
TOWARDS A CERTIFIED PROOF ASSISTANT KERNEL
WHAT IT TAKES AND WHAT WE HAVE

Meven LENNON-BERTRAND
Deducteam Seminar – December 14th 2023

1/26

HOW THEOREM PROVING SHOULD FEEL LIKE

2/26

HOW THEOREM PROVING TOO OFTEN FEELS LIKE

3/26

TRUSTING PROOF ASSISTANTS

The de Bruijn architecture

: a perfect target for certification!

4/26

TRUSTING PROOF ASSISTANTS

The de Bruijn architecture: a perfect target for certification! 4/26

BIDIRECTIONAL TYPING

SPECIFYING PROOF ASSISTANTS

??

Logical formalism: CIC, MLTT, HOL…

Proof assistant:
COQ, AGDA, LEAN, ISABELLE, HOL4…

User manualMetatheory, models

Automation User interaction
5/26

SPECIFYING PROOF ASSISTANTS

Dependent Type System: CIC, MLTT…

Bidirectional type-checking

Proof assistant kernel:
COQ, AGDA, LEAN…

User manualMetatheory, models

Automation User interaction
5/26

BOUNDARIES AND INVARIANTS

A typing judgment Γ ⊢ 𝑡 : 𝑇 has boundaries. What about their well-formation?

Cautiousness: globally enforce well-formation

⊢ Γ (𝑥: 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴

Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ λ 𝑥: 𝐴.𝑡 : Π 𝑥: 𝐴.𝐵

Uncautiousness? Well-formation as an invariant

(𝑥: 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴

Γ ⊢ 𝐴 :□ Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ λ 𝑥: 𝐴.𝑡 : Π 𝑥: 𝐴.𝐵

6/26

BOUNDARIES AND INVARIANTS

A typing judgment Γ ⊢ 𝑡 : 𝑇 has boundaries. What about their well-formation?

Cautiousness: globally enforce well-formation

⊢ Γ (𝑥: 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴

Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ λ 𝑥: 𝐴.𝑡 : Π 𝑥: 𝐴.𝐵

Uncautiousness? Well-formation as an invariant

(𝑥: 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴

Γ ⊢ 𝐴 :□ Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ λ 𝑥: 𝐴.𝑡 : Π 𝑥: 𝐴.𝐵

6/26

BOUNDARIES AND INVARIANTS

A typing judgment Γ ⊢ 𝑡 : 𝑇 has boundaries. What about their well-formation?

Cautiousness: globally enforce well-formation

⊢ Γ (𝑥: 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴

Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ λ 𝑥: 𝐴.𝑡 : Π 𝑥: 𝐴.𝐵

Uncautiousness? Well-formation as an invariant

(𝑥: 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴

Γ ⊢ 𝐴 :□ Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ λ 𝑥: 𝐴.𝑡 : Π 𝑥: 𝐴.𝐵

6/26

BOUNDARIES AND INVARIANTS

A typing judgment Γ ⊢ 𝑡 : 𝑇 has boundaries. What about their well-formation?

Cautiousness: globally enforce well-formation

⊢ Γ (𝑥: 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴

Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ λ 𝑥: 𝐴.𝑡 : Π 𝑥: 𝐴.𝐵

Uncautiousness? Well-formation as an invariant

(𝑥: 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴

Γ ⊢ 𝐴 :□ Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ λ 𝑥: 𝐴.𝑡 : Π 𝑥: 𝐴.𝐵

6/26

WELL-FORMATION MUST FLOW

Inference and checking
Γ ⊢ 𝑡 : 𝑇 separates into

inference: Γ ⊢ 𝑡 ▷ 𝑇 checking: Γ ⊢ 𝑡 ◁ 𝑇
Similar meaning, different modes: input/output/subject.

McBride says:
• A rule is a server for its conclusion and a client for its premises.
• Modes guide invariant preservation
• In a conclusion, you assume inputs are well-formed, and ensure outputs are
• In a premise, you ensure inputs are well-formed, and assume outputs are

7/26

WELL-FORMATION MUST FLOW

Inference and checking
Γ ⊢ 𝑡 : 𝑇 separates into

inference: Γ ⊢ 𝑡 ▷ 𝑇 checking: Γ ⊢ 𝑡 ◁ 𝑇
Similar meaning, different modes: input/output/subject.

