GRADUALIZING THE CALCULUS OF INDUCTIVE
CONSTRUCTIONS

Meven LENNON-BERTRAND, Kenji MAILLARD, Nicolas TABAREAU, and Eric TANTER
TOPLAS Journal-First @ POPL 22

1M

A BIT OF CONTEXT

BRINGING TOGETHER CIC AND GRADUAL TYPING

2/1

BRINGING TOGETHER CIC AND GRADUAL TYPING

The Calculus of Inductive Constructions

2/1

BRINGING TOGETHER CIC AND GRADUAL TYPING

The Calculus of Inductive Constructions

Dependent types:
head: M (A: Type) (n: N), Vect A (1+n) — A

2/1

BRINGING TOGETHER CIC AND GRADUAL TYPING

The Calculus of Inductive Constructions

Dependent types:
head: M (A: Type) (n: N), Vect A (1+n) — A

N P Agda R

THEOREM PROVER

2/1

BRINGING TOGETHER CIC AND GRADUAL TYPING

The Calculus of Inductive Constructions
Dependent types:

head: M (A: Type) (n: N), Vect A (1+n) — A

N UAgda O

Gradual typing
- Mix static and dynamic typing

- Dynamic type ? in a static system

- Optimistic typing phase & runtime checks

2/1

BRINGING TOGETHER CIC AND GRADUAL TYPING

The Calculus of Inductive Constructions
Dependent types:

head: M (A: Type) (n: N), Vect A (1+n) — A

N UAgda O

Gradual typing
- Mix static and dynamic typing

- Dynamic type ? in a static system

- Optimistic typing phase & runtime checks

2/1

WHY GRADUAL DEPENDENT TYPES?

3/M

WHY GRADUAL DEPENDENT TYPES?

3/M

WHY GRADUAL DEPENDENT TYPES?

Incremental development!

filter (A : Type) (p : A - B) (n : N) (L : Vect A n)
: Vect A

3/M

WHY GRADUAL DEPENDENT TYPES?

Incremental development!

filter (A : Type) (p : A - B) (n : N) (L : Vect A n)
: Vect A ?

3/M

WHY GRADUAL DEPENDENT TYPES?

Incremental development!

filter (A : Type) (p : A - B) (n : N) (L : Vect A n)
: Vect A ?

head nat ? (filter nat even 3 [1;2;4])
head nat ? (filter nat even 0 [])

3/M

WHY GRADUAL DEPENDENT TYPES?

Incremental development!

filter (A : Type) (p : A - B) (n : N) (L : Vect A n)
: Vect A ?

head nat ? (filter nat even 3 [1;2;4]) — 2
head nat ? (filter nat even 0 []) — err

3/M

WHY GRADUAL DEPENDENT TYPES?

Incremental development!

filter (A : Type) (p : A - B) (n : N) (L : Vect A n)
: Vect A (count A pn 1)

count Apnl =7

head nat ? (filter nat even 3 [1;2;4]) — 2
head nat ? (filter nat even 0 []) — err

3/M

WHY GRADUAL DEPENDENT TYPES?

Incremental development!

filter (A : Type) (p : A - B) (n : N) (L : Vect A n)
: Vect A (count A pn 1)

count A pn 1l :=
match 1 with

| nil _ _ = 0

| cons = =7
end.

head nat ? (filter nat even 3 [1;2;4]) — 2
head nat ? (filter nat even 0 []) — err

3/M

WHY GRADUAL DEPENDENT TYPES?

Incremental development!

filter (A : Type) (p : A - B) (n : N) (L : Vect A n)
: Vect A (count A pn 1)

count A pn 1l :=
match 1 with

| nil _ _ = 0

| cons = =7
end.

head nat ? (filter nat even 3 [1;2;4]) — 2
head nat 2 (filter nat even 0 [])

3/M

WHAT’'S SO HARD WITH DEPENDENT TYPES?

4/M

WHAT’'S SO HARD WITH DEPENDENT TYPES?

Mixing everything
- No type/term distinction

- No typing/runtime separation

4/M

WHAT’'S SO HARD WITH DEPENDENT TYPES?

Mixing everything
- No type/term distinction

- No typing/runtime separation
Effects

- Errors

- Divergence

4/M

WHAT’'S SO HARD WITH DEPENDENT TYPES?

