
PPS - Paris VII Diderot University

Internship Report

Compilation of Dependently Typed
Pattern-Matching for Coq

Author:
Meven Bertrand

Supervisor:
Hugo Herbelin

September 19, 2016

Abstract

The aim of this internship was to work on the compilation of pattern-matching in Coq,
a tool for interactive theorem-proving developed by the Inria.
For now, the algorithm in place handles most simple cases, but often fails on more tricky
instances, and forces the user to add a lot of information in order to see her/his matching
compiled. However, other tools for theorem proving, most notably Agda, already implement
a way more powerful compilation for pattern-matching.
A compilation algorithm having the same kind of possibilities as the one of Agda had already
been roughly designed by my tutor H. Herbelin. My aim was to describe in detail this
algorithm through the writing of an article describing the way it worked. Along the way,
I also had to learn a lot about Coq and its theoretical background, the CIC (Calculus of
Inductive Constructions).

Contents
Introduction 2

1 Coq and the Calculus of Inductive Constructions 2
1.1 Calculus of Constructions: Terms and Types . 3
1.2 Inductive Constructions . 4

2 Patterns, Pattern-Matching 5
2.1 Patterns . 5
2.2 Pattern-Matching Problem . 5
2.3 Compiling a Pattern-Matching Problem . 6
2.4 State of the Art . 6
2.5 Aim of the Dependent Pattern-Matching . 7

3 The Algorithm 8
3.1 Problem Considered . 8
3.2 Special Cases . 8
3.3 Generic Case . 9
3.4 Properties of the Algorithm . 10

Conclusion 11
3.5 Results . 11
3.6 Thanks . 11

Appendices 12

A Induction Rules for the CoC 12

B Compilation Example 13

C Bibliography 15

D Article 15

1

Introduction
The structure of pattern matching is an important brick in the context of general functional

languages, and in particular in the formal proof tool Coq: it is one of the basic tools used to
work with inductive types, which are everywhere in Coq. In the current version of Coq, the
mechanism used to compile this structure is enough for basics cases, but it often fails on more
complicated ones, therefore needing the user to add much superfluous information in order for
the compiler to work works. The way this compilation works is not totally documented, as the
current implementation is only partial in comparison with the corresponding theory — making
it even harder for the user to predict whether or not he has to add a precise piece of information
in a given context.

However, other languages used for theorem proving, mostly the language Agda, already provide
an effective compilation tool, showing that it is possible to improve the current situation and
design a more user-friendly and powerful pattern-matching. It has already been shown in [3] that
the same possibility are available in the CIC, the theoretical core of Coq. My tutor H. Herbelin
had a rough idea of how to handle it, however at the time I began my internship no precise
algorithm was available.

My aim was therefore to detail this algorithm, and possibly to implement it. Since I lacked
time, I concentrated on the first part, through the writing of an article presenting the algorithm.
In fact, I designed two compilation algorithms: one achieving the original aim, and a lighter
version that is useful as it requires less information from the user in order to work.

1 Coq and the Calculus of Inductive Constructions

The elements presented in this section come from diverse sources on Coq, mostly the tutorial
book [1], as well as the manuals [2, 5], and older articles, mainly [4]. The last article is one of
the firsts ever published on Coq, so some notations and ways of seeing things are a bit old and
differ slightly from the most modern ones.

But first, what is Coq? It is a tool for formal proofs, that is a tool which is designed for writing
mathematical propositions (in a concrete language called Gallina) and proving them. The aim of
Coq is that any proof that is written in Gallina and accepted by Coq at compilation time must
be correct, so that no human verification of the proof is needed. To achieve that, the execution
by Coq relies on a theoretical basis named the Calculus of Inductive Constructions (CIC), that is
responsible for the checking of the proofs. The CIC is quite similar to (typed) lambda-calculus,
the biggest differences being the existence of inductive and dependent types that do not exist in
lambda-calculus, but are widely used in Coq.

As it is very close to typed lambda-calculus, the CIC is based on the same ideas: the objects
considered within the CIC are terms, constructed with a few constructors. Each well-formed
term has a type, which in turn is a term.

2

1.1 Calculus of Constructions: Terms and Types
The Calculus of Constructions (CoC) is the “lambda-term” component of the CIC, that is the

part not involving any inductive construction.

Syntax The syntax of the terms of the CoC is based on 5 basic constructions, that is:

• the variables

• the abstraction, noted λx : T ·M

• the dependent product, noted ∀x : T,M (or T →M if M does not depend on x)

• the application, noted MN

• the sorts s, elements of a set S

Semantic Each of these construction represents a different thing, namely:

• The abstraction λx : T ·M represents the function taking the variable x of type T to the
term M .

• The dependent product ∀x : T,M represents all functions taking some term x of type T
to a term of type M (which can depend on the variable x). Therefore, the type T →M is
the type of functions taking a term of type T and returning a term of type M .

• The application MN represents the application of the term M to the term N , in the same
way as usual function application.

• The sorts are constants used for classification of the terms. In Coq there are 3 sorts, which
are Type (representing “everything”), Set (representing all classical sets, for example the
integers or the sorted lists of real numbers) and Prop (representing the logical propositions).

Typing In the CoC, each term has a type, and all the above constructions are only allowed
under some conditions on the type of their arguments. For example if the term M depending
on a variable x is well-formed if x is of type T and has type N(x), then the term λx : T ·M is
well-formed and has type ∀x : T,N(x).

In order to define properly the rules governing the typing, we first need to define the notion
of context: a context Γ is (naively) a list of declarations of variables along with their types. Each
of these typing assertion is written x : T , so a context is something like x1 : T1, . . . xn : Tn.

Having a context, we can define more precisely the typing with two relations, a binary relation
Γ ` ∆ where ∆ is a context, saying that under the context Γ the context ∆ is valid, and a ternary
relation Γ ` x : T saying that under the context Γ, the term x is well typed, and of type T .
These two relations, along with a third one written ∼=, called the equivalence of types and used
to simplify the terms, are theoretically defined with a set of inference rules, that can be found
in the annex (section A).

Propositions and Proofs The Coq aims to write propositions and to formally prove these
propositions. Propositions are treated as any other terms, however when considering proofs the
sense associated with the operators presented above changes.

• A proposition is any term of type Prop.

3

• A context x1 : T1 . . . xn : Tn is a list of variables along with hypotheses on these variables,
translated into a typing assertion.

• If Γ ` p : P (with P such that Γ ` P : Prop), then p is a proof of the proposition P under
hypotheses Γ, i.e. proving an assertion is giving any term whose type is the assertion.