McBride says:
• A rule is a server for its conclusion and a client for its premises.
• Modes guide invariant preservation
• In a conclusion, you assume inputs are well-formed, and ensure outputs are
• In a premise, you ensure inputs are well-formed, and assume outputs are

7/26

TURNING DEPENDENT (CCω)

Γ ⊢ 𝑡 ▷ 𝑇 type inference
Γ ⊢ 𝑡 ◁ 𝑇 type checking

Γ ⊢ 𝑡 ▷• 𝑇 constrained inference

⊢ Γ (𝑥: 𝑇 ∈ Γ)
Γ ⊢ 𝑥 : 𝑇

⊢ Γ
Γ ⊢ □𝑖 :□𝑖+1

Γ ⊢ 𝐴 :□𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 :□𝑗
Γ ⊢ Π 𝑥: 𝐴.𝐵 :□𝑖∨𝑗

Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ λ 𝑥: 𝐴.𝑡 : Π 𝑥: 𝐴.𝐵

Γ ⊢ 𝑡 : Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 : 𝐴
Γ ⊢ 𝑡 𝑢 : 𝐵[𝑢]

Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′

Γ ⊢ 𝑡 : 𝑇 ′

8/26

TURNING DEPENDENT (CCω)

Γ ⊢ 𝑡 ▷ 𝑇 type inference
Γ ⊢ 𝑡 ◁ 𝑇 type checking

Γ ⊢ 𝑡 ▷• 𝑇 constrained inference

⊢ Γ
Γ ⊢ □𝑖 :□𝑖+1

(𝑥: 𝑇 ∈ Γ)
Γ ⊢ 𝑥 ▷ 𝑇 Γ ⊢ □𝑖 ▷ □𝑖+1

Γ ⊢ 𝐴 :□𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 :□𝑗
Γ ⊢ Π 𝑥: 𝐴.𝐵 :□𝑖∨𝑗

Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ λ 𝑥: 𝐴.𝑡 : Π 𝑥: 𝐴.𝐵

Γ ⊢ 𝑡 : Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 : 𝐴
Γ ⊢ 𝑡 𝑢 : 𝐵[𝑢]

Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′

Γ ⊢ 𝑡 : 𝑇 ′

8/26

TURNING DEPENDENT (CCω)

Γ ⊢ 𝑡 ▷ 𝑇 type inference
Γ ⊢ 𝑡 ◁ 𝑇 type checking
Γ ⊢ 𝑡 ▷• 𝑇 constrained inference

Γ ⊢ 𝐴 :□𝑖 Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ λ 𝑥: 𝐴.𝑡 : Π 𝑥: 𝐴.𝐵

(𝑥: 𝑇 ∈ Γ)
Γ ⊢ 𝑥 ▷ 𝑇 Γ ⊢ □𝑖 ▷ □𝑖+1

Γ ⊢ 𝐴▷□ □𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 ▷□ □𝑗
Γ ⊢ Π 𝑥: 𝐴.𝐵 ▷ □𝑖∨𝑗

Γ ⊢ 𝐴▷□ □𝑖 Γ, 𝑥: 𝐴 ⊢ 𝑡 ▷ 𝐵
Γ ⊢ λ 𝑥: 𝐴.𝑡 ▷ Π 𝑥: 𝐴.𝐵

Γ ⊢ 𝑡 : Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 : 𝐴
Γ ⊢ 𝑡 𝑢 : 𝐵[𝑢]

Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′

Γ ⊢ 𝑡 : 𝑇 ′

8/26

TURNING DEPENDENT (CCω)

Γ ⊢ 𝑡 ▷ 𝑇 type inference
Γ ⊢ 𝑡 ◁ 𝑇 type checking
Γ ⊢ 𝑡 ▷• 𝑇 constrained inference

Γ ⊢ 𝑡 : Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢: 𝐴
Γ ⊢ 𝑡 𝑢 : 𝐵[𝑢]

(𝑥: 𝑇 ∈ Γ)
Γ ⊢ 𝑥 ▷ 𝑇 Γ ⊢ □𝑖 ▷ □𝑖+1

Γ ⊢ 𝐴▷□ □𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 ▷□ □𝑗
Γ ⊢ Π 𝑥: 𝐴.𝐵 ▷ □𝑖∨𝑗

Γ ⊢ 𝐴▷□ □𝑖 Γ, 𝑥: 𝐴 ⊢ 𝑡 ▷ 𝐵
Γ ⊢ λ 𝑥: 𝐴.𝑡 ▷ Π 𝑥: 𝐴.𝐵

Γ ⊢ 𝑡 ▷Π Π𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ◁ 𝐴
Γ ⊢ 𝑡 𝑢 ▷ 𝐵[𝑢]

Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′

Γ ⊢ 𝑡 : 𝑇 ′

8/26

TURNING DEPENDENT (CCω)

Γ ⊢ 𝑡 ▷ 𝑇 type inference
Γ ⊢ 𝑡 ◁ 𝑇 type checking
Γ ⊢ 𝑡 ▷• 𝑇 constrained inference

Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′

Γ ⊢ 𝑡 : 𝑇 ′

(𝑥: 𝑇 ∈ Γ)
Γ ⊢ 𝑥 ▷ 𝑇 Γ ⊢ □𝑖 ▷ □𝑖+1

Γ ⊢ 𝐴▷□ □𝑖 Γ, 𝑥: 𝐴 ⊢ 𝐵 ▷□ □𝑗
Γ ⊢ Π 𝑥: 𝐴.𝐵 ▷ □𝑖∨𝑗

Γ ⊢ 𝐴▷□ □𝑖 Γ, 𝑥: 𝐴 ⊢ 𝑡 ▷ 𝐵
Γ ⊢ λ 𝑥: 𝐴.𝑡 ▷ Π 𝑥: 𝐴.𝐵

Γ ⊢ 𝑡 ▷Π Π𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ◁ 𝐴
Γ ⊢ 𝑡 𝑢 ▷ 𝐵[𝑢]

Γ ⊢ 𝑡 ▷ 𝑇 Γ ⊢ 𝑇 ≅ 𝑇 ′

Γ ⊢ 𝑡 ◁ 𝑇 ′
Γ ⊢ 𝑡 ▷ 𝑇 Γ ⊢ 𝑇 →⋆ □𝑖

Γ ⊢ 𝑡 ▷□ □𝑖

Γ ⊢ 𝑡 ▷ 𝑇 Γ ⊢ 𝑇 →⋆ Π𝑥: 𝐴.𝐵
Γ ⊢ 𝑡 ▷Π Π𝑥: 𝐴.𝐵

• Different modes command different computation judgments (→⋆ vs ≅)
• No free conversion thanks to the judgments’ structure

8/26

BIDIRECTIONAL TYPING IS CORRECT

Nothing’s changed

• Soundness: if ⊢ Γ and Γ ⊢ 𝑡 ▷ 𝑇 then Γ ⊢ 𝑡 : 𝑇
• Completeness: if Γ ⊢ 𝑡 : 𝑇 , there exists 𝑇 ′ such that Γ ⊢ 𝑡 ▷ 𝑇 ′ and Γ ⊢ 𝑇 ′ ≅ 𝑇

Key properties (“injectivity”):

• reduction finds constructors: if Γ ⊢ 𝑇 ≅ Π 𝑥: 𝐴. 𝐵 then Γ ⊢ 𝑇 →⋆ Π𝑥: 𝐴′. 𝐵′
• if Γ ⊢ Π 𝑥: 𝐴. 𝐵 ≅ Π 𝑥: 𝐴′. 𝐵′, then Γ ⊢ 𝐴 ≅ 𝐴′ (and similarly for 𝐵)

9/26

BIDIRECTIONAL TYPING IS CORRECT

Nothing’s changed

• Soundness: if ⊢ Γ and Γ ⊢ 𝑡 ▷ 𝑇 then Γ ⊢ 𝑡 : 𝑇

• Completeness: if Γ ⊢ 𝑡 : 𝑇 , there exists 𝑇 ′ such that Γ ⊢ 𝑡 ▷ 𝑇 ′ and Γ ⊢ 𝑇 ′ ≅ 𝑇

Key properties (“injectivity”):

• reduction finds constructors: if Γ ⊢ 𝑇 ≅ Π 𝑥: 𝐴. 𝐵 then Γ ⊢ 𝑇 →⋆ Π𝑥: 𝐴′. 𝐵′
• if Γ ⊢ Π 𝑥: 𝐴. 𝐵 ≅ Π 𝑥: 𝐴′. 𝐵′, then Γ ⊢ 𝐴 ≅ 𝐴′ (and similarly for 𝐵)

9/26

BIDIRECTIONAL TYPING IS CORRECT

Nothing’s changed

• Soundness: if ⊢ Γ and Γ ⊢ 𝑡 ▷ 𝑇 then Γ ⊢ 𝑡 : 𝑇
• Completeness: if Γ ⊢ 𝑡 : 𝑇 , there exists 𝑇 ′ such that Γ ⊢ 𝑡 ▷ 𝑇 ′ and Γ ⊢ 𝑇 ′ ≅ 𝑇

