
GRADUALIZING THE CALCULUS OF INDUCTIVE
CONSTRUCTIONS

Meven LENNON-BERTRAND, Kenji MAILLARD, Nicolas TABAREAU, and Éric TANTER
TOPLAS Journal-First @ POPL ’22

1/11

A BIT OF CONTEXT

BRINGING TOGETHER CIC AND GRADUAL TYPING

The Calculus of Inductive Constructions
Dependent types:
head: Π (A: Type) (n: ℕ), Vect A (1+n) -> A

Gradual typing
• Mix static and dynamic typing
• Dynamic type ? in a static system
• Optimistic typing phase & runtime checks

Time has come for Gradual CIC!

2/11

BRINGING TOGETHER CIC AND GRADUAL TYPING

The Calculus of Inductive Constructions

Dependent types:
head: Π (A: Type) (n: ℕ), Vect A (1+n) -> A

Gradual typing
• Mix static and dynamic typing
• Dynamic type ? in a static system
• Optimistic typing phase & runtime checks

Time has come for Gradual CIC!

2/11

BRINGING TOGETHER CIC AND GRADUAL TYPING

The Calculus of Inductive Constructions
Dependent types:
head: Π (A: Type) (n: ℕ), Vect A (1+n) -> A

Gradual typing
• Mix static and dynamic typing
• Dynamic type ? in a static system
• Optimistic typing phase & runtime checks

Time has come for Gradual CIC!

2/11

BRINGING TOGETHER CIC AND GRADUAL TYPING

The Calculus of Inductive Constructions
Dependent types:
head: Π (A: Type) (n: ℕ), Vect A (1+n) -> A

Gradual typing
• Mix static and dynamic typing
• Dynamic type ? in a static system
• Optimistic typing phase & runtime checks

Time has come for Gradual CIC!

2/11

BRINGING TOGETHER CIC AND GRADUAL TYPING

The Calculus of Inductive Constructions
Dependent types:
head: Π (A: Type) (n: ℕ), Vect A (1+n) -> A

Gradual typing
• Mix static and dynamic typing
• Dynamic type ? in a static system
• Optimistic typing phase & runtime checks

Time has come for Gradual CIC!

2/11

BRINGING TOGETHER CIC AND GRADUAL TYPING

The Calculus of Inductive Constructions
Dependent types:
head: Π (A: Type) (n: ℕ), Vect A (1+n) -> A

Gradual typing
• Mix static and dynamic typing
• Dynamic type ? in a static system
• Optimistic typing phase & runtime checks

Time has come for Gradual CIC!

2/11

WHY GRADUAL DEPENDENT TYPES?

filter (A : Type) (p : A -> 𝔹) (n : ℕ) (l : Vect A n)
: Vect A …

count A p n l :=
match l with
| nil _ _ => 0
| cons _ _ _ => ?

end.

head nat ? (filter nat even 3 [1;2;4])

7→ 2

head nat ? (filter nat even 0 [])

7→ err

3/11

WHY GRADUAL DEPENDENT TYPES?

Incremental development!

filter (A : Type) (p : A -> 𝔹) (n : ℕ) (l : Vect A n)
: Vect A …

count A p n l :=
match l with
| nil _ _ => 0
| cons _ _ _ => ?

end.

head nat ? (filter nat even 3 [1;2;4])

7→ 2

head nat ? (filter nat even 0 [])

7→ err

3/11

WHY GRADUAL DEPENDENT TYPES?

Incremental development!

filter (A : Type) (p : A -> 𝔹) (n : ℕ) (l : Vect A n)
: Vect A …

count A p n l :=
match l with
| nil _ _ => 0
| cons _ _ _ => ?

end.

head nat ? (filter nat even 3 [1;2;4])

7→ 2

head nat ? (filter nat even 0 [])

7→ err

3/11

WHY GRADUAL DEPENDENT TYPES?

Incremental development!

filter (A : Type) (p : A -> 𝔹) (n : ℕ) (l : Vect A n)
: Vect A ?

count A p n l :=
match l with
| nil _ _ => 0
| cons _ _ _ => ?

end.

head nat ? (filter nat even 3 [1;2;4])

7→ 2

head nat ? (filter nat even 0 [])

7→ err

3/11

WHY GRADUAL DEPENDENT TYPES?