Mixing everything
- No type/term distinction

- No typing/runtime separation

Effects
- Errors

- Divergence
Indexed inductive types
- Vectors need special care

- Equality is currently out of our scope

4/M

AN OVERVIEW OF GRADUAL CIC

NO-GO: THE FIRE TRIANGLE OF GRADUALITY

5/1

NO-GO: THE FIRE TRIANGLE OF GRADUALITY

Our favorite properties
- Safety (Progress + Preservation)
- Normalization
- Conservativity (wrt. cic)

- Graduality

5/1

NO-GO: THE FIRE TRIANGLE OF GRADUALITY

Our favorite properties

- Safety (Progress + Preservation)
- Normalization

- Conservativity (wrt. cic)
Conservativity

- Graduality

5/1

NO-GO: THE FIRE TRIANGLE OF GRADUALITY

Our favorite properties

- Safety (Progress + Preservation)
- Normalization

- Conservativity (wrt. cic)
Conservativity

- Graduality

Safety + Conservativity + Graduality = Pure A-calculus = Divergence

5/1

ONE SYSTEM, THREE VARIANTS

Conservativity

Geicd ceicN

6/11

ONE SYSTEM, THREE VARIANTS

Controlled by universe levels of M types:

- at reduction (cast decomposition)
- at typing

Conservativity

Geicd ceicN

6/11

ONE SYSTEM, THREE VARIANTS

Controlled by universe levels of M types:

- at reduction (cast decomposition)

- at typing
Geicd ceicN
caicd | cacN | Gact
. Pure A-calculus X

Reduction _

Eager failure X X
‘ cic X X
Typing -

Restricted X

6/11

ELABORATION AND CONSISTENT CONVERSION

'Ht: S S=T
't¢: T

7/M

ELABORATION AND CONSISTENT CONVERSION

I't¢: S SE=NE
't¢: T

Issues

- transitivity

7/M

ELABORATION AND CONSISTENT CONVERSION

I't¢: S SE=NE
't¢: T

Issues Solutions

- transitivity - bidirectional typing

7/M

ELABORATION AND CONSISTENT CONVERSION

'+t¢:8 S=1T I'-t> S S=T
'Ft: T I'EtaT

Issues Solutions

- transitivity - bidirectional typing

7/M

ELABORATION AND CONSISTENT CONVERSION

'+t¢:8 S=1T I'-t> S S=T
'Ft: T I'EtaT

Issues Solutions
- transitivity - bidirectional typing

- computation needs checks

7/M

ELABORATION AND CONSISTENT CONVERSION

'+t¢:8 S=1T I'-t> S S=T

'E¢: T I'HtaT
Issues Solutions
- transitivity - bidirectional typing

- computation needs checks - type-based elaboration

7/M

ELABORATION AND CONSISTENT CONVERSION

'+t¢:8 S=1T I'-t> S S=T

C'=t: T I'HtaT)
Computation
CastCIC
Issues Solutions
- transitivity - bidirectional typing

- computation needs checks - type-based elaboration

7/M

ELABORATION AND CONSISTENT CONVERSION

I'-¢:8 S=T I'-¢>8 S=T
'H¢: T FitaT

Tt~ t>S S~ T
THta T~ (T<= ST

Issues Solutions
- transitivity - bidirectional typing

- computation needs checks - type-based elaboration

7/M

ELABORATION AND CONSISTENT CONVERSION

I'-¢:8 S=T I'-¢>8 S=T
'H¢: T FitaT

Tt~ t>S S~ T
THta T~ (T<= ST

Issues Solutions
- transitivity - bidirectional typing
- computation needs checks - type-based elaboration

- decidability

7/M

ELABORATION AND CONSISTENT CONVERSION

I'-¢:8 S=T I'-¢>8 S=T
'H¢: T FitaT

Tt~ t>S S~ T
THta T~ (T<= ST

Issues Solutions
- transitivity - bidirectional typing
- computation needs checks - type-based elaboration

- decidability - over approximation

7/M

NEW TERMS

New terms...
GCIC: -+ | ?
castcic: - - - 71 ‘ errry ‘ (B« 41 y

8/1

NEW TERMS

New terms...
GCIC: -+ | ?
castcic:

... and their semantics

8/M

NEW TERMS

New terms...
GCIC: -+ | ?
castcic:

... and their semantics

- ? elaborates to the least precise term: I' = ? ~ >

8/M

NEW TERMS

New terms...
GCIC: -+ | ?
castcic:

... and their semantics

- ? elaborates to the least precise term: I' = ? ~ >

and as errors: >

8/M

NEW TERMS

New terms...
GCIC: -+ | ?
castcic: --- | ?p | erry | (B< A)

... and their semantics

- ? elaborates to the least precise term: I'= ? ~ 7, > 7
- ?2and err aserrors: 1f ?g return T'thentelse? — ? ¢

- casts compute on the type: (N <= B) b erry

8/M

NEW TERMS

New terms...
GCIC: -+ | ?
castcic: --- | ?p | erry | (B< A)

... and their semantics

- ? elaborates to the least precise term: I'= ? ~ 7, > 7
- ?2and err aserrors: 1f ?g return T'thentelse? — ? ¢
- casts compute on the type: (N < B) b erry

- 7 with casts as constructors/destructors:
X< (?o<=N)yn— (X< N)n

8/M

THEOREMS!