Key properties (“injectivity”):

• reduction finds constructors: if Γ ⊢ 𝑇 ≅ Π 𝑥: 𝐴. 𝐵 then Γ ⊢ 𝑇 →⋆ Π𝑥: 𝐴′. 𝐵′
• if Γ ⊢ Π 𝑥: 𝐴. 𝐵 ≅ Π 𝑥: 𝐴′. 𝐵′, then Γ ⊢ 𝐴 ≅ 𝐴′ (and similarly for 𝐵)

9/26

BIDIRECTIONAL TYPING IS CORRECT

Nothing’s changed

• Soundness: if ⊢ Γ and Γ ⊢ 𝑡 ▷ 𝑇 then Γ ⊢ 𝑡 : 𝑇
• Completeness: if Γ ⊢ 𝑡 : 𝑇 , there exists 𝑇 ′ such that Γ ⊢ 𝑡 ▷ 𝑇 ′ and Γ ⊢ 𝑇 ′ ≅ 𝑇

Key properties (“injectivity”):

• reduction finds constructors: if Γ ⊢ 𝑇 ≅ Π 𝑥: 𝐴. 𝐵 then Γ ⊢ 𝑇 →⋆ Π𝑥: 𝐴′. 𝐵′
• if Γ ⊢ Π 𝑥: 𝐴. 𝐵 ≅ Π 𝑥: 𝐴′. 𝐵′, then Γ ⊢ 𝐴 ≅ 𝐴′ (and similarly for 𝐵)

9/26

ROADMAP

ROADMAP

Systems
expressivity

STλC CoC MLTT PCUIC COQ,
LEAN…

AGDA

Properties
complexity

Substitution…

Injectivity

Normalisation

Certified, executable
implementation

Martin-Löf
à la COQ

Abel
et al.

Wieczorek
et al.

Coq in
Coq Gödel’s 2nd

incompleteness

10/26

NORMALISATION

• every reduction path 𝑡0 → 𝑡1 → 𝑡2 → … is finite
• for every well-typed term 𝑡 there is a normal form 𝑡 ∈ Nf s.t. Γ ⊢ 𝑡 ≅ 𝑡 : 𝐴

The mother of all properties for dependent type systems:

• decidability of conversion
• canonicity
• consistency

11/26

NORMALISATION

• every reduction path 𝑡0 → 𝑡1 → 𝑡2 → … is finite
• for every well-typed term 𝑡 there is a normal form 𝑡 ∈ Nf s.t. Γ ⊢ 𝑡 ≅ 𝑡 : 𝐴

The mother of all properties for dependent type systems:

• decidability of conversion
• canonicity
• consistency

11/26

ROADMAP

Systems
expressivity

STλC CoC MLTT PCUIC COQ,
LEAN…

AGDA

Properties
complexity

Substitution…

Injectivity

Normalisation

Certified, executable
implementation

Martin-Löf
à la COQ

Abel
et al.

Wieczorek
et al.

Coq in
Coq Gödel’s 2nd

incompleteness

12/26

LOGICAL POWER VS EXPRESSIVITY

“Coq in Coq” (Barras et al. 1997): certified type-checker for the CoC, in COQ.

CoC is logically stronger than AGDA’s type theory, very close to COQ’s. Time to change
subject?

Logical power is not the same as expressivity!

Turing-completeness vs “real” language.

13/26

LOGICAL POWER VS EXPRESSIVITY

“Coq in Coq” (Barras et al. 1997): certified type-checker for the CoC, in COQ.

CoC is logically stronger than AGDA’s type theory, very close to COQ’s. Time to change
subject?

Logical power is not the same as expressivity!

Turing-completeness vs “real” language.

13/26

LOGICAL POWER VS EXPRESSIVITY

“Coq in Coq” (Barras et al. 1997): certified type-checker for the CoC, in COQ.

CoC is logically stronger than AGDA’s type theory, very close to COQ’s. Time to change
subject?

Logical power is not the same as expressivity!

Turing-completeness vs “real” language.

13/26

LOGICAL POWER VS EXPRESSIVITY

“Coq in Coq” (Barras et al. 1997): certified type-checker for the CoC, in COQ.

CoC is logically stronger than AGDA’s type theory, very close to COQ’s. Time to change
subject?

Logical power is not the same as expressivity!

Turing-completeness vs “real” language.