Incremental development!

filter (A : Type) (p : A -> 𝔹) (n : ℕ) (l : Vect A n)
: Vect A ?

count A p n l :=
match l with
| nil _ _ => 0
| cons _ _ _ => ?

end.

head nat ? (filter nat even 3 [1;2;4])

7→ 2

head nat ? (filter nat even 0 [])

7→ err

3/11

WHY GRADUAL DEPENDENT TYPES?

Incremental development!

filter (A : Type) (p : A -> 𝔹) (n : ℕ) (l : Vect A n)
: Vect A ?

count A p n l :=
match l with
| nil _ _ => 0
| cons _ _ _ => ?

end.

head nat ? (filter nat even 3 [1;2;4]) 7→ 2
head nat ? (filter nat even 0 []) 7→ err

3/11

WHY GRADUAL DEPENDENT TYPES?

Incremental development!

filter (A : Type) (p : A -> 𝔹) (n : ℕ) (l : Vect A n)
: Vect A (count A p n l)

count A p n l := ?

match l with
| nil _ _ => 0
| cons _ _ _ => ?

end.

head nat ? (filter nat even 3 [1;2;4]) 7→ 2
head nat ? (filter nat even 0 []) 7→ err

3/11

WHY GRADUAL DEPENDENT TYPES?

Incremental development!

filter (A : Type) (p : A -> 𝔹) (n : ℕ) (l : Vect A n)
: Vect A (count A p n l)

count A p n l :=
match l with
| nil _ _ => 0
| cons _ _ _ => ?

end.

head nat ? (filter nat even 3 [1;2;4]) 7→ 2
head nat ? (filter nat even 0 []) 7→ err

3/11

WHY GRADUAL DEPENDENT TYPES?

Incremental development!

filter (A : Type) (p : A -> 𝔹) (n : ℕ) (l : Vect A n)
: Vect A (count A p n l)

count A p n l :=
match l with
| nil _ _ => 0
| cons _ _ _ => ?

end.

head nat ? (filter nat even 3 [1;2;4]) 7→ 2
head nat ? (filter nat even 0 [])

3/11

WHAT’S SO HARD WITH DEPENDENT TYPES?

Mixing everything

• No type/term distinction
• No typing/runtime separation

Effects
• Errors
• Divergence

Indexed inductive types
• Vectors need special care
• Equality is currently out of our scope

4/11

WHAT’S SO HARD WITH DEPENDENT TYPES?

Mixing everything

• No type/term distinction
• No typing/runtime separation

Effects
• Errors
• Divergence

Indexed inductive types
• Vectors need special care
• Equality is currently out of our scope

4/11

WHAT’S SO HARD WITH DEPENDENT TYPES?

Mixing everything

• No type/term distinction
• No typing/runtime separation

Effects
• Errors
• Divergence

Indexed inductive types
• Vectors need special care
• Equality is currently out of our scope

4/11

WHAT’S SO HARD WITH DEPENDENT TYPES?

Mixing everything

• No type/term distinction
• No typing/runtime separation

Effects
• Errors
• Divergence

Indexed inductive types
• Vectors need special care
• Equality is currently out of our scope

4/11

AN OVERVIEW OF GRADUAL CIC

NO-GO: THE FIRE TRIANGLE OF GRADUALITY

Our favorite properties

• Safety (Progress + Preservation)
• Normalization
• Conservativity (wrt. CIC)
• Graduality

Safety + Conservativity + Graduality⇒ Pure λ-calculus⇒ Divergence

5/11

NO-GO: THE FIRE TRIANGLE OF GRADUALITY

Our favorite properties

• Safety (Progress + Preservation)
• Normalization
• Conservativity (wrt. CIC)
• Graduality

Safety + Conservativity + Graduality⇒ Pure λ-calculus⇒ Divergence

5/11

NO-GO: THE FIRE TRIANGLE OF GRADUALITY

Our favorite properties

• Safety (Progress + Preservation)
• Normalization
• Conservativity (wrt. CIC)
• Graduality

