
Internship Report – M2 Informatique Fondamentale
École Normale Supérieure de Lyon

Gradualizing the Calculus of Inductive
Constructions

Meven Bertrand

Under the Supervision of Nicolas Tabareau
Équipe Gallinette, Laboratoire des Sciences du Numérique de Nantes

In Collaboration with Éric Tanter
University of Chile & Inria Paris

August 30, 2019

I would like to thank those that made these last six months so valuable to me.
Nicolas and Éric, for guiding me all the way to this report. I was not really sure of where I was going, but thanks to you

I ended up with a result I am proud of.
The whole Gallinette team, for making me feel at home from day one and teaching me so much. I hope we have many

more passionate conversations, be it on obscure points of type theory or on the CDG Express.
Daniel, Marine, Valentin, Joanne, and all the friends and family that have been there every time I needed. I wouldn’t

have gone through these last months without collapsing, hadn’t you been there.
Tangi, for the good time we managed to share despite everything, and for the incredible lessons I’ve learned from you.

Farewell.

Contents

Report Overview 1

1 The Calculus of Inductive Constructions 2
1.1 The Calculus of Constructions . 2
1.2 Inductive Types . 4

2 Gradual Typing 5
2.1 Gradually Typed Lambda Calculus . 6
2.2 Properties of Gradual Type Systems . 8
2.3 Beyond Simply Typed Lambda Calculus . 9

3 Type System for Gradual CIC 9
3.1 Gradually Typed CIC . 10
3.2 Cast Insertion . 11
3.3 Instrumenting Refinement Algorithms . 12
3.4 Gradual Theorems . 12

4 Realizing the Cast Operator 13
4.1 Syntactical Models . 13
4.2 Battle plan . 14
4.3 Realizing the Cast . 15
4.4 Realizing the Intermediate Language . 16
4.5 Properties . 18

5 Use Examples 19
5.1 Vectors . 19
5.2 η-rule for inductive types . 20
5.3 Non-terminating terms actually terminate . 20

Conclusion and Future Work 20

References 20

Appendices 23

Report Overview

Gradual Typing Gradual typing is a kind of typing discipline that aims for a cohabitation of static and dynamic
types in one and the same type system, with the possibility for the programmer to control to which extent each
piece of code is dynamically or statically typed. The aim is to combine in one system the advantages of both
worlds: the static parts come with the usual strong guarantees and efficiency of static types, while the dynamic
parts have the flexibility of dynamically typed languages. The most important feature of gradual typing is
that this cohabitation is disciplined: a gradually typed language does not just consist of a juxtaposition of a
dynamically and a statically typed language. Instead, it gives guarantees on the behaviour of a program when
evolving its types alongside the dynamic-static axis, allowing for a smooth transition.

There are two ways to look at gradual typing: one can see it as adding an optional typing discipline to
dynamically typed languages, or adding a dynamic component to a static type system. The first alternative
appears in practice, for instance in Python starting at version 3.5 [RLL14]. However, from the point of view of
theory, as studied type systems are mainly static, the usual challenge is to turn one’s favourite (static) type
system gradual. This is the approach we want to follow: gradualizing the Calculus of Inductive Constructions,
which is most definitely our favourite type system.

The Calculus of Inductive Constructions The Calculus of Inductive Constructions (CIC) is the logical and
type-theoretic formalism behind a whole set of proof assistants, notably Coq [The19]. Following the Curry-
Howard isomorphism, it can be considered both as a higher-order logic, and as a type system for programs.
It is in a way the pinnacle of this isomorphism, insofar as it is very close to the limit of how powerful and

1

expressive a type system can get without becoming inconsistent – and thus worthless – as a logic. Of course,
this comes with a cost, and programming with CIC is quite complex: the more expressive types get, the harder
it is to make programs type-check…

Gradualizing CIC Although there had already been efforts into applying the gradual approach to type systems
close to CIC, at the starting time of the internship, a gradual counterpart to the whole CIC had not yet been
achieved. Indeed, CIC presents many challenges to gradualization: dependent types, the universe hierarchy,
and inductive types, all distinctive features of CIC, require a careful treatment.