• The construction ∀x : T,M represents the universal quantification over x, taking any value
in the type T .

• In particular A→ B represents the implication.

• The applicationM N works like the modus ponens, given an implicationM of type A→ B
and an proof N of A it creates a proof M N of B.

1.2 Inductive Constructions
Above the CoC, which is the core of Coq, another construction has been added during the

development of Coq and is now the base of almost all definitions in Coq: the inductive objects.
The idea is to create a new type by declaring a certain number of constructors, each of them

taking some arguments and giving a new element of the type. Examples are the integers, defined
in Coq by:

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

with the two constructors O and S, just like the classical Peano definition, or the more complex
vector:

Inductive vect (A:Type) : nat -> Type :=
| nil : vect A O
| cons : forall (h:A) (n:nat), vect A n -> vect A (S n).

which takes two arguments, the type A of its elements and its length n, and is constructed again
with two constructors nil and cons.

Of course, proposition types can be defined this way too, for example this is a possible
definition of the parity of a natural number:

Inductive even (n:nat) : Prop :=
| O_even : even O
| S_even : forall (n:nat), even n -> even (S (S n)).

The inductive constructions are a very important feature in Coq, as almost all objects defined in
the many libraries of Coq are defined through an inductive definition. The reason for that is that
inductive definitions are at the same time quite intuitive and very powerful. They are intuitive
since to define an object you give exactly the ways it can be constructed, and nothing more.
A lot of mathematical constructions can be naturally translated like this. They are powerful,
since given an inductive definition one has a whole range of properties very useful to use: an
object within an inductive type is constructed with one and exactly one constructor, so that one
can always use case disjunction when working on an inductive object. When an inductive type
is defined, an induction principle associated with the type is automatically generated by Coq,
allowing easy proofs by induction on the type.

4

2 Patterns, Pattern-Matching

The idea behind pattern-matching is to decompose an object in an inductive type. As it was
mentioned in section 1.2, an object in an inductive type is constructed with exactly one con-
structor of this type, so the most basic idea behind pattern-matching is to use this in order to
perform a case analysis: given an object in an inductive type, we want to do different things
(give a different object if we construct a function, or use a different reasoning if we are proving
something) depending on the way the object we are considering has been constructed.

However, a simple case analysis is often not enough, so the full pattern-matching will allow
more than one variable, and discrimination not only based on the outer most constructor, but
on a full combination of constructors — this is what we will call a pattern.

Pattern-matching is therefore a crucial mechanism, as it is one of the only two ways of
processing inductive objects, the other one being induction. In particular, being able to process
a complex pattern-matching is an important step in order to make proofs clearer to read and
simpler to write for the user of Coq. However, the current situation in Coq is not quite satisfying
from this perspective, thus the importance of my work.

2.1 Patterns
First we need to precisely define what a pattern is. A pattern p is (in BNF-notation)

p ::= v | C1 p . . . p︸ ︷︷ ︸
r1

| . . . | Cn p . . . p︸ ︷︷ ︸
rn

where v denotes a variable, and Ci are all constructors of inductive types defined before the
pattern is used, ri being the arity of Ci. For any pattern of the form Cp . . . p, the constructor C
is called the head constructor of the pattern.

We say that a term t matches with the pattern p if one of the two following cases apply:

• p is a variable

• p is of the form Ci(p1, . . . pri) and t is of the form Ci(t1, . . . tri) and each tj matches with
the corresponding pj

2.2 Pattern-Matching Problem
A general pattern-matching problem in a certain context Γ consists of four main elements:

• a list of variables x1 . . . xn each declared in the context Γ and having an inductive type

• a list of return terms t1 . . . tm

• a matrix (pi,j) 1≤i≤n
1≤j≤m

of patterns, which variables may be used in the return term with the

same index as their line number

• a return predicate P , the definition of which may rely on the type of the variables x1 . . . xn

5

Such a problem will be later displayed under the form:

(x1 . . . xn) [−→y1, x′1, . . . ,−→yn, x′n ` P]

Γ `

p1,1 . . . p1,n
...

pm,1 . . . pm,n

t1
...
tm

Here also appear some −→yi which are lists of variables associated with the type of the xi and
are used to make the predicate P depend on the type of the xi.

The Gallina syntax corresponding to this problem is the following:

match x1 as x′1 in I1_−→y1, . . . , xn as x′n in In_−→yn return P with

Γ `
| p1,1 . . . p1,n ⇒ t1

|
...

...
...

| pm,1 . . . pm,n ⇒ tm
.

with Ii being the inductive type of xi, and the underscore are used to fill some arguments of the
Ii that are not allowed to be used in P .

2.3 Compiling a Pattern-Matching Problem
The idea of a pattern-matching problem is that if j is the minimal index such that every xi is
unifiable with pi,j , then we want to return the term tj , with replacements of the variables of pi,j
with the subterm of xi it was unified against.

This behavior can be seen as a case analysis on the different terms xi, where the form they
have as inductive objects influences the term that is returned — the different cases corresponding
to the different lines in the pattern matrix. Therefore the patterns appearing in the matrix must
cover all possible cases, that is all possible combinations of constructors for the xi must appear.

The processing of a pattern-matching problem is decomposed in two phases: what we call a
simple pattern-matching, and the compilation. A simple pattern-matching is a pattern-matching
with only a variable, and where all patterns appearing in the matrix (p1,j)1≤j≤m are of the
form Cv . . . v, i.e. a constructor applied to variables. This is called a simple pattern-matching
as it is the simplest problem possible since it consists only on a case analysis on the head
constructor of xi. In Coq, such a pattern-matching in processed at a lower level, it is in a way a
primitive construction included in the core of the tool together with the definition of inductive
types. The compilation of a general pattern-matching aims to decompose a complex pattern-
matching problem — many variables, arbitrary complex patterns — into a succession of such
simple pattern-matchings.

2.4 State of the Art
The compilation of pattern-matching is not a problem specific to Coq, since pattern-matching
under one form or another is a very common feature of many programming languages — mostly
functional languages, which often heavily rely on it. Therefore, it is a quite old problem, that has
already been studied a lot. However, Coq is a very specific setting, namely the one of dependent
types. In this setting, where the type of the objects can depend on parameters, the compilation
is a lot trickier, compared to a language with non-dependent types, even if these types still have

6

a polymorphic component — as in Caml or Haskell for example. This compilation is the one
that was considered in this internship, that is why most of the literature on pattern-matching
compilation was irrelevant.