Safety + Conservativity + Graduality⇒ Pure λ-calculus⇒ Divergence

5/11

NO-GO: THE FIRE TRIANGLE OF GRADUALITY

Our favorite properties

• Safety (Progress + Preservation)
• Normalization
• Conservativity (wrt. CIC)
• Graduality

Safety + Conservativity + Graduality⇒ Pure λ-calculus⇒ Divergence

5/11

ONE SYSTEM, THREE VARIANTS

GCIC↑

GCICG GCICN

Controlled by universe levels of Π types:

• at reduction (cast decomposition)
• at typing

GCICG GCICN GCIC↑

Reduction
Pure λ-calculus ×

Eager failure × ×

Typing
CIC × ×

Restricted ×

6/11

ONE SYSTEM, THREE VARIANTS

GCIC↑

GCICG GCICN

Controlled by universe levels of Π types:

• at reduction (cast decomposition)
• at typing

GCICG GCICN GCIC↑

Reduction
Pure λ-calculus ×

Eager failure × ×

Typing
CIC × ×

Restricted ×

6/11

ONE SYSTEM, THREE VARIANTS

GCIC↑

GCICG GCICN

Controlled by universe levels of Π types:

• at reduction (cast decomposition)
• at typing

GCICG GCICN GCIC↑

Reduction
Pure λ-calculus ×

Eager failure × ×

Typing
CIC × ×

Restricted ×
6/11

ELABORATION AND CONSISTENT CONVERSION

Γ ` t : S S ≡ T
Γ ` t : T

Γ ` t ▷ S S ≡ T
Γ ` t ◁ T

Γ ` t⇝ t′ ▷ S S ∼ T
Γ ` t ◁ T⇝ 〈T ⇐ S〉 t′ CastCIC

GCIC

Elaboration Computation

Issues
• transitivity

• computation needs checks
• decidability

Solutions
• bidirectional typing

• type-based elaboration
• over approximation

7/11

ELABORATION AND CONSISTENT CONVERSION

Γ ` t : S S ≡ T
Γ ` t : T

Γ ` t ▷ S S ≡ T
Γ ` t ◁ T

Γ ` t⇝ t′ ▷ S S ∼ T
Γ ` t ◁ T⇝ 〈T ⇐ S〉 t′ CastCIC

GCIC

Elaboration Computation

Issues
• transitivity

• computation needs checks
• decidability

Solutions
• bidirectional typing

• type-based elaboration
• over approximation

7/11

ELABORATION AND CONSISTENT CONVERSION

Γ ` t : S S ≡ T
Γ ` t : T

Γ ` t ▷ S S ≡ T
Γ ` t ◁ T

Γ ` t⇝ t′ ▷ S S ∼ T
Γ ` t ◁ T⇝ 〈T ⇐ S〉 t′ CastCIC

GCIC

Elaboration Computation

Issues
• transitivity

• computation needs checks
• decidability

Solutions
• bidirectional typing

• type-based elaboration
• over approximation

7/11

ELABORATION AND CONSISTENT CONVERSION

Γ ` t : S S ≡ T
Γ ` t : T

Γ ` t ▷ S S ≡ T
Γ ` t ◁ T

Γ ` t⇝ t′ ▷ S S ∼ T
Γ ` t ◁ T⇝ 〈T ⇐ S〉 t′ CastCIC

GCIC

Elaboration Computation

Issues
• transitivity

• computation needs checks
• decidability

Solutions
• bidirectional typing

• type-based elaboration
• over approximation

7/11

ELABORATION AND CONSISTENT CONVERSION

Γ ` t : S S ≡ T
Γ ` t : T

Γ ` t ▷ S S ≡ T
Γ ` t ◁ T

Γ ` t⇝ t′ ▷ S S ∼ T
Γ ` t ◁ T⇝ 〈T ⇐ S〉 t′ CastCIC

GCIC

Elaboration Computation

Issues
• transitivity
• computation needs checks

• decidability

Solutions
• bidirectional typing

• type-based elaboration
• over approximation

7/11

ELABORATION AND CONSISTENT CONVERSION

Γ ` t : S S ≡ T
Γ ` t : T

Γ ` t ▷ S S ≡ T
Γ ` t ◁ T

Γ ` t⇝ t′ ▷ S S ∼ T
Γ ` t ◁ T⇝ 〈T ⇐ S〉 t′ CastCIC

GCIC

Elaboration Computation

Issues
• transitivity
• computation needs checks

• decidability