Conceiving a gradual counterpart to CIC is however an interesting problem for multiple reasons. From the
practical point of view, it could make programming in Coq and other proof assistants easier, by allowing the
programmer to use the flexibility added by the gradual approach. From the theoretical point of view, it is an
important test for gradual typing to try and apply it to a type system as complex as CIC. On the other side,
gradualization requires some tools that do not belong to vanilla CIC, such as errors, making Gradual CIC a very
interesting use case for the recent work on those.

Our contribution is to give a first description of a Gradual Calculus of Inductive Constructions, decomposed
in two phases. In a first phase, we extend CIC to a gradual type system GCIC, by modifying its typing rules. Terms
in this new system are compiled back to terms in CIC by using a few axioms. The second phase aims at giving
a semantics, and in particular a computational content, to those axioms. Our main tool there are the recently
developed notion of syntactical models.

There are still some technical details pertaining to general inductive types and the universe hierarchy to
make precise, but once those are cleared, this contribution should make it into a full-fledged paper.

Outline of the report Section 1 presents CIC, and Section 2 presents gradual typing. Both aim at giving quick
presentations of those two lines of work, and thus contain mostly classical results. They are as self-contained
as possible, and hopefully complete enough to enable the reader to follow the rest of the report. Section 3
presents the first phase towards the gradualization of CIC, as we just described above. Section 4 presents the
second phase. Those two sections constitute the core of this report, and, apart from Section 4.1, are mostly
novel work. We tried to keep a balance between avoiding too much technicalities, while still exposing in some
details the crucial points. Finally, Section 5 gives some concrete examples of the system described in the two
previous sections. Although it lies at the very end, the reader might wish to look at it earlier in order to get a
feeling of what we wish to achieve. Of particular interest is the discovery we expose there that the universe
hierarchy prevents non-terminating behaviour usual of gradual type systems.

1. The Calculus of Inductive Constructions

The Calculus of Inductive Constructions is a type system that consists of two main ingredients. The first
one is the Calculus of Constructions (CCω), a formalism introduced by Coquand and Huet [CH88] which can
be seen at the same time as a higher order logic and as a programming language with polymorphic types,
corresponding to each other via the Curry-Howard isomorphism. CCω fits in the general picture of Pure Type
Systems [Bar91], and can thus be seen as a (very strong) extension of the simply typed lambda calculus. It is
already very powerful and expressive enough to encode inductively defined datatypes, for instance integers.
However, this encoding is not quite satisfactory, hence the introduction of the second ingredient: inductive
types as a primitive construction, as introduced by Paulin-Mohring [Pau93].

In Section 1.1, we give a quick introduction/recap of CCω , and present inductive types in Section 1.2, following
[Pau15]. Apart from making the report self-contained, we also wish to present the precise version of CIC we
use, as there are a huge number of variants for it.

1.1. The Calculus of Constructions
As we already hinted, the Calculus of Constructions is a version on steroids of the simply typed lambda

calculus (STLC). In STLC, the only binding allowed is terms binding other terms, and types exist mainly to
prevent reduction from diverging. In CCω , in contrast, terms and types have bindings, both for terms and
types. This makes types and terms much more similar, and they are given by the same grammar. To be able to
have the property that any term has a type, and avoid paradoxes linked with circularity, there is also a need
for a hierarchy of universes □i indexed by integers, each being the type of the previous. The notion of type
becomes a consequence of typing: a type is anything which has type □i for some i.

In Figure 1 we give the grammar to form terms t, contexts Γ, as well as the typing rules: ⊢ Γ means that the
context Γ is well-formed, and Γ ⊢ t : T means that in the context Γ the term t has type T . Finally, the relation
t ≡ t′ states that the terms t and t′ are convertible, i.e. they should be seen as equal via calculation, just as

2

for β-equivalence in STLC. Similarly to STLC, the main rule is β-reduction – although more will be added when
extending CCω to CIC and beyond. It can be performed anywhere in a term, hence the congruence closure.