13/26

ROADMAP

Systems
expressivity

STλC CoC

MLTT PCUIC

COQ,
LEAN…

AGDA

Properties
complexity

Substitution…

Injectivity

Normalisation

Certified, executable
implementation

Martin-Löf
à la COQ

Abel
et al.

Wieczorek
et al.

Coq in
Coq

Gödel’s 2nd
incompleteness

14/26

GÖDEL’S 2ND INCOMPLETENESS THEOREM

COQ in COQ?

An object type theory T in a (slightly) stronger meta type theory T ′.
Or: admit consistency/normalisation and concentrate on the rest.

15/26

GÖDEL’S 2ND INCOMPLETENESS THEOREM

COQ in COQ?

An object type theory T in a (slightly) stronger meta type theory T ′.
Or: admit consistency/normalisation and concentrate on the rest.

15/26

GÖDEL’S 2ND INCOMPLETENESS THEOREM

COQ in COQ?
An object type theory T in a (slightly) stronger meta type theory T ′.

Or: admit consistency/normalisation and concentrate on the rest.

15/26

GÖDEL’S 2ND INCOMPLETENESS THEOREM

COQ in COQ?
An object type theory T in a (slightly) stronger meta type theory T ′.
Or: admit consistency/normalisation and concentrate on the rest.

15/26

ROADMAP

Systems
expressivity

STλC CoC

MLTT PCUIC

COQ,
LEAN…

AGDA

Properties
complexity

Substitution…

Injectivity

Normalisation

Certified, executable
implementation

Martin-Löf
à la COQ

Abel
et al.

Wieczorek
et al.

Coq in
Coq Gödel’s 2nd

incompleteness

16/26

THE METACOQ PROJECT
Jww. Matthieu SOZEAU, Yannick FORSTER,

Nicolas TABAREAU, Théo WINTERHALTER…

METACOQ IN A NUTSHELL

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)
CCω +

• Complex universes (impredicative propositions, algebraic expressions…)
• Very general (co-)inductive types
• Pattern-matching and fixed-points
• Cumulativity (subtyping)
• …

COQ, in COQ (bis)
• Formalized meta-theory of PCUIC
• Normalization axiom to implement a certified type-checker
• There’s more: certified extraction, meta-programming…

17/26

METACOQ IN A NUTSHELL

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)
CCω +

• Complex universes (impredicative propositions, algebraic expressions…)
• Very general (co-)inductive types
• Pattern-matching and fixed-points
• Cumulativity (subtyping)
• …

COQ, in COQ (bis)

• Formalized meta-theory of PCUIC
• Normalization axiom to implement a certified type-checker
• There’s more: certified extraction, meta-programming…

17/26

METACOQ IN A NUTSHELL

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)
CCω +

• Complex universes (impredicative propositions, algebraic expressions…)
• Very general (co-)inductive types
• Pattern-matching and fixed-points
• Cumulativity (subtyping)
• …

COQ, in COQ (bis)
• Formalized meta-theory of PCUIC
• Normalization axiom to implement a certified type-checker

• There’s more: certified extraction, meta-programming…

17/26

METACOQ IN A NUTSHELL

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)
CCω +

• Complex universes (impredicative propositions, algebraic expressions…)
• Very general (co-)inductive types
• Pattern-matching and fixed-points
• Cumulativity (subtyping)
• …

COQ, in COQ (bis)
• Formalized meta-theory of PCUIC
• Normalization axiom to implement a certified type-checker
• There’s more: certified extraction, meta-programming…

17/26

METACOQ IN A NUTSHELL

The Predicative Calculus of Universe-Polymorphic Inductive Constructions (PCUIC)
CCω +

• Complex universes (impredicative propositions, algebraic expressions…)
• Very general (co-)inductive types
• Pattern-matching and fixed-points
• Cumulativity (subtyping)
• …

COQ, in COQ (bis)
• Formalized meta-theory of PCUIC
• Normalization axiom to implement a certified type-checker
• There’s more: certified extraction, meta-programming…

17/26

ROADMAP

Systems
expressivity

STλC CoC

MLTT

PCUIC COQ,
LEAN…

AGDA

Properties
complexity

Substitution…

Injectivity

Normalisation

Certified, executable
implementation

Martin-Löf
à la COQ

Abel
et al.

Wieczorek
et al.

Coq in
Coq Gödel’s 2nd

incompleteness

18/26

META-THEORY OF PCUIC

• substitution lemmas (terms, universes)

• confluence (“Parallel Reductions in λ-Calculus” (Takahashi 1995))
• completeness of reduction and injectivity
• subject reduction

Works because conversion is untyped and purely computational.