Solutions
• bidirectional typing
• type-based elaboration

• over approximation

7/11

ELABORATION AND CONSISTENT CONVERSION

Γ ` t : S S ≡ T
Γ ` t : T

Γ ` t ▷ S S ≡ T
Γ ` t ◁ T

Γ ` t⇝ t′ ▷ S S ∼ T
Γ ` t ◁ T⇝ 〈T ⇐ S〉 t′

CastCIC

GCIC

Elaboration Computation

Issues
• transitivity
• computation needs checks

• decidability

Solutions
• bidirectional typing
• type-based elaboration

• over approximation

7/11

ELABORATION AND CONSISTENT CONVERSION

Γ ` t : S S ≡ T
Γ ` t : T

Γ ` t ▷ S S ≡ T
Γ ` t ◁ T

Γ ` t⇝ t′ ▷ S S ∼ T
Γ ` t ◁ T⇝ 〈T ⇐ S〉 t′ CastCIC

GCIC

Elaboration Computation

Issues
• transitivity
• computation needs checks

• decidability

Solutions
• bidirectional typing
• type-based elaboration

• over approximation

7/11

ELABORATION AND CONSISTENT CONVERSION

Γ ` t : S S ≡ T
Γ ` t : T

Γ ` t ▷ S S ≡ T
Γ ` t ◁ T

Γ ` t⇝ t′ ▷ S S ∼ T
Γ ` t ◁ T⇝ 〈T ⇐ S〉 t′ CastCIC

GCIC

Elaboration Computation

Issues
• transitivity
• computation needs checks
• decidability

Solutions
• bidirectional typing
• type-based elaboration

• over approximation

7/11

ELABORATION AND CONSISTENT CONVERSION

Γ ` t : S S ≡ T
Γ ` t : T

Γ ` t ▷ S S ≡ T
Γ ` t ◁ T

Γ ` t⇝ t′ ▷ S S ∼ T
Γ ` t ◁ T⇝ 〈T ⇐ S〉 t′ CastCIC

GCIC

Elaboration Computation

Issues
• transitivity
• computation needs checks
• decidability

Solutions
• bidirectional typing
• type-based elaboration
• over approximation

7/11

NEW TERMS

New terms…
GCIC: · · · | ?
CastCIC: · · · | ?T | errT | 〈B ⇐ A〉 t

… and their semantics

• ? elaborates to the least precise term: Γ ` ?⇝ ??□ ▷?□

• ? and err as errors: if?B returnT then t else t′ 7→ ?T

• casts compute on the type: 〈N ⇐ B〉 b 7→ errN

• ?□ with casts as constructors/destructors:
〈X ⇐ ?□〉 〈?□ ⇐ N〉n 7→ 〈X ⇐ N〉n

8/11

NEW TERMS

New terms…
GCIC: · · · | ?
CastCIC: · · · | ?T | errT | 〈B ⇐ A〉 t

… and their semantics

• ? elaborates to the least precise term: Γ ` ?⇝ ??□ ▷?□

• ? and err as errors: if?B returnT then t else t′ 7→ ?T

• casts compute on the type: 〈N ⇐ B〉 b 7→ errN

• ?□ with casts as constructors/destructors:
〈X ⇐ ?□〉 〈?□ ⇐ N〉n 7→ 〈X ⇐ N〉n

8/11

NEW TERMS

New terms…
GCIC: · · · | ?
CastCIC: · · · | ?T | errT | 〈B ⇐ A〉 t

… and their semantics

• ? elaborates to the least precise term: Γ ` ?⇝ ??□ ▷?□

• ? and err as errors: if?B returnT then t else t′ 7→ ?T

• casts compute on the type: 〈N ⇐ B〉 b 7→ errN

• ?□ with casts as constructors/destructors:
〈X ⇐ ?□〉 〈?□ ⇐ N〉n 7→ 〈X ⇐ N〉n

8/11

NEW TERMS

New terms…
GCIC: · · · | ?
CastCIC: · · · | ?T | errT | 〈B ⇐ A〉 t

… and their semantics

• ? elaborates to the least precise term: Γ ` ?⇝ ??□ ▷?□

• ? and err as errors: if?B returnT then t else t′ 7→ ?T

• casts compute on the type: 〈N ⇐ B〉 b 7→ errN

• ?□ with casts as constructors/destructors:
〈X ⇐ ?□〉 〈?□ ⇐ N〉n 7→ 〈X ⇐ N〉n

8/11

NEW TERMS

New terms…
GCIC: · · · | ?
CastCIC: · · · | ?T | errT | 〈B ⇐ A〉 t

… and their semantics

