TOWARDS A CERTIFIED PROOF ASSISTANT KERNEL

WHAT IT TAKES AND WHAT WE HAVE

Meven LENNON-BERTRAND

Deducteam Seminar - December 14" 2023

8 UNIVERSITY OF
¥ CAMBRIDGE

Department of Computer
Science and Technology

1/26

HOW THEOREM PROVING SHOULD FEEL LIKE

How THEOREM PROVING TOO OFTEN FEELS LIKE

S MR v

TRUSTING PROOF ASSISTANTS

The de Bruijn architecture -

TRUSTING PROOF ASSISTANTS

o

The de Bruijn architecture: a perfect target for certification! -

BIDIRECTIONAL TYPING

SPECIFYING PROOF ASSISTANTS

Metatheory, models , User manual
a o

Logical formalism: CIC, MLTT, HOL...

Proof assistant:
CoQ, AGDA, LEAN, ISABELLE, HOL4...

. ¢ > . .
Automation User interaction

5/26

SPECIFYING PROOF ASSISTANTS

Metatheory, models , User manual
; e

Dependent Type System: CIC, MLTT...

|

Bidirectional type-checking

!

Proof assistant kernel:
CoQ, AGDA, LEAN...

. &= = . "
Automation User interaction
5/26

BOUNDARIES AND INVARIANTS

6/26

BOUNDARIES AND INVARIANTS

Atyping judgment I" ¢ : T has boundaries. What about their well-formation?

6/26

BOUNDARIES AND INVARIANTS

Atyping judgment I =t : T has boundaries. What about their well-formation?

Cautiousness: globally enforce well-formation

FI (x:A)eTl ILx:AFt:B
I'—x:A I')Ax:At:TIx: A.B

6/26

BOUNDARIES AND INVARIANTS

Atyping judgment I =t : T has boundaries. What about their well-formation?

Cautiousness: globally enforce well-formation

FI (x:A)eTl ILx:AFt:B
I'—x:A I')Ax:At:TIx: A.B

Uncautiousness? Well-formation as an invariant

(x:A)eT '-A:0 TI,x:Art:B
I'x:A ' Ax:At:TIx: AB

6/26

WELL-FORMATION MUST FLOW

Inference and checking
I' = t:T separates into

inference: ' =t > T checkingg ' =t < T

Similar meaning, different modes: input/output/subject.

7/26

WELL-FORMATION MUST FLOW

Inference and checking
I' = t:T separates into

inference: ' =t > T checking ' =t < T

Similar meaning, different modes: input/output/subject.

McBride says:

« Arule is a server for its conclusion and a client for its premises.
« Modes guide invariant preservation

- In a conclusion, you assume inputs are well-formed, and ensure outputs are

+ In a premise, you ensure inputs are well-formed, and assume outputs are

7/26

TURNING DEPENDENT (CCw)

FT (x:Tel) T '-A:0; T,x:Ar-B:0;
F'=x:T I'=0;:04, ['=1Ix: AB:0,;
ILx:A+1t:B I'—t:1Ix:AB I'~u:A
I'Ax:At:IIx: A.B I'-tu:Blu]

't:T T+T=z=T
I'—t:T

8/26

TURNING DEPENDENT (CCw)

I't>T typeinference =T
I't<T typechecking —
=00,
(x:T€el) 'HA:0;, T[Lx:A-B:0
'xveT =00 04, ['=IIx: AB:0O,,
ILx:A+1t:B I'—t:1Ix:AB I'~u:A
I'Ax:At:IIx: A.B I'-tu:Blu]

't:T T+T=z=T
I'—t:T

8/26

TURNING DEPENDENT (CCw)

I'=t>T typeinference T A:0O [x:A—¢t:B
I'Ht<T typechecking :
I'te, T constrained inference I'EAx:At:IIx:AB

(x:Tel) 'HAvg0; [LxtAFBegDD,
F=x>T =004 [=1Ix: A.Bv> 0Oy,
I'-ApgD Ix:A+—t>B I't:1Ix:A.B T'Hu:A

IF'Ax:At>IIx: AB T+ tu:Blu]

'et:T THT=T
I'=¢t:T’

8/26

TURNING DEPENDENT (CCw)

I'=t>T typeinference CH¢:Ix: AB TuA
I'=t<T type checking

I'—t>, T constrained inference 't u:Blu
(x:Tel) 'HAvg0; [LxtAFBegDD,
F=x>T =004 [=1Ix: A.Bv> 0Oy,
I'-ApgD Ix:A+t>B I'+tepllx: AB I'ru<A
IF'Ax:At>IIx: AB I'—tuv Blu]

