GRADUALIZING THE CALCULUS OF INDUCTIVE CONSTRUCTIONS

Meven LENNON-BERTRAND, Kenji MAILLARD, Nicolas TABAREAU, and Éric TANTER TOPLAS Journal-First @ POPL '22

A BIT OF CONTEXT

The Calculus of Inductive Constructions

The Calculus of Inductive Constructions

Dependent types:

head: Π (A: Type) (n: $\mathbb N),$ Vect A (1+n) \rightarrow A

The Calculus of Inductive Constructions

Dependent types:

head: Π (A: Type) (n: $\mathbb N),$ Vect A (1+n) \rightarrow A

*"I*Agda

The Calculus of Inductive Constructions

Dependent types:

head: Π (A: Type) (n: N), Vect A (1+n) \rightarrow A

*KI*Aqda

Gradual typing

- Mix static and dynamic typing
- Dynamic type ? in a static system
- Optimistic typing phase & runtime checks

The Calculus of Inductive Constructions

Dependent types:

head: Π (A: Type) (n: N), Vect A (1+n) \rightarrow A

#JAqda

Gradual typing

- Mix static and dynamic typing
- Dynamic type ? in a static system
- Optimistic typing phase & runtime checks

Time has come for Gradual cic!

filter (A : Type) (p : A \rightarrow B) (n : N) (l : Vect A n) : Vect A ...

filter (A : Type) (p : A \rightarrow B) (n : N) (l : Vect A n) : Vect A ?

filter (A : Type) (p : A \rightarrow B) (n : N) (l : Vect A n) : Vect A ?

```
head nat ? (filter nat even 3 [1;2;4])
head nat ? (filter nat even 0 [])
```

filter (A : Type) (p : A \rightarrow B) (n : N) (l : Vect A n) : Vect A ?

head nat ? (filter nat even 3 [1;2;4]) \mapsto 2 head nat ? (filter nat even 0 []) \mapsto err

filter (A : Type) (p : A \rightarrow B) (n : N) (l : Vect A n) : Vect A (count A p n l)

count A p n l :=?

head nat ? (filter nat even 3 [1;2;4]) \mapsto 2 head nat ? (filter nat even 0 []) \mapsto err

filter (A : Type) (p : A \rightarrow B) (n : N) (l : Vect A n) : Vect A (count A p n l)

```
count A p n l :=
match l with
| nil _ _ \Rightarrow 0
| cons _ _ \Rightarrow ?
end.
```

```
head nat ? (filter nat even 3 [1;2;4]) \mapsto 2
head nat ? (filter nat even 0 []) \mapsto err
```

filter (A : Type) (p : A \rightarrow B) (n : N) (l : Vect A n) : Vect A (count A p n l)

```
count A p n l :=
match l with
| nil _ _ \Rightarrow 0
| cons _ _ \Rightarrow ?
end.
```

head nat ? (filter nat even 3 [1;2;4]) \mapsto 2 head nat ? (filter nat even 0 [])

Mixing everything

- No type/term distinction
- No typing/runtime separation

Mixing everything

- No type/term distinction
- No typing/runtime separation

Effects

- Errors
- Divergence

Mixing everything

- No type/term distinction
- No typing/runtime separation

Effects

- Errors
- Divergence

Indexed inductive types

- Vectors need special care
- Equality is currently out of our scope

AN OVERVIEW OF GRADUAL CIC

Our favorite properties

- Safety (Progress + Preservation)
- Normalization
- Conservativity (wrt. cic)
- Graduality

Our favorite properties

- Safety (Progress + Preservation)
- Normalization
- Conservativity (wrt. cic)
- Graduality

Our favorite properties

- Safety (Progress + Preservation)
- Normalization
- Conservativity (wrt. cic)
- Graduality

Safety + Conservativity + Graduality \Rightarrow Pure λ -calculus \Rightarrow Divergence

ONE SYSTEM, THREE VARIANTS

ONE SYSTEM, THREE VARIANTS

Controlled by universe levels of Π types:

- at reduction (cast decomposition)
- \cdot at typing

ONE SYSTEM, THREE VARIANTS

Controlled by universe levels of Π types:

- at reduction (cast decomposition)
- \cdot at typing

 $\mathsf{GCIC}^\mathcal{G}$

		$GCIC^\mathcal{G}$	$GCIC^\mathcal{N}$	$GCIC^\uparrow$
Reduction	Pure λ -calculus	×		
	Eager failure		×	×
Typing	CIC	×	×	
	Restricted			×

$\frac{\Gamma \vdash t : S \qquad S \equiv T}{\Gamma \vdash t : T}$

$\frac{\Gamma \vdash t \colon S \qquad S \equiv T}{\Gamma \vdash t \colon T}$

Issues

transitivity

$\frac{\Gamma \vdash t:S \qquad S \equiv T}{\Gamma \vdash t:T}$

Issues

transitivity

Solutions

bidirectional typing

$$\frac{\Gamma \vdash t : S \quad S \equiv T}{\Gamma \vdash t : T} \qquad \frac{\Gamma \vdash t \triangleright S \quad S \equiv T}{\Gamma \vdash t \triangleleft T}$$

transitivity

Solutions

bidirectional typing

$$\frac{\Gamma \vdash t : S \quad S \equiv T}{\Gamma \vdash t : T} \qquad \frac{\Gamma \vdash t \triangleright S \quad S \equiv T}{\Gamma \vdash t \triangleleft T}$$

- transitivity
- computation needs checks

Solutions

bidirectional typing

$$\frac{\Gamma \vdash t : S \quad S \equiv T}{\Gamma \vdash t : T} \qquad \frac{\Gamma \vdash t \triangleright S \quad S \equiv T}{\Gamma \vdash t \triangleleft T}$$

- transitivity
- computation needs checks

- bidirectional typing
- type-based elaboration

- transitivity
- computation needs checks

- bidirectional typing
- type-based elaboration

- \cdot transitivity
- computation needs checks

- bidirectional typing
- type-based elaboration

- \cdot transitivity
- computation needs checks
- \cdot decidability

- bidirectional typing
- type-based elaboration

- \cdot transitivity
- computation needs checks
- decidability

- bidirectional typing
- type-based elaboration
- over approximation

GCIC: \cdots | ? CastCIC: \cdots | ?_T | err_T | $\langle B \Leftarrow A \rangle t$

GCIC: · · · | ?

 $\mathsf{CastCIC:} \, \cdots \mid \mathbf{?}_{\mathrm{T}} \mid \mathsf{err}_{\mathrm{T}} \mid \langle B \Leftarrow A \rangle \, t$

GCIC: · · · | ?

 $\mathsf{CastCIC:} \cdots \mid \mathbf{?}_{\mathrm{T}} \mid \mathsf{err}_{\mathrm{T}} \mid \langle B \Leftarrow A \rangle t$

... and their semantics

• ? elaborates to the least precise term: $\Gamma \vdash$? \rightsquigarrow ?_{\Box} \triangleright ?_{\Box}

GCIC: · · · | ?

 $\mathsf{CastCIC:} \cdots \mid \mathbf{?}_{\mathrm{T}} \mid \mathsf{err}_{\mathrm{T}} \mid \langle B \Leftarrow A \rangle t$

- ? elaborates to the least precise term: $\Gamma \vdash$? \rightsquigarrow ?_□ > ?_□
- ? and err as errors: if ? B return T then t else $t' \mapsto$? T

GCIC: · · · | ?

 $\mathsf{castCIC:} \cdots \mid \mathbf{?_T} \mid \mathsf{err_T} \mid \langle B \Leftarrow A \rangle t$

- ? elaborates to the least precise term: $\Gamma \vdash$? \rightsquigarrow ?_□ > ?_□
- ? and err as errors: if ? B return T then t else $t' \mapsto$? T
- + casts compute on the type: $\langle \mathbf{N} \Leftarrow \mathbf{B} \rangle$ $b \mapsto \texttt{err}_{\mathbf{N}}$

GCIC: · · · | ?

castcic: $\cdots \mid \mathbf{?}_{\mathrm{T}} \mid \mathtt{err}_{\mathrm{T}} \mid \langle B \Leftarrow A \rangle t$