19/26

META-THEORY OF PCUIC

• substitution lemmas (terms, universes)
• confluence (“Parallel Reductions in λ-Calculus” (Takahashi 1995))

• completeness of reduction and injectivity
• subject reduction

Works because conversion is untyped and purely computational.

19/26

META-THEORY OF PCUIC

• substitution lemmas (terms, universes)
• confluence (“Parallel Reductions in λ-Calculus” (Takahashi 1995))
• completeness of reduction and injectivity

• subject reduction

Works because conversion is untyped and purely computational.

19/26

META-THEORY OF PCUIC

• substitution lemmas (terms, universes)
• confluence (“Parallel Reductions in λ-Calculus” (Takahashi 1995))
• completeness of reduction and injectivity
• subject reduction

Works because conversion is untyped and purely computational.

19/26

META-THEORY OF PCUIC

• substitution lemmas (terms, universes)
• confluence (“Parallel Reductions in λ-Calculus” (Takahashi 1995))
• completeness of reduction and injectivity
• subject reduction

Works because conversion is untyped and purely computational.

19/26

META-THEORY OF PCUIC

• substitution lemmas (terms, universes)
• confluence (“Parallel Reductions in λ-Calculus” (Takahashi 1995))
• completeness of reduction and injectivity
• subject reduction

Works because conversion is untyped and purely computational.

19/26

A CORRECT AND COMPLETE KERNEL

PCUIC

Bidirectional
Presentation

Kernel

Soundness

When starting the proof, we realized… it was false!

Led to a complete re-design of pattern-matching in COQ.

20/26

A CORRECT AND COMPLETE KERNEL

PCUIC Bidirectional
Presentation Kernel

Soundness

Completeness

When starting the proof, we realized… it was false!

Led to a complete re-design of pattern-matching in COQ.

20/26

A CORRECT AND COMPLETE KERNEL

PCUIC Bidirectional
Presentation Kernel

When starting the proof, we realized… it was false!

Led to a complete re-design of pattern-matching in COQ.

20/26

A CORRECT AND COMPLETE KERNEL

PCUIC Bidirectional
Presentation Kernel

When starting the proof, we realized… it was false!

Led to a complete re-design of pattern-matching in COQ.

20/26

A CORRECT AND COMPLETE KERNEL

PCUIC Bidirectional
Presentation Kernel

When starting the proof, we realized… it was false!

Led to a complete re-design of pattern-matching in COQ.

20/26

METACOQ’S FUTURE?

METACOQ is great, but:

• it does not handle extensionality equations (η-laws);
• its current specification is not what semanticists use;
• it does not prove normalisation!

21/26

MARTIN-LÖF À LA COQ
Jww. Arthur ADJEDJ, Kenji MAILLARD,

Pierre-Marie PÉDROT and Loïc PUJET

ROADMAP

Systems
expressivity

STλC CoC MLTT PCUIC COQ,
LEAN…

AGDA

Properties
complexity

Substitution…

Injectivity

Normalisation

Certified, executable
implementation

Martin-Löf
à la COQ

Abel
et al.

Wieczorek
et al.

Coq in
Coq Gödel’s 2nd

incompleteness

22/26

ROADMAP

Systems
expressivity

STλC CoC MLTT PCUIC COQ,
LEAN…

AGDA

Properties
complexity

Substitution…

Injectivity

Normalisation

Certified, executable
implementation

Martin-Löf
à la COQ

Abel
et al.

Wieczorek
et al.

Coq in
Coq Gödel’s 2nd

incompleteness

22/26

ROADMAP

Systems
expressivity

STλC CoC MLTT PCUIC COQ,
LEAN…

AGDA

Properties
complexity

Substitution…

Injectivity

Normalisation

Certified, executable
implementation

Martin-Löf
à la COQ

Abel
et al.

Wieczorek
et al.

Coq in
Coq Gödel’s 2nd

incompleteness

22/26

TYPED CONVERSION?

𝑡 ≅ 𝑢 vs Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴

It's bidirectional too!

23/26

TYPED CONVERSION?

𝑡 ≅ 𝑢 vs Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴

It's bidirectional too!