'et:T THT=T
I'=¢t:T’

8/26

TURNING DEPENDENT (CCw)

I'=t>T typeinference Te¢:T T—T=T
I't<T typechecking

I'=twe, T constrained inference [=t:T
(x:Tel) 'HAvg0; [LxtAFBegDD,
F'=x>T =004 [=1Ix: A.Bv> 0Oy,
I'-ApgD Ix:A+t>B I'+tepllx: AB I'u<A
IF'Ax:At>IIx: AB I'—tuv Blu]

't>T THT=T 'teT THT-S'0O 'teT T'+T->"TIx:AB
F=taT '~teg0 I'+~tepllx: AB

« Different modes command different computation judgments (—* vs =)
q . 8/26
« No free conversion thanks to the judgments’ structure

BIDIRECTIONAL TYPING IS CORRECT

9/26

BIDIRECTIONAL TYPING IS CORRECT

Nothing’s changed
« Soundness: if —T'and ' =¢t>T thenT' =¢:T

9/26

BIDIRECTIONAL TYPING IS CORRECT

Nothing’s changed

« Soundness: if —T'and ' =¢t>T thenT' =¢:T
« Completeness: if I' ¢ : T, there exists T” suchthat ' =t > T and T’ T’ =T

9/26

BIDIRECTIONAL TYPING IS CORRECT

Nothing’s changed

« Soundness: if —T'and ' =¢t>T thenT' =¢:T
« Completeness: if I' ¢ : T, there exists T” suchthat ' =t > T and T’ T’ =T

Key properties (“injectivity”):

« reduction finds constructors: if T =T = I x: A. BthenT T =" [Ix: A’. B
«fT+MIx:A. B=TIx:A’. B, thenT -+ A = A’ (and similarly for B)

9/26

ROADMAP

ROADMAP

Properties
complexity

Certified, executable
implementation

Normalisation

Injectivity

Substitution...

Systems
expressivity

10/26

NORMALISATION

« every reduction path fy — £ — £y — ... is finite
- for every well-typed term t there is a normal formt € Nfst. Tt =¢: A

11/26

NORMALISATION

« every reduction path fy — £ — £y — ... is finite
- for every well-typed term t there is a normal formt € Nfst. Tt =¢: A

The mother of all properties for dependent type systems:

« decidability of conversion
- canonicity

« consistency A\

11/26

ROADMAP

Properties
complexity

Certified, executable
implementation

Normalisation

Injectivity

Substitution...

Systems
expressivity

12/26

LOGICAL POWER VS EXPRESSIVITY

“Coq in Coq” (Barras et al. 1997): certified type-checker for the CoC, in Coaq.

13/26

LOGICAL POWER VS EXPRESSIVITY

“Coq in Coq” (Barras et al. 1997): certified type-checker for the CoC, in Coaq.

CoC is logically stronger than AGDA’s type theory, very close to CoQ's. Time to change
subject?

13/26

LOGICAL POWER VS EXPRESSIVITY

“Coq in Coq” (Barras et al. 1997): certified type-checker for the CoC, in Coaq.

CoC is logically stronger than AGDA’s type theory, very close to CoQ's. Time to change
subject?

Logical power is not the same as expressivity!

13/26

LOGICAL POWER VS EXPRESSIVITY

“Coq in Coq” (Barras et al. 1997): certified type-checker for the CoC, in Coaq.

CoC is logically stronger than AGDA’s type theory, very close to CoQ's. Time to change
subject?

Logical power is not the same as expressivity!

Turing-completeness vs “real” language.

13/26

ROADMAP

Properties

complexity)

Coqg In

Certified, executable Coq
implementation
Normalisation
Injectivity
Substitution...

STAC CoC CoQ, AGDA Systems

LEAN... expressivity

14/26

GODEL’S 2"° INCOMPLETENESS THEOREM

Coq in CoqQ?

15/26

GODEL'S 2"° INCOMPLETENESS THEOREM

Coq in CoqQ?

15/26

GODEL'S 2"° INCOMPLETENESS THEOREM

Coatr-Cea?
An object type theory 7 in a (slightly) stronger meta type theory 7.

15/26

GODEL'S 2"° INCOMPLETENESS THEOREM

Coatr-Cea?
An object type theory 7 in a (slightly) stronger meta type theory 7.