• ? elaborates to the least precise term: Γ ` ?⇝ ??□ ▷?□

• ? and err as errors: if?B returnT then t else t′ 7→ ?T

• casts compute on the type: 〈N ⇐ B〉 b 7→ errN

• ?□ with casts as constructors/destructors:
〈X ⇐ ?□〉 〈?□ ⇐ N〉n 7→ 〈X ⇐ N〉n

8/11

NEW TERMS

New terms…
GCIC: · · · | ?
CastCIC: · · · | ?T | errT | 〈B ⇐ A〉 t

… and their semantics

• ? elaborates to the least precise term: Γ ` ?⇝ ??□ ▷?□

• ? and err as errors: if?B returnT then t else t′ 7→ ?T

• casts compute on the type: 〈N ⇐ B〉 b 7→ errN

• ?□ with casts as constructors/destructors:
〈X ⇐ ?□〉 〈?□ ⇐ N〉n 7→ 〈X ⇐ N〉n

8/11

THEOREMS!

THE SYNTACTIC THEOREMS

Type theory
Progress, preservation, normalization for CastCIC.

Proof: extension of Sozeau et al., 2020 + translation back to CIC.

Static gradual guarantee
Elaboration is monotone with respect to loss of precision.
⇒ Syntactic precision.

Key property: precision is a simulation for reduction (Siek et al., 2015)
⇒ monotony of consistency.

Conservativity
CIC embeds faithfully into GCIC.

Proof: on CIC consistency = conversion, using simulation again.

9/11

THE SYNTACTIC THEOREMS

Type theory
Progress, preservation, normalization for CastCIC.

Proof: extension of Sozeau et al., 2020 + translation back to CIC.

Static gradual guarantee
Elaboration is monotone with respect to loss of precision.
⇒ Syntactic precision.

Key property: precision is a simulation for reduction (Siek et al., 2015)
⇒ monotony of consistency.

Conservativity
CIC embeds faithfully into GCIC.

Proof: on CIC consistency = conversion, using simulation again.

9/11

THE SYNTACTIC THEOREMS

Type theory
Progress, preservation, normalization for CastCIC.

Proof: extension of Sozeau et al., 2020 + translation back to CIC.

Static gradual guarantee
Elaboration is monotone with respect to loss of precision.
⇒ Syntactic precision.

Key property: precision is a simulation for reduction (Siek et al., 2015)
⇒ monotony of consistency.

Conservativity
CIC embeds faithfully into GCIC.

Proof: on CIC consistency = conversion, using simulation again.

9/11

THE SYNTACTIC THEOREMS

Type theory
Progress, preservation, normalization for CastCIC.

Proof: extension of Sozeau et al., 2020 + translation back to CIC.

Static gradual guarantee
Elaboration is monotone with respect to loss of precision.
⇒ Syntactic precision.

Key property: precision is a simulation for reduction (Siek et al., 2015)
⇒ monotony of consistency.

Conservativity
CIC embeds faithfully into GCIC.

Proof: on CIC consistency = conversion, using simulation again.

9/11

THE SYNTACTIC THEOREMS

Type theory
Progress, preservation, normalization for CastCIC.

Proof: extension of Sozeau et al., 2020 + translation back to CIC.

Static gradual guarantee
Elaboration is monotone with respect to loss of precision.
⇒ Syntactic precision.

Key property: precision is a simulation for reduction (Siek et al., 2015)
⇒ monotony of consistency.

