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WHAT’'S SO HARD WITH DEPENDENT TYPES?

Mixing everything
- No type/term distinction

- No typing/runtime separation

Effects
- Errors

- Divergence
Indexed inductive types
- Vectors need special care

- Equality is currently out of our scope
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NO-GO: THE FIRE TRIANGLE OF GRADUALITY

Our favorite properties

- Safety (Progress + Preservation)
- Normalization

- Conservativity (wrt. cic)
Conservativity

- Graduality

Safety + Conservativity + Graduality = Pure A-calculus = Divergence
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- ? elaborates to the least precise term: I'= ? ~ 7, > 7
- ?2and err aserrors: 1f ?g return T'thentelse? — ? ¢
- casts compute on the type: (N < B) b erry

- 7 with casts as constructors/destructors:
X< (?o<=N)yn— (X< N)n
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Static gradual guarantee
Elaboration is monotone with respect to loss of precision.

= Syntactic precision.

Key property: precision is a simulation for reduction (Siek et al, 2015)
= monotony of consistency.

Conservativity
cic embeds faithfully into Gcic.

Proof: on cIC consistency = conversion, using simulation again.
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THAT'S IT FOR TODAY



TAKE-AWAY

A quick summary
- No go: fire triangle of graduality
- GCIC: one system, three variants
- Type-based elaboration to castcic
- Safety and normalization
- Conservativity, static gradual guarantee and graduality

- Equality: still in progress
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