Even though, there has already been some work on the subject in [3], which is the base for
the algorithm in place in Agda. This algorithm is powerful, more than the one designed in this
internship, as the algorithm described in [3] processes definition in a more correct way. However,
its work is based on equality, and in particular it makes an extensive use of an axiom called axiom
K. This axiom K is not provable in Coq (nor can be proven wrong), therefore the compilation
of pattern-matching must be done in another way if we want to avoid having to admit K. That
is why the results of this internship are interesting, even if the compilation is still less effective
than the one of Agda.

2.5 Aim of the Dependent Pattern-Matching
Here are two examples that seem quite simple, but that are not so easy to compile, showing

the problems associated with pattern-matching and giving an idea of what the algorithm should
achieve.

Example 1: Second variable depending on the first

Variables (n : nat) (v : vect nat n).
Definition w :=
match n, v in vect _ n’ return vect nat (S n’) with

| O, nil nat => cons nat 1 O (nil nat)
| S n’, cons nat k n’ v’ => cons nat 2 (S n’) (cons nat 1 n’ v’)

end.

Here we have an integer and a vector whose size is the natural, and we want to do a simulta-
neous matching on both objects. It seems obvious that only two cases are needed, as a vector of
size 0 can only be constructed with nil, and a vector of non-zero size can only be constructed
with cons. However a too simple algorithm could miss that, and demand the user to precise
what to do in the case where n is constructed with O and v with cons. What is needed here is
that the relation between the two objects is preserved throughout the matching process.

Example 2: Pattern in the in clause

Variables (n : nat) (v : vect nat (S n)).
Definition w :=
match v in vect _ (S n’) return vect nat n’ with

| cons nat k n’ v’ => v’
end.

Here we have a vector which size is non-zero, therefore it must have been constructed with
cons, and we want this to be understood by the compiler, so that it does not ask for the case
where v is constructed with nil. What is needed here is that the compiler is able to extract
constraints on the constructors thanks to the type of the objects.

7

3 The Algorithm

This is just a description of the way the algorithm works, for the exact details and the full
technical part see the annex D where the article is reproduced.

3.1 Problem Considered
The most general problem the algorithm I designed is capable of handling is — in Gallina syntax
— the following:

match x1 as x′1 in I1_−→π1, . . . , xn as x′n in In_−→πn return P with

Γ `
| p1,1 . . . p1,n ⇒ t1

|
...

...
...

| pm,1 . . . pm,n ⇒ tm
end.

With x1 to xn being variables declared in the context, and not defined — that is, they are
generic inhabitants of their type, rather than an alias for another object.

Compared to the syntax that was given in section 2.2, there is now the possibility to specify
patterns instead of variables in the as clauses (these patterns are here called −→πi). This is for
instance useful for the user in example 2, where the as clause is used in order to get rid of one
constructor.

In the problem, many variables are considered at the same time, and not just one. The reason
for this is that a compilation step can create more than one variable on which a matching occurs,
so that the general problem must allow more than one variable to enable the recursive call of the
compiler on the new problem created.

This problem will be displayed as follows:

(x1 . . . xn) [−→w1, x
′
1(−→π1), . . . ,−→wn, x

′
n(−→πn) ` P]

Γ `

p1,1 . . . p1,n
...

pm,1 . . . pm,n

t1
...
tm

with −→wi the variables appearing in −→π1.

3.2 Special Cases
There are two special cases that occur through the compilation.

Terminal Case The first one is the terminal case of the algorithm, it is the case when n = 0,
i.e. when there are no variables anymore for the matching. In this case, the problem is compiled
into the first return term, that is a problem of the form

() [` P]

Γ `

t1
...
tm

8

is compiled into t1.
At this point, to ensure that the problem given by the user at the beginning was correct, we

may check if the type of t1 is P . If not, then the predicate was incorrect, and an error can be
raised.

Erasure of a variable Another special case is the one when the first column in the matrix of
patterns consists only of variables, that is the problem is of the following form:

(x1 x2 . . . xn) [−→w1, x
′
1(−→π1), . . . ,−→wn, x

′
n(−→πn) ` P]

Γ `

v p1,2 . . . p1,n
...

v pm,2 . . . pm,n

t1
...
tm

Here we can make the first variable disappear by replacing v in the return terms by x1.

3.3 Generic Case
In the generic case, the idea is to have a simple match on x1 — that will be called later the

“master match”, and in each branch to “remember” the head constructor of x1.
To do this the algorithm first classes the lines of the pattern matrix (and the corresponding

return terms) by the head constructor of the first pattern. In the branch corresponding to
the constructor Ci, a list of variables −→z is introduced (as much as Ci takes arguments). In
this branch, only the lines corresponding to the constructor Ci are reproduced, and the −→z are
matched against the arguments of this constructor in the pattern, i.e. if the first pattern of
the line is Ciq1 . . . qri then the −→z are matched against the patterns −→q . In a way, the complex
patterns of the first column are classed by head constructor, and then decomposed. The lines
with a variable in the first column are reproduced in each branch, as they can unify against every
head constructor for x1. The pattern-matching problem constructed for each branch — what we
call a subproblem – is then recursively compiled.

This general mechanism is however not good enough to achieve the goals given in section 2.5.
This is why some more mechanisms have been added.

The first one is the generalization. The aim of generalization is that in every branch of the
master match the form of x1 is remembered, in the sense that all types depending on x1 take
into account that x1 has the head constructor Ci. In order to do this, the return term in each
branch does not correspond directly to the compiled subproblem, but to a function taking every
element of the context depending on x1 as argument, and returning the compiled subproblem.
The whole master match is then applied to all the elements of the context depending on x1.
Through this, the dependence on the more precise x1 in the branch is respected. This is the
mechanism ensuring that example 1 is compiled well, since it allows that the compilation of the
matching on v takes the form of n into account.

The second one is the introduction of an intermediary matching problem within each branch.
Its aim is to ensure that the recursive call in the branch is done in a context where the type of
x1 indeed unifies with the pattern that was given for it in the in clause, that is the patterns that
we called −→π1. The problem looks like this

(−→
b1
′
)

[
−→
b1
′ ` sT]

Γi `
(−→π1

v

) (
si
I

)

9

where the
−→
b1
′ are the arguments of the type of x1 in the branch, that is the ones that should

be unified with the −→π1, si is the solution to the subproblem created in the branch (and obtained
by recursive call of the compilation), I is a filler that is returned in all impossible cases. With
this intermediary match, the algorithm is capable of taking into account the presence of some
patterns in the in clause, and this feature enables the correct compilation of example 2.