23/26

CONVERSION CHECKS, NEUTRAL COMPARISON INFERS

Conversion ≅ checks

Γ ⊢ 𝑡 →⋆ 𝑡′ Γ ⊢ 𝑢 →⋆ 𝑢′ Γ ⊢ 𝐴 →⋆ 𝐴′ Γ ⊢ 𝑡′ ≅h 𝑢′ ◁ 𝐴′

Γ ⊢ 𝑡 ≅ 𝑢 ◁ 𝐴
Γ, 𝑥: 𝐴 ⊢ 𝑓 𝑥 ≅ 𝑔 𝑥 ◁ 𝐵
Γ ⊢ 𝑓 ≅h 𝑔 ◁ Π 𝑥: 𝐴. 𝐵

Γ ⊢ 𝑡 ≅ 𝑡′ ◁ 𝐍
Γ ⊢ S(𝑡) ≅h S(𝑡′) ◁ 𝐍

Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑇
Γ ⊢ 𝑛 ≅h 𝑛′ ◁ 𝐍

Neutral comparison ≈ infers

Γ ⊢ 𝑚 ≈ 𝑛 ▷Π Π𝑥: 𝐴. 𝐵 Γ ⊢ 𝑡 ≅ 𝑢 ◁ 𝐴
Γ ⊢ 𝑚 𝑡 ≈ 𝑛 𝑢 ▷ 𝐵[𝑡]

(𝑥: 𝐴) ∈ Γ
Γ ⊢ 𝑥 ≈ 𝑥 ▷ 𝐴

24/26

CONVERSION CHECKS, NEUTRAL COMPARISON INFERS

Conversion ≅ checks

Γ ⊢ 𝑡 →⋆ 𝑡′ Γ ⊢ 𝑢 →⋆ 𝑢′ Γ ⊢ 𝐴 →⋆ 𝐴′ Γ ⊢ 𝑡′ ≅h 𝑢′ ◁ 𝐴′

Γ ⊢ 𝑡 ≅ 𝑢 ◁ 𝐴
Γ, 𝑥: 𝐴 ⊢ 𝑓 𝑥 ≅ 𝑔 𝑥 ◁ 𝐵
Γ ⊢ 𝑓 ≅h 𝑔 ◁ Π 𝑥: 𝐴. 𝐵

Γ ⊢ 𝑡 ≅ 𝑡′ ◁ 𝐍
Γ ⊢ S(𝑡) ≅h S(𝑡′) ◁ 𝐍

Γ ⊢ 𝑛 ≈ 𝑛′ ▷ 𝑇
Γ ⊢ 𝑛 ≅h 𝑛′ ◁ 𝐍

Neutral comparison ≈ infers

Γ ⊢ 𝑚 ≈ 𝑛 ▷Π Π𝑥: 𝐴. 𝐵 Γ ⊢ 𝑡 ≅ 𝑢 ◁ 𝐴
Γ ⊢ 𝑚 𝑡 ≈ 𝑛 𝑢 ▷ 𝐵[𝑡]

(𝑥: 𝐴) ∈ Γ
Γ ⊢ 𝑥 ≈ 𝑥 ▷ 𝐴

24/26

IS ALGORITHMIC CONVERSION CORRECT?

Soundness
Injectivity needed to preserve invariants.

Completeness
Transitivity: tricky but doable…
Reflexivity: Γ ⊢ 𝑡 : 𝐴 ⇒ Γ ⊢ 𝑡 ≅ 𝑡 ◁ 𝐴 is basically normalisation!

We need the power of logical relations.

25/26

IS ALGORITHMIC CONVERSION CORRECT?

Soundness
Injectivity needed to preserve invariants.

Completeness
Transitivity: tricky but doable…
Reflexivity: Γ ⊢ 𝑡 : 𝐴 ⇒ Γ ⊢ 𝑡 ≅ 𝑡 ◁ 𝐴 is basically normalisation!

We need the power of logical relations.

25/26

IS ALGORITHMIC CONVERSION CORRECT?

Soundness
Injectivity needed to preserve invariants.

Completeness
Transitivity: tricky but doable…
Reflexivity: Γ ⊢ 𝑡 : 𝐴 ⇒ Γ ⊢ 𝑡 ≅ 𝑡 ◁ 𝐴 is basically normalisation!

We need the power of logical relations.

25/26

IS ALGORITHMIC CONVERSION CORRECT?

Soundness
Injectivity needed to preserve invariants.

Completeness
Transitivity: tricky but doable…
Reflexivity: Γ ⊢ 𝑡 : 𝐴 ⇒ Γ ⊢ 𝑡 ≅ 𝑡 ◁ 𝐴 is basically normalisation!