Or: admit consistency/normalisation and concentrate on the rest.

15/26

ROADMAP

Properties
complexity

Coqg in
Certified, executable

Coq :
implementation [

] Godel's 2nd

\ incompleteness
\
Normalisation

Injectivity

Substitution...

STAC CoC

Coq, AGDA

Systems
LEAN...

expressivity

16/26

THE METACOQ PROJECT
Jww. Matthieu SozeAu, Yannick FORSTER,

Nicolas TABAREAU, Théo WINTERHALTER...

METACOQ IN A NUTSHELL

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)
CCw +

« Complex universes (impredicative propositions, algebraic expressions...)
« Very general (co-)inductive types

« Pattern-matching and fixed-points

« Cumulativity (subtyping)

17/26

METACOQ IN A NUTSHELL

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)
CCw +

« Complex universes (impredicative propositions, algebraic expressions...)
« Very general (co-)inductive types

« Pattern-matching and fixed-points

« Cumulativity (subtyping)

Coq, in Coq (bis)

17/26

METACOQ IN A NUTSHELL

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)
CCw +

« Complex universes (impredicative propositions, algebraic expressions...)
« Very general (co-)inductive types

« Pattern-matching and fixed-points
« Cumulativity (subtyping)

Coq, in Coq (bis)
 Formalized meta-theory of PCUIC
« Normalization axiom to implement a certified type-checker

17/26

METACOQ IN A NUTSHELL

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)
CCw +

« Complex universes (impredicative propositions, algebraic expressions...)
« Very general (co-)inductive types

« Pattern-matching and fixed-points

« Cumulativity (subtyping)

Coq, in Coq (bis)
 Formalized meta-theory of PCUIC
« Normalization axiom to implement a certified type-checker

« There's more: certified extraction, meta-programming...

17/26

METACOQ IN A NUTSHELL

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)
CCw +

« Complex universes (impredicative propositions, algebraic expressions...)
« Very general (co-)inductive types

« Pattern-matching and fixed-points

« Cumulativity (subtyping)

.. 14
',‘°.’.
Coq, in Coq (bis) . X,
« Formalized meta-theory of PCUIC ‘ Ty

« Normalization axiom to implement a certified type-checker V

« There's more: certified extraction, meta-programming...

17/26

ROADMAP

Properties se
complexity) { N
Coq in | N\’
Certified, executable Coq]\] Godel’s 2nd
implementation \‘ incompleteness
Normalisation K
Injectivity
Substitution...
STAC CoC PCUIC CoqQ, AGDA Systems
LEAN...

expressivity

18/26

META-THEORY OF PCUIC

« substitution lemmas (terms, universes)

19/26

META-THEORY OF PCUIC

« substitution lemmas (terms, universes)
« confluence (“Parallel Reductions in A-Calculus” (Takahashi 1995))

19/26

META-THEORY OF PCUIC

« substitution lemmas (terms, universes)
« confluence (“Parallel Reductions in A-Calculus” (Takahashi 1995))

« completeness of reduction and injectivity

19/26

META-THEORY OF PCUIC

« substitution lemmas (terms, universes)
« confluence (“Parallel Reductions in A-Calculus” (Takahashi 1995))
« completeness of reduction and injectivity

* subject reduction

19/26

META-THEORY OF PCUIC

« substitution lemmas (terms, universes)
« confluence (“Parallel Reductions in A-Calculus” (Takahashi 1995))
« completeness of reduction and injectivity

* subject reduction

Works because conversion is untyped and purely computational.

19/26

META-THEORY OF PCUIC

* substitut
« confluen
e complete

 subject

Works becaus

Correct and Complete Type Checking and Certified Erasure
for Coq, in Coq

MATTHIEU SOZEAU, Inria, France

YANNICK FORSTER, Inria, France

MEVEN LENNON-BERTRAND, University of Cambridge, United Kingdom
JAKOB BOTSCH NIELSEN, Concordium Blockchain Research Center, Denmark
NICOLAS TABAREAU, Inria, France

