) Tyee == (X:Ty), (n:N)

Yoneda magic:

I'A T+B I'A T+B
TA—B T+ (AB): T,

TRANSFORMATIONS: WHERE THE MAGIC HAPPENS

But wait! We have a way to relate two substitutions ' = o, 7 : T_,

Adapters!

TRANSFORMATIONS: WHERE THE MAGIC HAPPENS

But wait! We have a way to relate two substitutionsI' = o0,7 : T,

Adapters!

We need variance information:

Ta: A= A '+b:B= B
I = (GTy (Y Ty,) "

T't+a—->b:A—>B=A"—> DB

TRANSFORMATIONS: WHERE THE MAGIC HAPPENS

But wait! We have a way to relate two substitutions ' = o, 7 : T_,

Adapters!

We need variance information:

F'a:A"= A 'b:B="H

Io = Ty)Ty v T+ (@b):(AB) = (A.B)

TRANSFORMATIONS: WHERE THE MAGIC HAPPENS

But wait! We have a way to relate two substitutions ' = o, 7 : T_,

Adapters!

We need variance information:

T'Ha: A=A '+b:B= P
'+ (a,b):(AB)=r_ (A",B)

I, =X:Ty_)(Y:Ty,) ~

A Aro,r:T A-p:o=rr
A+ Aly] : Alo] = Alr]

A very general rule for transformations:

TRANSFORMATIONS: WHERE THE MAGIC HAPPENS

But wait! We have a way to relate two substitutions ' = o, 7 : T_,

Adapters!

We need variance information:

T'Ha: A=A '+b:B= P
'+ (a,b):(AB)=r_ (A",B)

I, =X:Ty_)(Y:Ty,) ~>

A Aro,r:T A-p:o=rrt

A very general rule for transformations:

A+ Aly] : Alo] = Alr]

(UL typen ane functors

FUNCTORIAL TYPE FORMERS

Type former F:
« acts on objects and arrows

« preserves identities and composition (critical! [ESOP24])

F :Sub(I',T'z) = Ty

Make types into a category v
Describe the source of type formers v/

Functoriality of our favourite type formers
Profit!

= &P 5

CATEGORICALLY

o A 2-category Ctx of contexts, substitutions and transformations
» A 2-functor Ty : Ctx — Cat

« A dependent 2-functor Tm : (I': Ctx) — (Ty(T') — Set)

« Local representability data (term and type variables)

« a2-functor -~ : Ctx®® — Ctx

Lots of data and equations to unpack!

10

CATEGORICALLY

o A 2-category Ctx of contexts, substitutions and transformations
» A 2-functor Ty : Ctx — Cat

« A dependent 2-functor Tm : (I': Ctx) — (Ty(T') — Set)

« Local representability data (term and type variables)

« a2-functor -~ : Ctx*® — Ctx

Lots of data and equations to unpack!

Coming back: models in presheaves over a model of AdapTT

10

OUR FAVOURITE TYPE FORMERS

FUNCTORIAL TYPE FORMERS

Type former F:
« acts on objects and arrows

« preserves identities and composition (critical! [ESOP24])

FE : Sub(I',T;) — Ty,

Make types into a category v
Describe the source of type formers v/

Functoriality of our favourite type formers
Profit!

= 0P 5

11

TYPE SPECIFICATION RECIPE

> PR 5

Type formation rule A — B
Constructor (A) and eliminator (app)
Computation rule for each eliminator-constructor combination (j3)

Extensionality rule (n) (optional)

12

TYPE SPECIFICATION RECIPE

oo B

. Give the type former’s context (I'_,), derive

1.1 type formation rule A — B
1.2 adapter formation rulea — b
1.3 functoriality equations

Constructor (1) and eliminator (app)
Computation rule for each eliminator-constructor combination (j8)
Extensionality rule (n) (optional)

Computation rule for the adapter

12

OUR FAVOURITE TYPE FORMERS

I, X: easy fit

(f(ab)) u = (f w(a))blw(a)])

13

OUR FAVOURITE TYPE FORMERS

I, X: easy fit

(f(ab)) u = (f w(a))blw(a)])

Parameterised, indexed inductive types: a theory of signatures to generically derive everything

13

OUR FAVOURITE TYPE FORMERS

I, X: easy fit

(f(ab)) u = (f w(a))blw(a)])

Parameterised, indexed inductive types: a theory of signatures to generically derive everything

All the hard work was already done!

13

WRAPPING UP

FUNCTORIAL TYPE FORMERS

Type former F:
« acts on objects and arrows

« preserves identities and composition (critical! [ESOP24])

F : Sub(I',T;) — Ty,

Make types into a category v

Describe the source of type formers v/
Functoriality of our favourite type formers v/
Profit!

= 0P 5

14

THERE’S MORE COOKING

» Meta-theory (normalisation)

Alternative presentation of type variables
« Experimental implementation

« Instances of the framework (cumulativity, subset types, records...)

Relation to binary parametricity?

Get in touch if you’re interested!

15

Adapters: a foundation for dependent type-casting

Structural casts <> Functorial type formers

Thanks to cool 2-categorical structure

General indexed inductive types

	What is type casting, anyway?
	Structural casts and functorial types
	Our favourite type formers
	Wrapping up