We need the power of logical relations.

25/26

IS ALGORITHMIC CONVERSION CORRECT?

Soundness
Injectivity needed to preserve invariants.

Completeness
Transitivity: tricky but doable…
Reflexivity: Γ ⊢ 𝑡 : 𝐴 ⇒ Γ ⊢ 𝑡 ≅ 𝑡 ◁ 𝐴 is basically normalisation!

We need the power of logical relations.

25/26

IS ALGORITHMIC CONVERSION CORRECT?

Soundness
Injectivity needed to preserve invariants.

Completeness
Transitivity: tricky but doable…
Reflexivity: Γ ⊢ 𝑡 : 𝐴 ⇒ Γ ⊢ 𝑡 ≅ 𝑡 ◁ 𝐴 is basically normalisation!

We need the power of logical relations.

25/26

WRAPPING UP

WRAPPING UP

Two complementary approaches

• METACOQ: focus on gory issues of realistic systems
• MLTT à la COQ: try and go as far as possible in a fully axiom-free way

What now?
• Typed conversion in METACOQ? Can we do injectivity with η-laws, but without logical
relations? Can we do all of COQ, and more?

• How far can we scale MLTT à la COQ? What are the required practical/theoretical
tools we need?

• Can we bridge the gap between the two?

26/26

WRAPPING UP

Two complementary approaches

• METACOQ: focus on gory issues of realistic systems
• MLTT à la COQ: try and go as far as possible in a fully axiom-free way

What now?
• Typed conversion in METACOQ? Can we do injectivity with η-laws, but without logical
relations? Can we do all of COQ, and more?

• How far can we scale MLTT à la COQ? What are the required practical/theoretical
tools we need?

• Can we bridge the gap between the two?

26/26

Systems
expressivity

STλC CoC MLTT PCUIC COQ,
LEAN…

AGDA

Properties
complexity

Substitution…

Injectivity

Normalisation

Certified, executable
implementation

Martin-Löf
à la COQ

Abel
et al.

Wieczorek
et al.

Coq in
Coq Gödel’s 2nd

incompleteness

THANK YOU!
26/26

BIBLIOGRAPHY

[AÖV18] Andreas Abel, Joakim Öhman, and Andrea Vezzosi. “Decidability of Conversion for Type Theory in
Type Theory”. In: Proc. ACM Program. Lang. (Jan. 2018). DOI: 10.1145/3158111.

[WB18] Paweł Wieczorek and Dariusz Biernacki. “A Coq Formalization of Normalization by Evaluation for
Martin-Löf Type Theory”. In: Proceedings of the 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs. CPP 2018. Los Angeles, CA, USA: Association for Computing
Machinery, 2018, pp. 266–279. ISBN: 9781450355865. DOI: 10.1145/3167091.

[BW97] Bruno Barras and Benjamin Werner. “Coq in Coq”. 1997. URL:
http://www.lix.polytechnique.fr/Labo/Bruno.Barras/publi/coqincoq.pdf.

[Tak95] M. Takahashi. “Parallel Reductions in λ-Calculus”. In: Information and Computation 118.1 (1995),
pp. 120–127. ISSN: 0890-5401. DOI: 10.1006/inco.1995.1057. URL:
https://www.sciencedirect.com/science/article/pii/S0890540185710577.

[Soz+23] Matthieu Sozeau et al. “Correct and Complete Type Checking and Certified Erasure for Coq, in Coq”.
Preprint. Apr. 2023. URL: https://inria.hal.science/hal-04077552.

[Adj+24] Arthur Adjedj et al. “Martin-Löf à la Coq”. In: Certified Programs and Proofs (2024). URL:
https://inria.hal.science/hal-04214008.

https://doi.org/10.1145/3158111
https://doi.org/10.1145/3167091
http://www.lix.polytechnique.fr/Labo/Bruno.Barras/publi/coqincoq.pdf
https://doi.org/10.1006/inco.1995.1057
https://www.sciencedirect.com/science/article/pii/S0890540185710577
https://inria.hal.science/hal-04077552
https://inria.hal.science/hal-04214008

	Bidirectional typing
	Roadmap
	The MetaCoq project Jww. Matthieu Sozeau, Yannick Forster, Nicolas Tabareau, Théo Winterhalter…
	Martin-Löf à la Coq Jww. Arthur Adjedj, Kenji Maillard, Pierre-Marie Pédrot and Loïc Pujet
	Wrapping up
	Appendix