THEO WINTERHALTER, Inria, France

CoQ is built around a well-delimited kernel that performs type checking for definitions in a variant of the
Calculus of Inductive Constructions (CIC). Although the metatheory of CIC is very stable and reliable, the
correctness of its implementation in Cog is less clear. Indeed, implementing an efficient type checker for CIC
is a rather complex task, and many parts of the code rely on implicit invariants which can easily be broken
by further evolution of the code. Therefore, on average, one critical bug has been found every year in CoQ.
This paper presents the first implementation of a type checker for the kernel of Cog (without the module
system, template polymorphism and n-conversion), which is proven sound and complete in CoQ with respect
to its formal specification. Note that because of Gdel’s second incompleteness theorem, there is no hope to
prove letely the soundness of the specification of CoQ inside Coq (in particular strong normalization),
but it is possible to prove the correctness and compl s of the impl ation d of
the specification, thus moving from a trusted code base (TCB) to a trusted theory base (TTB) pd]’ddlgm Our
work is based on the METACOQ project which provides meta-programming facilities to work with terms and
declarations at the level of the kernel. We verify a relatively efficient type checker based on the specification of
the typing relation of the Polymorphic, Cumulative Calculus of Inductive Constructions (PCUIC) at the basis
of Coq. It is worth mentioning that during the verification process, we have found a source of incompleteness
in CoQ’s official type checker, which has then been fixed in Cog 8.14 thanks to our work. In addition to the
kernel implementation, another essential feature of CoQ is the so-called extraction mechanism: the production
of executable code in functional languages from Coq definitions. We present a verified version of this subtle
type and proof erasure step, therefore enabling the verified extraction of a safe type checker for Cog in the
future.

CCS Concents: « Theorv of comnutation — Tvne theorv

19/26

A CORRECT AND COMPLETE KERNEL

Soundness

PCUIC Kernel

20/26

A CORRECT AND COMPLETE KERNEL
/\ Soundness o

PCUIC Bidirectional kernel

\/Prese ntation\/
Completeness

20/26

A CORRECT AND COMPLETE KERNEL
/\Bidirectional

PCUIC Kernel

\/Prese ntation\/

When starting the proof, we realized... it was false!

20/26

A CORRECT AND COMPLETE KERNEL
/\Bidirectional

PCUIC Kernel

\/Prese ntation\/

When starting the proof, we realized... it was false!

@ mattam82 added part: kernel = ({priotity: high CED) 'abels

on 27 Nov 2020

20/26

A CORRECT AND COMPLETE KERNEL
/\Bidirectional

PCUIC Kernel

\/Prese ntation\/

When starting the proof, we realized... it was false!

@ mattam82 added part: kernel = ({priotity: high CED) 'abels

on 27 Nov 2020

Led to a complete re-design of pattern-matching in Coa.

20/26

METACOQ'S FUTURE?

METACOQ is great, but:

« it does not handle extensionality equations (n-laws);
* its current specification is not what semanticists use;

- it does not prove normalisation!

21/26

MARTIN-LOF A LA COQ
Jww. Arthur ADJEDJ, Kenji MAILLARD,

Pierre-Marie PEDROT and Loic PUJET

ROADMAP

Properties se
complexity) { N
Coq in | N\’
Certified, executable Coq]\] Godel’s 2nd
implementation \‘ incompleteness
Normalisation K
Injectivity
Substitution...
STAC CoC MLTT PCUIC Coq, AGDA Systems
LEAN...

expressivity

22/26

ROADMAP

Properties
complexity

Coqg in (v)
Certified, executable Coq

implementation

Godel's 2nd
Wieczorek Abel \

\ incompleteness
\

L etal. etal 8
Normalisation o

Injectivity

Substitution...

STAC CoC

MLTT

PCUIC Coq, AGDA

Systems
LEAN...

expressivity

22/26

ROADMAP

Properties
complexity]
Coqg In

Martin-Lof
Coq

1
Certified, executable a la Coq ‘: |

Godel's 2nd
implementation

\ incompleteness
Normalisation

Injectivity

Substitution...

STAC CoC

MLTT PCUIC Coq, AGDA

Systems
LEAN...

expressivity

22/26

TYPED CONVERSION?

r=u VS I't=u:A

23/26

TYPED CONVERSION?

r=u VS I't=u:A

3t's bidinectional too!