THE SYNTACTIC THEOREMS

9/M

THE SYNTACTIC THEOREMS

Type theory
Progress, preservation, normalization for castcic.

9/M

THE SYNTACTIC THEOREMS

Type theory
Progress, preservation, normalization for castcic.

Proof: extension of Sozeau et al., 2020 + translation back to cic.

9/M

THE SYNTACTIC THEOREMS

Type theory
Progress, preservation, normalization for castcic.

Proof: extension of Sozeau et al., 2020 + translation back to cic.

Static gradual guarantee

Elaboration is monotone with respect to loss of precision.
= Syntactic precision.

9/M

THE SYNTACTIC THEOREMS

Type theory
Progress, preservation, normalization for castcic.

Proof: extension of Sozeau et al., 2020 + translation back to cic.

Static gradual guarantee
Elaboration is monotone with respect to loss of precision.

= Syntactic precision.

Key property: precision is a simulation for reduction (Siek et al, 2015)
= monotony of consistency.

9/M

THE SYNTACTIC THEOREMS

Type theory
Progress, preservation, normalization for castcic.

Proof: extension of Sozeau et al., 2020 + translation back to cic.

Static gradual guarantee
Elaboration is monotone with respect to loss of precision.

= Syntactic precision.

Key property: precision is a simulation for reduction (Siek et al, 2015)
= monotony of consistency.

Conservativity
cic embeds faithfully into Gcic.

9/M

THE SYNTACTIC THEOREMS

Type theory
Progress, preservation, normalization for castcic.

Proof: extension of Sozeau et al., 2020 + translation back to cic.

Static gradual guarantee
Elaboration is monotone with respect to loss of precision.

= Syntactic precision.

Key property: precision is a simulation for reduction (Siek et al, 2015)
= monotony of consistency.

Conservativity
cic embeds faithfully into Gcic.

Proof: on cIC consistency = conversion, using simulation again.

9/M

THE SEMANTIC THEOREMS

10/1

THE SEMANTIC THEOREMS

Dynamic gradual guarantee
Reduction is monotone with respect to loss of precision.

10/1

THE SEMANTIC THEOREMS

Dynamic gradual guarantee
Reduction is monotone with respect to loss of precision.

Allows for degenerate computation ¢+~ ? (Eremondi et al., 2019).

10/1

THE SEMANTIC THEOREMS

Dynamic gradual guarantee
Reduction is monotone with respect to loss of precision.

Allows for degenerate computation ¢+~ ? (Eremondi et al., 2019).

Graduality (New and Ahmed, 2018)

If AC Bthen (4 < B) and (B« A) form an
embedding-projection pair.
= Semantic precision.

10/1

THE SEMANTIC THEOREMS

Dynamic gradual guarantee
Reduction is monotone with respect to loss of precision.

Allows for degenerate computation ¢+~ ? (Eremondi et al., 2019).

Graduality (New and Ahmed, 2018)

If AC Bthen (4 < B) and (B« A) form an
embedding-projection pair.
= Semantic precision.

Proof: build order models to interpret precision.

10/1

THE SEMANTIC THEOREMS

Dynamic gradual guarantee
Reduction is monotone with respect to loss of precision.

Allows for degenerate computation ¢+~ ? (Eremondi et al., 2019).

Graduality (New and Ahmed, 2018)

If AC Bthen (4 < B) and (B« A) form an
embedding-projection pair.
= Semantic precision.

. . . 7 /4%
Proof: build order models to interpret precision. U

10/1

THAT'S IT FOR TODAY

TAKE-AWAY

A quick summary
- No go: fire triangle of graduality
- GCIC: one system, three variants
- Type-based elaboration to castcic
- Safety and normalization
- Conservativity, static gradual guarantee and graduality

- Equality: still in progress

1/M

	A bit of context
	An overview of gradual cic
	Theorems!
	That’s it for today