Finally, to ensure the well-typing of these intermediary branches, a predicate has to be designed
for the master match, the intermediary match and the subproblems. For the subproblems, the
predicate is easy, keeping P works just fine. However the addition of an intermediary match in
each branch forces the creation of a more complex return predicate, as the type of the filler is
not the same as the one of the subproblem. Therefore, the return predicates of the intermediary
match and of the master match both use a two-line matching problem very similar to the one of
the intermediary matching, that is

(−→y1
−→
b2 , . . .

−→
bn

)
[` S]

Γ,−→y1 :
−→
B1, x

′
1 : I1

−→a1−→y1,−→γ ′′ :
−→
Γ ′′ `

(−→π1 −→π2 . . . −→πn
v

) (
P

True

)

The variables on which the matching is done are not exactly the same, but the idea is the same
as for the intermediary match: if the arguments of the types unify with the patterns they are
supposed to respect, then the type of the returned element corresponds to P , and if not we get
a filler (which this time is True and not I).

3.4 Properties of the Algorithm
Termination The termination of the algorithm can be proven by considering the multiset of
the maximal depth of the patterns on each column of the pattern matrix. The depth of a pattern
is defined to be 0 if the pattern is a variable, and the successor of the maximal depth of its
arguments if it is constructed with a constructor.

Indeed this multiset is strictly less for each recursive call of the compilation as it was initially:
in the case of the suppression of a variable because there is a strict inclusion of one multiset in
the other, and in the generic case because the patterns for the variables x2 to xn do not change,
and the variables introduced are matched against a pattern with depth at least one unit less
than the maximal depth of the patterns x1 was matched against. Since the set of all multisets
of integers is well-founded, the algorithm must terminate.

However, at each steps some more matching problems are created for the return predicates.
The depth of these matching problems cannot be easily controlled. This is one of the reasons why
I designed another algorithm that cannot make the use of patterns in the in clauses, but in return
does not create matching problems for the return predicate, as these were introduced precisely
in order to handle the patterns in the in clauses. This algorithm is just a weaker version of the
one exposed above, but is useful here: the matching problems created for the return predicates
can be compiled with this algorithm and not the one exposed here, so that even if we do not
precisely control the behavior of these matching problems it does not interfere with the proof of
termination given above.

Correctness Proving the correctness of the algorithm was not a central point of the internship,
and has not been done thoroughly. However, it could be done without too much difficulty by
checking that given solutions to all the new problems created by a step of compilation, arranging
them together as done by the algorithm indeed gives a solution to the initial compilation problem.

10

Complexity As for any algorithm, the complexity of the algorithm is a question that appears
to be important. Here, as any generic step generates many new subproblems, each of them being
recursively compiled, the complexity is at least exponential, and for sure very bad. However,
this is not so important, as the entries considered in Coq are entered by a human, so that the
size of the matrix of pattern rarely goes beyond 5 × 5, with patterns with a depth also mostly
beyond 5. Therefore, even with an exponential complexity the working time still is reasonable
in real-life situations.

Exhaustiveness and Non-Redundancy An other classical thing in the case of pattern-
matching is to be able to check that the pattern-matrix used is exhaustive and not redundant.
Exhaustiveness means that each possible sets of objects x1 . . . xn having the correct types unifies
with at least a line in the pattern-matrix, and non-redundancy means that for each line there
exists a set of objects x1 . . . xn having the correct types that can be matched with this line and
no one above, i.e. that all lines are useful.

Checking the non-redundancy can be done during the compilation: each time the terminal
case appears, the return term in which the whole matching was compiled can be flagged. At the
end of the compilation, unflagged return term correspond to redundant lines, so redundancy can
be detected — and an error possibly raised.

Checking the exhaustiveness is however not easy to do here, nor really wanted, as the pos-
sibility of giving a pattern in the in clause precisely aims to avoid needing to add lines only to
preserve exhaustiveness, even if we know there are useless given the type of the objects.

Conclusion

3.5 Results
The main aim of the internship was to design an algorithm for compilation of pattern-matching
problems in Coq able to handle in a correct and predictable way examples like the ones presented
in section 2.5, in particular without making use of axiom K. This aim was reached with the design
of two algorithms handling this task, and with the redaction of an article describing them.

However, there still is work to do around the algorithm I designed, that I lacked time to
undertake myself: implementing it in Coq, study the relation of this algorithm with K and its
behavior in presence of definition — in order to perhaps modify it and make it better —, prove
its correctness more thoroughly than I did, study the possibility of checking exhaustiveness of
the initial pattern matrix . . .

3.6 Thanks
As for myself, this internship was very pleasing and instructive, as I learned a lot on Coq, type
theory and general proof checking. For this I would like to thank a lot my tutor Hugo Herbelin for
spending a lot of time working with me and proofreading the many versions of my article, Daniel
de Rauglaudre and Matej Kosik for sharing their office with me and the many — productive and
not so productive — talks we had, and all the interns, PhD students and postdoctoral students
of the team PPS for welcoming me.

11

Appendices
A Induction Rules for the CoC
Here are the induction rules for the CoC, including the rules associated with the conversion of
types. Greek letters denote contexts, capital roman letter denote generic objects, and lower case
letters stand for the variables, represented with integers.

The star represents the empty context, |Γ| is the length of the context Γ and [N/x]Q is the
object Q where all occurrences of the variable x have been replaced by the object N .

These rules are presented more thoroughly in [4].

Construction of a Context

• ∗ ` ∗

• Γ ` ∆

Γ, x : ∆ ` ∗

• Γ `M : ∗
Γ, x : M ` ∗

Product Formation

• Γ, x : M ` ∆

Γ ` ∀x : M,∆

• Γ, x : M1 `M2 : ∗
Γ ` ∀x : M1,M2 : ∗

Rules for the Other Constructors

• Γ ` ∗
Γ ` l : Γ/l

if l ≤ |Γ|

• Γ, x : M1 `M2 : P

Γ ` (λx : M1 ·M2) : ∀x : M1, P

• Γ `M : ∀x : P,Q Γ ` N : P

Γ ` (M N) : [N/x]Q

Rules for Type Conversions

• Γ ` ∆

Γ ` ∆ ∼= ∆

• Γ `M : N

Γ `M ∼= M

12

• Γ `M ∼= N

Γ ` N ∼= M

• Γ `M ∼= N Γ ` N ∼= P

Γ `M ∼= P

• Γ ` P1
∼= P2 Γ, x : P1 `M1

∼= M2

Γ ` ∀x : P1,M1
∼= ∀x : P2,M2

• Γ ` P1
∼= P2 Γ, x : P1 `M1

∼= M2 Γ, x : P1 `M1 : N

Γ ` λx : P1 ·M1
∼= λx : P2 ·M2

• Γ ` (M1 N1) : P Γ `M1
∼= M2 Γ ` N1

∼= N2

Γ ` (M1 N1) ∼= (M2 N2)

• Γ, x : A `M : P Γ ` N ∼= A

Γ ` ((λx : A ·M) N) ∼= [N/x]M

• Γ `M : P Γ ` P ∼= Q

Γ `M : Q

B Compilation Example
To make things a bit clearer, here is an example of the compilation. The context is the following:
Inductive Ind : bool -> Set :=

| C : forall b : bool , (if b then nat else bool) -> Ind b.