Conservativity
CIC embeds faithfully into GCIC.

Proof: on CIC consistency = conversion, using simulation again.

9/11

THE SYNTACTIC THEOREMS

Type theory
Progress, preservation, normalization for CastCIC.

Proof: extension of Sozeau et al., 2020 + translation back to CIC.

Static gradual guarantee
Elaboration is monotone with respect to loss of precision.
⇒ Syntactic precision.

Key property: precision is a simulation for reduction (Siek et al., 2015)
⇒ monotony of consistency.

Conservativity
CIC embeds faithfully into GCIC.

Proof: on CIC consistency = conversion, using simulation again.

9/11

THE SYNTACTIC THEOREMS

Type theory
Progress, preservation, normalization for CastCIC.

Proof: extension of Sozeau et al., 2020 + translation back to CIC.

Static gradual guarantee
Elaboration is monotone with respect to loss of precision.
⇒ Syntactic precision.

Key property: precision is a simulation for reduction (Siek et al., 2015)
⇒ monotony of consistency.

Conservativity
CIC embeds faithfully into GCIC.

Proof: on CIC consistency = conversion, using simulation again.

9/11

THE SEMANTIC THEOREMS

Dynamic gradual guarantee
Reduction is monotone with respect to loss of precision.

Allows for degenerate computation t 7→ ? (Eremondi et al., 2019).

Graduality (New and Ahmed, 2018)
If A v B then 〈A ⇐ B〉 and 〈B ⇐ A〉 form an
embedding-projection pair.
⇒ Semantic precision.

Proof: build order models to interpret precision.

10/11

THE SEMANTIC THEOREMS

Dynamic gradual guarantee
Reduction is monotone with respect to loss of precision.

Allows for degenerate computation t 7→ ? (Eremondi et al., 2019).

Graduality (New and Ahmed, 2018)
If A v B then 〈A ⇐ B〉 and 〈B ⇐ A〉 form an
embedding-projection pair.
⇒ Semantic precision.

Proof: build order models to interpret precision.

10/11

THE SEMANTIC THEOREMS

Dynamic gradual guarantee
Reduction is monotone with respect to loss of precision.

Allows for degenerate computation t 7→ ? (Eremondi et al., 2019).

Graduality (New and Ahmed, 2018)
If A v B then 〈A ⇐ B〉 and 〈B ⇐ A〉 form an
embedding-projection pair.
⇒ Semantic precision.

Proof: build order models to interpret precision.

10/11

THE SEMANTIC THEOREMS

Dynamic gradual guarantee
Reduction is monotone with respect to loss of precision.

Allows for degenerate computation t 7→ ? (Eremondi et al., 2019).

Graduality (New and Ahmed, 2018)
If A v B then 〈A ⇐ B〉 and 〈B ⇐ A〉 form an
embedding-projection pair.
⇒ Semantic precision.

Proof: build order models to interpret precision.

10/11

THE SEMANTIC THEOREMS

Dynamic gradual guarantee
Reduction is monotone with respect to loss of precision.

Allows for degenerate computation t 7→ ? (Eremondi et al., 2019).

Graduality (New and Ahmed, 2018)
If A v B then 〈A ⇐ B〉 and 〈B ⇐ A〉 form an
embedding-projection pair.
⇒ Semantic precision.

Proof: build order models to interpret precision.

10/11

THE SEMANTIC THEOREMS

Dynamic gradual guarantee
Reduction is monotone with respect to loss of precision.

Allows for degenerate computation t 7→ ? (Eremondi et al., 2019).

Graduality (New and Ahmed, 2018)
If A v B then 〈A ⇐ B〉 and 〈B ⇐ A〉 form an
embedding-projection pair.
⇒ Semantic precision.

Proof: build order models to interpret precision.

10/11

THAT’S IT FOR TODAY

TAKE-AWAY

A quick summary
• No go: fire triangle of graduality
• GCIC: one system, three variants
• Type-based elaboration to CastCIC
• Safety and normalization
• Conservativity, static gradual guarantee and graduality
• Equality: still in progress

Thank you!

11/11

	A bit of context
	An overview of gradual cic
	Theorems!
	That’s it for today