- ? elaborates to the least precise term: $\Gamma \vdash$? \rightsquigarrow ?_□ \triangleright ?_□
- ? and err as errors: if ?_B return T then t else $t' \mapsto$?_T
- + casts compute on the type: $\langle \mathbf{N} \Leftarrow \mathbf{B} \rangle \: b \mapsto \texttt{err}_{\mathbf{N}}$
- ? \square with casts as constructors/destructors: $\langle X \Leftarrow ? \square \rangle \langle ? \square \Leftarrow \mathbf{N} \rangle n \mapsto \langle X \Leftarrow \mathbf{N} \rangle n$

THEOREMS!

Type theory

Progress, preservation, normalization for castcic.

Type theory

Progress, preservation, normalization for castcic.

Proof: extension of Sozeau et al., 2020 + translation back to cic.

Type theory

Progress, preservation, normalization for castcic.

Proof: extension of Sozeau et al., 2020 + translation back to cic.

Static gradual guarantee

Elaboration is monotone with respect to loss of precision.

 \Rightarrow Syntactic precision.

Type theory

Progress, preservation, normalization for castcic.

Proof: extension of Sozeau et al., 2020 + translation back to cic.

Static gradual guarantee

Elaboration is monotone with respect to loss of precision.

 \Rightarrow Syntactic precision.

Key property: precision is a simulation for reduction (*Siek et al., 2015*) ⇒ monotony of consistency.

Type theory

Progress, preservation, normalization for castcic.

Proof: extension of Sozeau et al., 2020 + translation back to cic.

Static gradual guarantee

Elaboration is monotone with respect to loss of precision.

 \Rightarrow Syntactic precision.

Key property: precision is a simulation for reduction (*Siek et al., 2015*) \Rightarrow monotony of consistency.

Conservativity

cic embeds faithfully into gcic.

Type theory

Progress, preservation, normalization for castcic.

Proof: extension of Sozeau et al., 2020 + translation back to cic.

Static gradual guarantee

Elaboration is monotone with respect to loss of precision.

 \Rightarrow Syntactic precision.

Key property: precision is a simulation for reduction (*Siek et al., 2015*) ⇒ monotony of consistency.

Conservativity

cic embeds faithfully into gcic.

Proof: on CIC consistency = conversion, using simulation again.

THE SEMANTIC THEOREMS

Reduction is monotone with respect to loss of precision.

Reduction is monotone with respect to loss of precision.

Allows for degenerate computation $t \mapsto$? (*Eremondi et al., 2019*).

Reduction is monotone with respect to loss of precision.

Allows for degenerate computation $t \mapsto ?$ (*Eremondi et al., 2019*).

Graduality (New and Ahmed, 2018) If $A \sqsubseteq B$ then $\langle A \leftarrow B \rangle$ and $\langle B \leftarrow A \rangle$ form an embedding-projection pair. \Rightarrow Semantic precision.

Reduction is monotone with respect to loss of precision.

Allows for degenerate computation $t \mapsto ?$ (*Eremondi et al., 2019*).

Graduality (New and Ahmed, 2018) If $A \sqsubseteq B$ then $\langle A \Leftarrow B \rangle$ and $\langle B \Leftarrow A \rangle$ form an embedding-projection pair. \Rightarrow Semantic precision.

Proof: build order models to interpret precision.

Reduction is monotone with respect to loss of precision.

Allows for degenerate computation $t \mapsto ?$ (*Eremondi et al., 2019*).

Graduality (New and Ahmed, 2018) If $A \sqsubseteq B$ then $\langle A \Leftarrow B \rangle$ and $\langle B \Leftarrow A \rangle$ form an embedding-projection pair. \Rightarrow Semantic precision.

Proof: build order models to interpret precision.

THAT'S IT FOR TODAY

A quick summary

- No go: fire triangle of graduality
- GCIC: one system, three variants
- Type-based elaboration to castcic
- Safety and normalization
- Conservativity, static gradual guarantee and graduality
- Equality: still in progress

Thank you!