Variable v : Ind true.

and we want to compile the following definition
Definition w :=
match v in Ind true return nat with

| C _ O => O
| C _ (S n) => n

end.

The first round of compilation gives
Definition w :=
match v in Ind b return (if b then nat else True) with

| C b t =>
match b return (if b then nat else True) with

| true =>
match b, t return nat with

| _, O => O
| _, S n => n

end
| false => I

end
end.

The second one processes the second level of matching, and gives, once we δ-reduce the
if-then-else and simplify the abstraction, (as the Coq compiler automatically does) for more
readability:

13

Definition w :=
match v in Ind b return (if b then nat else True) with

| C b t =>
match b return ((if b then nat else bool) -> if b then nat else True) with

| true => fun (t : nat) =>
match return (forall t : nat , nat) with

| =>
match b, t return nat with

| _, O => O
| _, S n => n

end
end
| false => fun (t : bool) =>
match return (forall t : bool , True) with

| => I
end

end t
end.

A third step is the application of the first special case for the matching with no variables,
after applying it to the two places where it can be done, we get
Definition w :=
match v in Ind b return (if b then nat else True) with

| C b t =>
match b return ((if b then nat else bool) -> if b then nat else True) with

| true => fun (t : nat) =>
match b, t return nat with

| _, O => O
| _, S n => n

end
| false => fun (t : bool) => I

end t
end.

Now we still have to compile the matching on b and t, it first gives (second special case)
Definition w :=
match v in Ind b return (if b then nat else True) with

| C b t =>
match b return ((if b then nat else bool) -> if b then nat else True) with

| true => fun (t : nat) =>
match t return nat with

| O => O
| S n => n

end
| false => fun (t : bool) => I

end t
end.

and then, after two more steps of compilation, the first one expanding the matching on t and
the second one making it more compact, the algorithm terminates, and gives
Definition w :=
match v in Ind b return (if b then nat else True) with

| C b t =>
match b return ((if b then nat else bool) -> if b then nat else True) with

| true => fun (t : nat) =>
match t return nat with

| O => O
| S n => n

end
| false => fun (t : bool) => I

14

end t
end.

which is well-typed in Coq and composed only of simple matchings, as expected.

C Bibliography

References
[1] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development. Springer,

2015.

[2] The Coq Development Team. The Coq Proof Assistant: Reference Manual, 2016.

[3] H. Goguen, C. McBride, and J. McKinna. Eliminating dependent pattern matching. In
Algebra, Meaning, and Computation: Essays dedicated to Joseph A. Goguen on the Occasion
of His 65th Birthday, pages 521–540. Springer, 2006.

[4] G. Huet and T. Coquand. The Calculus of Constructions. Information and Computation,
76, 1984.

[5] G. Huet, G. Kahn, and C. Paulin-Mohring. The Coq Proof Assistant: A Tutorial, 2016.

D Article

15

An Algorithm for the Compilation of Dependent
Pattern-Matching without Axiom K

Meven Bertrand, under supervision from Hugo Herbelin

August 28, 2016

Abstract

The aim of this article is to present an algorithm that was designed in order to compile the pattern-
matching in Coq. The main difficulties of this compilation are that the very powerful dependent
typing system of Coq is responsible for a lot of dependencies between objects and types, a thing
we need to be very careful with when compiling a pattern-matching. The second thing is the non-
provability of Streicher’s axiom K in Coq, making it more difficult to handle definitions, as compared
to the algorithm in place in Agda, that makes an intensive use of it, for instance.

1 General Presentation

The context of the whole article is the type theory of Coq, namely the Calculus of Inductive Constructions.
The fragments of code (in true type police) are written in Gallina, the concrete language of the tool Coq.

1.1 Definitions
Inductive Types All objects we will be working for belong to inductive types. Inductive types are
types defined by giving some constructors, each of them taking arguments and constructing an element
of the type. The generic definition of an inductive type in Coq looks like this:

Inductive I(−→a :
−→
A) : ∀−→b :

−→
B,S :=

|C1 : ∀−→z1 :
−→
Z1, I

−→a −→b1
...
|Cn : ∀−→zn :

−→
Zn, I

−→a −→bn
here the type defined is I, of sort S. An object in this type can be constructed with any of the

constructors Ci, the constructor Ci acting as a function taking some arguments −→zi :
−→
Zi and returning an

object of type I−→a −→bi , with bi possibly depending on the zi and so that
−→
bi is of type

−→
B .

In fact, the definition of an inductive type is more exactly the definition of a whole family of types,
depending on some arguments. Some of these arguments do not vary in the definition (the ones called −→a
in the generic definition), they are called parameters. Others on the contrary may vary (the ones called−→
bi), these are called indexes.

Not every definition of this kind is accepted by Coq: there are some guarding conditions on the −→zi
in order to allow the use of I in the types

−→
Zi while preserving the fact that the objects constructed do

not violate the condition that any reduction in Coq terminates.

Pattern definition A pattern p is (in BNF-notation)

p ::= _ | v | C1 p . . . p︸ ︷︷ ︸
r1

| C1 p . . . p︸ ︷︷ ︸
r1

as θ | . . . | Cn p . . . p︸ ︷︷ ︸
rn

| Cn p . . . p︸ ︷︷ ︸
rn

as θ

1

where v denotes a variable, and Ci are all constructors of inductive types defined before the pattern is
used, ri being the arity of Ci. For any pattern of the form Cp . . . p or Cp . . . p as θ, the constructor C
is called the head constructor of the pattern.