23/26

CONVERSION CHECKS, NEUTRAL COMPARISON INFERS

Conversion = checks

'ttt TrRu->"v TEHA-S"A TR uUA

FFt=u<A
I'x:A-fx=gx<B 't=t'<N I'tbn=n'»>T
' f=,g<IIx:A. B I'-S@) =,S#)<N F—n=yn’ <N

24/26

CONVERSION CHECKS, NEUTRAL COMPARISON INFERS

Conversion = checks

'ttt TrRu->"v TEHA-S"A TR uUA

F't=u<A
I'x:A-fx=gx<B 't=t'<N I'tbn=n'»>T
' fz=,g<lIx:A B I'=S@) =, St)<N FT'n=,n <N
Neutral comparison = infers
'm=npeglIx:AB TrHt=u<A (x:A)eT
I'-mt=nubv B[t] 'Fx=xp> A

24/26

IS ALGORITHMIC CONVERSION CORRECT?

25/26

IS ALGORITHMIC CONVERSION CORRECT?

Soundness
Injectivity needed to preserve invariants.

25/26

IS ALGORITHMIC CONVERSION CORRECT?

Soundness
Injectivity needed to preserve invariants.

Completeness

Transitivity: tricky but doable...
Reflexivity: ' =t: A = 1" =1 = < A is basically normalisation!

25/26

IS ALGORITHMIC CONVERSION CORRECT?

Soundness
Injectivity needed to preserve invariants.

Completeness

Transitivity: tricky but doable...
Reflexivity: ' =t: A = 1" =1 = < A is basically normalisation!

We need the power of logical relations.

25/26

IS ALGORITHMIC CONVERSION CORRECT?

Soundness
Injecti

Compl
Transii

Decidability of Conversion for Type Theory in Type Theory

ANDREAS ABEL, Gothenburg University, Sweden
Reflex JOAKIM OHMAN, IMDEA Software Institute, Spain
ANDREA VEZZOSI, Chalmers University of Technology, Sweden

Type theory should be able to handle its own meta-theory, both to justify its foundational claims and to obtain
a verified implementation. At the core of a type checker for intensional type theory lies an algorithm to check
equality of types, or in other words, to check whether two types are convertible. We have formalized in Agda

We nee a practical conversion checking algorithm for a dependent type theory with one universe a la Russell, natural
numbers, and #-equality for IT types. We prove the algorithm correct via a Kripke logical relation parameterized
by a suitable notion of equivalence of terms. We then instantiate the parameterized fundamental lemma twice:
once to obtain canonicity and injectivity of type formers, and once again to prove the completeness of the
algorithm. Our proof relies on inductive-recursive definitions, but not on the uniqueness of identity proofs.
Thus, it is valid in variants of intensional Martin-Léf Type Theory as long as they support induction-recursion,
for instance, Extensional, Observational, or Homotopy Type Theory.

CCS Concepts: « Theory of computation — Type theory; Proof theory;
Additional Key Words and Phrases: Dependent types, Logical relations, Formalization, Agda

ACM Reference Format:

IS ALGORITHMIC CONVERSION CORRECT?

Soundness

Injecti

Compl
Transit
Reflex

We nee

Decic

ANDRE
JOAKIA
ANDRE

Type thec
a verified
equality (
a practice
numbers,
by a suite
once to ¢
algorithn
Thus, it i
for instar

CCS Con
Addition:
ACM Re

Martin-Lof a la Cog

Arthur Adjedj Meven Lennon-Bertrand Kenji Maillard
ENS Paris Saclay, Université University of Cambridge Intia
Paris-Saclay Cambridge, United Kingdom Nantes, France

Gif-sur-Yvette, France

Pierre-Marie Pédrot
Inria
Nantes, France

Abstract

We present an extensive mechanization of the metatheory
of Martin-L3f Type Theory (MLTT) in the Cog proof assis-
tant. Our development builds on pre-existing work in Acpa
to show not only the decidability of conversion, but also
the decidability of type checking, using an approach guided
by bidirectional type checking. From our proof of decidabil-
ity, we obtain a certified and executable type checker for
a full-fledged version of MLTT with support for I1, ¥, N,
and Id types, and one universe. Our development does not
rely on impredicativity, induction-recursion or any axiom
beyond MLTT extended with indexed inductive types and a
handful of predicalive universes, thus narrowing the gap be-
tween the object theory and the metatheory to a mere differ-
ence in universes. Furthermore, our formalization choices
are geared towards a modular development that relies on
Coq’s features, eg. universe polymorphism and metapro-
gramming with tactics.