Terms:
t ::= x variable

| □i universe
| t t application
| λ x : t.t abstraction
| Π x : t.t dependent function type/universal quantification

Contexts:
Γ := · | x : t, Γ

Typing:

⊢ ·
Γ ⊢ A : □i

⊢ Γ, x : A

Γ ⊢ B : □i Γ ⊢ x : A

Γ, y : B ⊢ x : A

⊢ Γ, x : A

Γ, x : A ⊢ x : A

⊢ Γ
Γ ⊢ □i : □i+1

Γ, x : A ⊢ t : B Γ ⊢ Π x : A.B : □i

Γ ⊢ λ x : A.t : Π x : A.B

Γ, x : A ⊢ B : □i Γ ⊢ A : □j

Γ ⊢ Π x : A.B : □max(i,j)

Γ ⊢ t : Π x : A.B Γ ⊢ u : A

Γ ⊢ t u : B{x := u}

Γ ⊢ t : A A ≡ B Γ ⊢ B : □i

Γ ⊢ t : B

Conversion:

(λ x : A.t) u 7→β t{x := u} + rules for congruence closure

Figure 1: Grammar and typing rules of the Calculus of Constructions

We did not include all the features of the theory of Coq, notably the impredicative sort Prop, in order to
focus on the core features of CIC we mentioned in the introduction, and simplify the presentation a bit. To
improve readability further, we use a few notational shortcuts:

• if the index of □i is not crucial, we drop it, writing only □
• we replace Π x : A.B by A → B if x does not appear in B (non-dependent function type)

• we compress multiple λ andΠ binders as one, e.g. we write λ(x : A), (y : B).t rather than λ x : A. λ y : B.t

The system CCω has many good properties, among which we want to mention two, as the wish to keep
them will guide some choices in the next sections.

Proposition 1 (Decidable typing)
Given a term t and a context Γ, the two following problems are decidable:

• type inference: given a term t and a context Γ, is there a term T such that Γ ⊢ t : T holds?

• type checking: given terms t and T and context Γ, is it true that Γ ⊢ t : T holds?

A crucial intermediate property is that ≡ is decidable, which in turn ensues from strong normalization and
confluence of 7→β . Thus, strong normalization is an important feature, as decidable type checking is a very
desirable feature when the type system under design is to be implemented.

Proposition 2 (Consistency)
Not all types are inhabited. In particular, there is no term of type Π x : □.x.

This property corresponds to the logical soundness of the system, as the typeΠ x : □.x is a way to represent
falsehood. Indeed, following the Curry-Howard isomorphism – and viewing Π as a universal quantification –
it states that all propositions are true, similarly to the principle of explosion of logic.

3

1.2. Inductive Types
Impredicative definitions The system CCω as just presented is already extremely powerful, both in terms of
which functions are definable, and of which logical predicates are expressible. In particular, one can give a
so-called impredicative encoding of usual data-structures, similar to what is done in untyped lambda calculus:
a data-structure is expressed as a (weakly) initial algebra for a signature. For instance booleans correspond
to the type Π X : □.X → X → X , product of A and B to Π X : □.(A → B → X) → X , natural numbers to
Π X : □.X → (X → X) → X , and so on. This works fine to do recursive definitions. Following our example,
if N is the type just given for natural numbers, a term n of type N can be used as a recursor, as follows

λ(A : □), (a : A), (f : A → A), (n : N).n A a f : Π A : □.A → (A → A) → N → A

However, this encoding has a drawback: without further assumptions on the system, the impredicative encod-
ing only gives a weakly initial algebra and not an initial algebra. This means that the impredicative encoding is
not well-suited to do induction, and indeed in CCω one cannot prove that the above N satisfies the following
induction principle (recall that Π corresponds to universal quantification):

Π P : N → □.P (z) → (Π n : N.P n → P (S n)) → Π n : N.P n

where z := λ(X : □), (x : X), (f : X → X).x and S := λ(n : N), (X : □), (x : X), (f : X → X).f (n X x f) are
the respective impredicative encodings of zero and successor.