In the definition of the pattern here we allow the use of the underscore as a joker symbol, its aim
is to enhance readability while programming by allowing not to name certain useless variables. In a
theoretical context, we get rid of them and consider that all patterns are of the BNF form

p := v | C1 p . . . p︸ ︷︷ ︸
r1

| C1 p . . . p︸ ︷︷ ︸
r1

as θ | . . . | Cn p . . . p︸ ︷︷ ︸
rn

| Cn p . . . p︸ ︷︷ ︸
rn

as θ

Match between a pattern and a term We say that a term t matches with the pattern p if one of
the three following cases apply:

• p is a variable

• p is of the form Ci(pi,1, . . . pi,ri) and t is of the form Ci(ti,1, . . . ti,ri) and each tj matches with the
corresponding pj

• p is of the form Ci(pi,1, . . . pi,ri) as θ and t is of the form Ci(ti,1, . . . ti,ri) and each tj matches with
the corresponding pj

Context Finally, a context is a succession of two kind of constructions:

• Declaration: declaring a new variable by giving its name and its type. It corresponds to the
keyword Variable of Gallina.

• Definition: defining a new variable by giving its name and what it is equal to, i.e. the new variable
is only an alias for the whole term given. It corresponds to the keyword Define of Gallina, or to
the construction let in.

Each declaration/definition can refer to every object declared or defined before it.

1.2 Basic problem
A pattern-matching problem consists of a context Γ, a list of variables x1 . . . xn all declared in Γ

with xi having the inductive type Ii−→ai
−→
bi (with −→ai the parameters, of types

−→
Ai and

−→
bi the indexes of

types
−→
Bi) and a list of pairs consisting of a list of patterns pi,1 . . . pi,n and an associated return term ti

using the variables defined in Γ, and the ones appearing in the pi,j (either as variable pattern or after
a as). Finally a return predicate P may be given, this predicate is valid in a context Γ,−→y1 :

−→
B1, x

′
1 :

I1
−→a1−→y1, . . . ,−→yn :

−→
Bn, x

′
n : In

−→an−→yn. We chose to focus on declared variables instead of considering possibly
defined variables, as this will make the work easier later (section 3.3), as we will explain it there.

Such a problem will be later displayed under the form:

(x1 . . . xn) [−→y1, x′1, . . . ,−→yn, x′n ` P]

Γ `

p1,1 . . . p1,n
...

pm,1 . . . pm,n

t1
...
tm

The Gallina syntax corresponding to this problem is the following:

match x1 as x′1 in I1_−→y1, . . . , xn as x′n in In_−→yn return P with

Γ `
| p1,1 . . . p1,n ⇒ t1

|
...

...
...

| pm,1 . . . pm,n ⇒ tm
end.

where the underscore in Ii stands for as many underscore as Ii has parameters.

2

We want to compile such a pattern-matching, i.e. we want to find a term t(x1 . . . xn) such that
Γ ` t(x1 . . . xn) : T and if vi are instances of the types Ii−→ai

−→
bi for 1 ≤ i ≤ n, and j is the minimal integer

such that for every 1 ≤ i ≤ n, vi matches with the pattern pj,i, then t(v1 . . . vn) = t′j where t′j is the term
tj where every variable of the patterns has been replaced by the subterm of the xi it matched against,
and the equality is up to β, ι, δ and ζ reduction.

In order to do this with “real” variables xi we will decompose the complex match (arbitrary complex
patterns, many variables) into a series of simple matches, and these simple matches will be processed
later on in the compilation process. We call simple match a matching problem with only one variable
and where all patterns pj,1 are of the form Ci(v1 . . . vri) (a constructor applied to variables).

1.3 Development directions
We will follow two directions of development: first, we will try to compile a simpler version of the Coq

syntax, namely the one without any as, in or return clauses between the keywords match and with
(there still may be some as appearing in the patterns). This will force us to guess the return predicate
during the compilation. Then, we will on the contrary introduce more complexity on the return predicate,
namely we will introduce patterns in the in clauses as well.

2 First algorithm

The Gallina syntax for this first problem is much simpler than the previous since most clauses are
absent:

match x1, . . . , xn with

Γ `
| p1,1 . . . p1,n ⇒ t1

|
...

...
...

| pm,1 . . . pm,n ⇒ tm
end.

To compile this problem we however introduce again the return predicate and the associated x′i and−→yi , only that now the predicate is unknown, and is therefore replaced by an existential variable. To be
able to do the compilation, we will need to give a value to this existential variable ?P , that is why we
need the whole term above to have a type, that can be inferred by Coq, and that we name T . The
theoretical translation of the syntax of above is thus:

(x1 . . . xn) [−→y1, x′1, . . . ,−→yn, x′n `?P]

Γ `

p1,1 . . . p1,n
...

pm,1 . . . pm,n

t1
...
tm

 : T

The idea is to proceed to a double induction: we first decrease the complexity of the patterns corre-
sponding to x1 by splitting the problem until there are only variables. In this case, we just remove x1
and replace it in the ti, getting one variable less to process. In the end we have a matching problem with
no variables at all, in which case we can safely return the first return term t1.

2.1 First special case: terminal case
When n = 0, the problem is of the form

() [`?P]

Γ ` ()

t1
...
tm

 : T

3

Since the first pattern always matches, this can be compiled into the single term t1, so the only work
to do is to check that t1 has indeed the type T and to fix the value of ?P to T to ensure that the term
is well typed. This is then compiled into the single term t1.

At this point we may want to flag as used the return term from which t1 derives, so that at the end
of compilation we can check for unused pattern lines, that is pattern lines that are not flagged. These
pattern lines are redundant, in the sense that all the term list that match with them also match with
pattern lists higher in the pattern matrix. We may then raise an error for the user, as such a situation
should not happen.

2.2 Second special case: only trivial patterns for x1

When n > 0 and all patterns corresponding to the variable x1 are variables themselves, i.e. we have

(x1 . . . xn) [−→y1, x′1, . . . ,−→yn, x′n `?P]

Γ `

v1 p1,2 . . . p1,n
...

vm p1,2 . . . pm,n

t1
...
tm

 : T

with all the vi being variables.
Here as said before we can get rid of x1 from the list of matching variables by transforming this

matching into
(x2 . . . xn) [−→y2, x′2, . . . ,−→yn, x′n `?P]

Γ `

p1,2 . . . p1,n
...

p1,2 . . . pm,n

t1 [x1/v1]
...

tm [x1/vm]

 : T

with t[x/y] denoting the term t where all occurrences of y have been replaced by x.

2.3 General case
Here there is a little bit of work, the idea is to divide the main problem in different subproblems after

the first constructor of the patterns pi,1, and to then point to the good pattern by using a “master match”
on x1, which will be a simple match. The matching problem is of the form

(x1 . . . xn) [−→y1, x′1, . . . ,−→yn, x′n `?P]

Γ′∆Γ′′ `

p1
−→p1
...

pm
−→pn

t1
...
tm

 : T

where ∆ is the first time x1 or one of the
−→
b1 is declared. We demand that x1 and be declared, because

this ensures that the new context we will build for each branch (the ones we will call Γi later) are strictly
more precise than Γ, so that no typing error occurs in Γi, as it may be the case if x1 is defined.