Keywords: Dependent type system, Bidirectional typing, Log-
ical relations

1 Introduction

Self-certification of proof assistants is a long-standing and
very enticing goal. Since proof assistant kernels are by con-

Loic Pujet
University of Stockholm
Stockholm, Sweden

checker is spent on establishing meta-theoretic properties,
which are necessary to ensure termination of the type checker
but have little to do with its concrete implementation.
Acknowledging this tension leads to two radically differ-
ent approaches. On the one hand, one can simply postu-
late nor to better on the
faced when certifying a realistic type-checker. The most am-
bitious project to date that follows this approach is MeTa-
Coq [Sozeau, Anand, et al. 2020; Sozeau, Forster, et al. 2023],
which formalizes a nearly complete fragment of Cog’s type
system and provides a certified type checker aiming for ex-
ecution in a realistic context, after extraction. On the other
hand, one can concentrate on normalization and decidabil-
ity of conversion, which are the most difficult theoretical
problems. The most advanced formalizations on that end
are Abel, Ghman, et al. [2017] and Wieczorek and Biernacki
[2018]. The first, in Acpa, shows decidability of conversion,
but does not provide an executable conversion checker. The
second, in Cog, certifies a conversion checker designed for
exccution after extraction, but supports a type theory that is
less powerful than the former, e.g. it does not feature large
elimination of inductive types. Neither formalization pro-
vide a type checker.

25/26

WRAPPING UP

WRAPPING UP

Two complementary approaches

» METACOQ: focus on gory issues of realistic systems
« MLTT a la Coq: try and go as far as possible in a fully axiom-free way

26/26

WRAPPING UP

Two complementary approaches

» METACOQ: focus on gory issues of realistic systems
« MLTT a la Coq: try and go as far as possible in a fully axiom-free way

What now?

« Typed conversion in METACOQ? Can we do injectivity with n-laws, but without logical
relations? Can we do all of Coq, and more?

+ How far can we scale MLTT a la CoQ? What are the required practical/theoretical
tools we need?

« Can we bridge the gap between the two?

26/26

Properties
complexity

Coq in Martin-Lof | ‘
Godel’s 2nd

incompleteness

Certified, executable
implementation

Normalisation

Injectivity

Substitution...

STAC CoC MLTT PCUIC Coq, AGDA Systems
LEAN... expressivity

THANK YOU!

BIBLIOGRAPHY

[AOV18]

[wB18]

[BW97]

[Tak9s]

[Soz+23]

[Adj+24]

Andreas Abel, Joakim Ohman, and Andrea Vezzosi. “Decidability of Conversion for Type Theory in
Type Theory”. In: Proc. ACM Program. Lang. (Jan. 2018). bol: 10.1145/3158111.

Pawet Wieczorek and Dariusz Biernacki. “A Coq Formalization of Normalization by Evaluation for
Martin-Lof Type Theory”. In: Proceedings of the 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs. CPP 2018. Los Angeles, CA, USA: Association for Computing
Machinery, 2018, pp. 266-279. ISBN: 9781450355865. DOI: 10.1145/3167091.

Bruno Barras and Benjamin Werner. “Coq in Coq". 1997. URL:
http://www.lix.polytechnique.fr/Labo/Bruno.Barras/publi/coqgincoq.pdf.

M. Takahashi. “Parallel Reductions in A-Calculus”. In: Information and Computation 1181 (1995),
pp. 120-127. 1SSN: 0890-5401. DOI: 10.1006/inc0.1995.1057. URL:
https://www.sciencedirect.com/science/article/pii/S0890540185710577.

Matthieu Sozeau et al. “Correct and Complete Type Checking and Certified Erasure for Coq, in Coq".
Preprint. Apr. 2023. URL: https://inria.hal.science/hal-04077552.

Arthur Adjedj et al. “Martin-Lof d la Coq”. In: Certified Programs and Proofs (2024). URL:
https://inria.hal.science/hal-04214008.

https://doi.org/10.1145/3158111
https://doi.org/10.1145/3167091
http://www.lix.polytechnique.fr/Labo/Bruno.Barras/publi/coqincoq.pdf
https://doi.org/10.1006/inco.1995.1057
https://www.sciencedirect.com/science/article/pii/S0890540185710577
https://inria.hal.science/hal-04077552
https://inria.hal.science/hal-04214008

	Bidirectional typing
	Roadmap
	The MetaCoq project Jww. Matthieu Sozeau, Yannick Forster, Nicolas Tabareau, Théo Winterhalter…
	Martin-Löf à la Coq Jww. Arthur Adjedj, Kenji Maillard, Pierre-Marie Pédrot and Loïc Pujet
	Wrapping up
	Appendix