More precisely, I1−→a1
−→
b1 is the inductive type of x1 so let

Ci : ∀−→φi :
−→
Φi, I1

−→a1,
−→
b1,i(
−→
φi)

for 1 ≤ i ≤ k be the constructors of this type. Define also ri the arity of the constructor Ci.
Define pi,1 . . . pi,mi

the patterns pk with head constructor Ci, such that the order is preserved. Define
also −→pi,j and ti,j the pattern list (resp. output term) associated with pi,j , and −→qi,j the list of patterns
such that pi,j is either Ci(

−→qi,j) or Ci(
−→qi,j) as θi,j . Finally, the patterns may also be variables, in this

case we do not have any head constructor, so we define pω,1 to pω,mω the patterns reduced to a single
variable, and again the associated

−−→
pω, j and tω,j .

4

Having all this definition, we can for each constructor Ci build a new context Γi defined as

Γ′,∆,Γ′′,−→z :
−→
Φi,
−→
b1

′ :=
−→
b1,i(
−→z), x′1 := Ci(z1 . . . zri) : I1

−→a1
−→
b1

′,Γ′′[
−→
b1

′/
−→
b1][x′1/x1]

The first Γ′′ is only kept for convenience with the manipulation of de Bruijn indexes but no term refers
to it in the rest of the processing, and by substitution of the list

−→
b1

′ to
−→
b1 we mean substitution of each

element of the second list by the corresponding one of the first.
Using this context, define for each constructor Ci the subproblem

(z1 . . . zri x2 . . . xn) [−→w1, z1, . . . ,
−→wri , zri ,

−→y2, x′2, . . . ,−→yn, x′n `?Q]

Γi `

−→qi,1 −→pi,1
...−−→qi,mi

−−→pi,mi−→q −→pi,1
...−→q −−→pi,mi

ti,1[x′1/x1][
−→
b1

′/
−→
b1][x′1/θi,1]

...
ti,mi [x

′
1/x1][

−→
b1

′/
−→
b1][x′1/θi,mi]

tω,1[x′1/x1][
−→
b1

′/
−→
b1]

...
uω,mω [x′1/x1][

−→
b1

′/
−→
b1]

:?P

With the variable list −→q being a list of fresh variables, and −→wi have the type of the indexes of the
(inductive) types

−→
Φi. The θi,j are the variables that may be bound to the pattern pi,j by an as clause.

Remark that the type of the whole term is now ?P (which has a dependence on the newly defined −→y1 ′
and x′1), and that we introduced a new existential variable to be the return predicate of the subproblem.
As before, the typing condition that determines ?Q is that it must be equivalent to ?P .

If we name si the solution to the subproblem associated with the constructor Ci, and −→γ ′′ the list of
all variables defined in Γ′′ with

−→
Γ ′′ their types, then a solution to the whole problem is the term

Γ′,∆,Γ′′ `

(x1) [−→y1, x′1 ` ∀−→γ ′′ :
−→
Γ ′′, ?P]

C1(z1, . . . zr1) as x′1

...
Ck(z1 . . . zrk) as x′1

λ−→γ ′′ :
−→
Γ ′′ · s1
...

λ−→γ ′′ :
−→
Γ ′′ · sk

 : ∀−→γ ′′ :

−→
Γ ′′, T

−→γ ′′

where the generalization over Γ′′ is introduced in order to get rid of its duplication by forcing it to the
value of the original one. It can seem very heavy to just replicate all of Γ′′ without more selection, but
the compilation of Coq already contains a phase to get rid of the useless generalization, so this phase
will automatically simplify the expression.

3 Second Algorithm

In the second case we study, we have a return predicate P giving the awaited returned type, but it
can now depend in a more complex way on the type of the xi, namely instead of variables −→yi , we now
use patterns.

The Gallina syntax is therefore:

match x1 as x′1 in I1_−→π1, . . . , xn as x′n in In_−→πn return P with

Γ `
| p1,1 . . . p1,n ⇒ t1

|
...

...
...

| pm,1 . . . pm,n ⇒ tm
end.

5

with the −→πi being lists of patterns over the types of the indexes of xi, and the predicate P valid in a
context

Γ,−→w1 :
−→
W1, x

′
1 : I1

−→a1−→π1(−→w1), . . . ,−→wn :
−→
Wn, x

′
n : In

−→a1−→πn(−→wn)

where
−→
Wi is a list of the types of the variables used in the patterns −→πi and −→πi(−→wi) denotes the list of

terms obtained when replacing the variables in the patterns −→πi with the −→wi.
We will write the associated problem under the form:

(x1 . . . xn) [−→w1, x
′
1(−→π1), . . . ,−→wn, x

′
n(−→πn) ` P]

Γ `

p1,1 . . . p1,n
...

pm,1 . . . pm,n

t1
...
tm

3.1 First special case
When n = 0 the problem is reduced to

() [` P]

Γ ` ()

t1
...
tm

The difference with section 2.1 is not very important, only that now P is given. So the only thing to
do is checking that t1 is of type P . If this is true, then a solution for the matching problem is the tern
t1.

Here flagging may be used the same way as in section 2.3 to spot the useless pattern lines and raise
an error if needed.

3.2 Second special case
In this case all patterns corresponding to x1 are reduced to variables, so the problem is of the form

(x1 . . . xn) [−→w1, x
′
1(−→π1), . . . ,−→wn, x

′
n(−→πn) ` P]

Γ `

v1 p1,2 . . . p1,n
...

vm pm,2 . . . pm,n

t1
...
tm

where the vi are all variables.

Here as the term P depends on the −→w1, the replacement is a bit more complex, namely we have to use
a matching for the return predicate: call sT a solution to the problem

(−→
b1

)
[` S]

Γ,−→w2, x
′
2(−→π2), . . . ,−→wn, x

′
n(−→πn) `

(−→π1
v

) (
P [x1/x

′
1]

True

)

then a solution to the whole problem is

(x2 . . . xn) [−→w2, x
′
2(−→π2), . . . ,−→wn, x

′
n(−→πn) ` sT]

Γ `

p1,2 . . . p1,n
...

pm,2 . . . pm,n

t1[x′1/v1]
...

tm[x′1/vm]

where S is the sort of the type P . The idea is that if
−→
b1 do indeed match with the pattern they are

supposed to, then it gives the awaited P (that can now be defined since the −→w1 appear in the branch),
and if not then it gives a filler (that we chose to be True). Remark that this matching is of the form

6

studied in section 2, so it can be processed with the first algorithm, in such a way that we never create
(at this point of the compilation) a new instance of the kind studied in section 3, which will be useful to
prove termination.

3.3 General case
For the general case, we will introduce subproblems associated with constructors, as we did in section

2.3. This will however be a bit more complex, as we will use some more intermediate matching problems
in order to filter the cases that are not allowed due to the patterns given for the types.

First, consider this matching problem, that we will use as a return predicate:
(−→y1
−→
b2 , . . .

−→
bn

)
[` S]

Γ,−→y1 :
−→
B1, x

′
1 : I1

−→a1−→y1,−→γ ′′ :
−→
Γ ′′ `

(−→π1 −→π2 . . . −→πn
v

) (
P

True

)

where S is the sort of the type P and Γ′′ is the list of the types of Γ′′, including the
−→
bi that are used in

the matching problem. We name sT a solution to this matching problem.

As we did in section 2.3, classify the patterns with their head constructor, and define the associated−→pi,j , −→qi,j , ti,j , −−→pω,j , tω,j and θi,j .
Now let us consider the constructor Ci : ∀−→φi :

−→
Φi, I1

−→a1
−→
b1,i(
−→
φi) of the type I1 of x1. For this constructor

define (again as in section 2.3) the context Γi to be:

Γ′,∆,Γ′′,−→z :
−→
Φi,
−→
b1

′ :=
−→
b1,i(
−→z), x′1 := Ci(z1 . . . zri) : I1

−→a1
−→
b1

′,Γ′′[
−→
b1

′/
−→
b1][x′1/x1]

and if
−→
W1 is the type of the variables −→w1 appearing in the patterns −→π1, then define Γ′

i to be:

Γi,
−→w1 :
−→
W1

Here we can build the subproblem associated with the constructor Ci, that is:

(z1 . . . zri x2 . . . xn) [−→w2, x
′
2(−→π2), . . . ,−→wn, x

′
n(−→πn) ` P]

Γ′
i `

−→qi,1 −→pi,1
...−−→qi,mi

−−→pi,mi−→q −→pi,1
...−→q −−→pi,mi

ti,1[x′1/x1][
−→
b1

′/
−→
b1][x′1/θi,1]

...
ti,mi [x

′
1/x1][

−→
b1

′/
−→
b1][x′1/θi,mi]

tω,1[x′1/x1][
−→
b1

′/
−→
b1]

...
uω,mω [x′1/x1][

−→
b1

′/
−→
b1]

with −→q having the same definition as in section 2.3, as well as x′1 and
−→
b1

′. Remark that the variables x′1
and −→w1 now appear in the context Γ′

i. Define si a solution to this subproblem.
Here we introduce an intermediary matching problem to ensure that the −→z match with the pattern−→π1, this matching problem is (−→

b1
′
)

[
−→
b1

′ ` sT]

Γi `
(−→π1

v

) (
si
I

)

with I the only constructor of the type True. Remark that in the branch where si appear the −→w1 are
defined since they are bound by the pattern matching. Therefore the context in which we defined si is
indeed the one it is used in in the branch.

7

If we have for each constructor a solution s′i to the problem just above, then the master match is:

Γ′,∆,Γ′′ `

(x1) [−→y1, x′1 ` ∀−→γ ′′ :
−→
Γ ′′, sT]

C1(z1, . . . zr1)

...
Ck′(z1 . . . zrk′)

λ−→γ ′′ · s′1
...

λ−→γ ′′ · s′k

−→γ ′′

Appendices
A Compilation example
To make things a bit clearer, here is an example of the compilation. The context is the following:
Inductive Ind : bool -> Set :=

| C : forall b : bool , (if b then nat else bool) -> Ind b.

Variable v : Ind true.

and we want to compile the following definition
Definition w :=
match v in Ind true return nat with

| C _ O => O
| C _ (S n) => n

end.

The first round of compilation gives
Definition w :=
match v in Ind b return (if b then nat else True) with

| C b t =>
match b return (if b then nat else True) with

| true =>
match b, t return nat with

| _, O => O
| _, S n => n

end
| false => I

end
end.

The second one processes the second level of matching, and gives, once we δ-reduce the if-then-else
and simplify the abstraction, (as the Coq-compiler automatically does) for more readability:
Definition w :=
match v in Ind b return (if b then nat else True) with

| C b t =>
match b return ((if b then nat else bool) -> if b then nat else True) with

| true => fun (t : nat) =>
match return (forall t : nat , nat) with

| =>
match b, t return nat with

| _, O => O
| _, S n => n

end
end
| false => fun (t : bool) =>
match return (forall t : bool , True) with

| => I
end

end t
end.

A third step is the application of the first special case for the matching with no variables, after
applying it to the two places where it can be done, we get

8

Definition w :=
match v in Ind b return (if b then nat else True) with

| C b t =>
match b return ((if b then nat else bool) -> if b then nat else True) with

| true => fun (t : nat) =>
match b, t return nat with

| _, O => O
| _, S n => n

end
| false => fun (t : bool) => I

end t
end.

Now we still have to compile the matching on b and t, it first gives (second special case)
Definition w :=
match v in Ind b return (if b then nat else True) with

| C b t =>
match b return ((if b then nat else bool) -> if b then nat else True) with

| true => fun (t : nat) =>
match t return nat with

| O => O
| S n => n

end
| false => fun (t : bool) => I

end t
end.

and then, after two more steps of compilation, the first one expanding the matching on t and the
second one making it more compact, the algorithm terminates, and gives
Definition w :=
match v in Ind b return (if b then nat else True) with

| C b t =>
match b return ((if b then nat else bool) -> if b then nat else True) with

| true => fun (t : nat) =>
match t return nat with

| O => O
| S n => n

end
| false => fun (t : bool) => I

end t
end.

which is well-typed in Coq and composed only of simple matchings, as expected.

9

	Introduction
	Coq and the Calculus of Inductive Constructions
	Calculus of Constructions: Terms and Types
	Inductive Constructions

	Patterns, Pattern-Matching
	Patterns
	Pattern-Matching Problem
	Compiling a Pattern-Matching Problem
	State of the Art
	Aim of the Dependent Pattern-Matching

	The Algorithm
	Problem Considered
	Special Cases
	Generic Case
	Properties of the Algorithm

	Conclusion
	Results
	Thanks

	Appendices
	Induction Rules for the CoC
	Compilation Example
	Bibliography
	Article