Inductive Types This problem was noticed early on in the development of CCω , and an alternative was pro-
posed in [Pau93]: introducing a new concept to the theory that enables well-behaved inductive definitions.
Those are the so-called inductive types. A generic inductive definition looks like follows (in a syntax close to
Coq, see below for an example, and Appendix A for more):

Inductive I (x1 : A1) . . . (xm : Am) (y1 : B1) . . . (yn : Bn) : □i :=
| c1 : Π(z1

1 : U1
1), . . . , (z1

n1
: U1

n1
).I x1 . . . xm t1

1 . . . t1
n

...
| ck : Π(zk

1 : Uk
1), . . . , (zk

nk
: Uk

nk
).I x1 . . . xm tk

1 . . . tk
n

Such a definition adds to the syntax of CCω the new terms

I : Π(x1 : A1), . . . (xm : Am), (y1 : B1), . . . (yn : Bn).□i

and
cj : Π(x1 : A1), . . . , (xm : Am), (z1

1 : U1
1), . . . , (z1

n1
: U1

n1
).I x1 . . . xm t1

1 . . . t1
n

The term I is to be understood as a new type family, defined inductively by the constructors cj . For such a
definition to be correct, there are technical conditions related to well-typedness of the terms tj

i , as well as on
the way I itself can appear in the U j

i (the so-called positivity condition). We do not describe them here, the
details can be found in [Pau93], but these restrictions are crucial to ensure that the newly defined inductive
types behave well, in particular that they do not compromise strong normalization of the system.

Along with I and cj , a last term recI is generated, that should be understood as an induction principle for
I , expressing that I is initial. Intuitively, recI takes a type P depending on I and says that to inhabit P for
an arbitrary inhabitant of I it suffices to inhabit P for all constructors. Giving an exact account of the shape
of that principle is again quite technical. We also refer to [Pau93] for the details, and rather give a simple
instance below, and more complex ones in Appendix A.

This principle goes with a new reduction rule, dubbed ι-reduction and written 7→ι, saying that the term
defined by recI reduces to the case given for constructor cj in case when used on a term with head constructor
cj . Again, see below and in Appendix A for examples.

These inductive definitions turn CCω into an open system that can be extended with new inductive types.
To remain in a closed syntax with a finite number of constructors we work with CIC, a system obtained by
adding to CCω a finite but arbitrary amount of well-formed inductive types. All definitions we give handle
generic inductive types so that they work whatever we consider for CIC.

Examples of inductive types A very simple concrete example of the previous generic definitions are the
booleans, given by:

Inductive B : □ :=
| true : B
| false : B

4

The corresponding induction principle, with its computation rules, are

recB : Π P : B → □.(P true) → (P false) → Π b : B.P b

recB P ttrue tfalse true 7→ι ttrue recB P ttrue tfalse false 7→ι tfalse

In the next sections, we usemultiple usual inductive types, both as examples of our framework and as tools:
booleans B, natural numbers N, dependant sum Σ x : A.B, equality IdA a a′, vectors Vect A n, unit/true type
⊤, empty/false type⊥. Their definitions using the previous syntax are presented in full in Appendix A, together
with the obtained terms and reduction rules. When needed, we assume that the version of CIC we consider
contains at least those.

Encoding via equality An important distinction considering the arguments of inductive types is between
parameters and indices. Let I : Π(x1 : A1), . . . (xm : Am), (y1 : B1), . . . (yn : Bn).□i be an inductive family,
defined as above. The xi are called parameters and are uniform across constructors. The yi, on the other hand,
are called indices, and they depend on the constructor used. In particular, using the indices, one can possibly
exclude impossible constructors. For instance, a term of type Vect A (S n) cannot have been constructed with
constructor nil, as it constructs terms of type Vect A 0.

There is however a generic way to encode any inductive type in an indices-free way, using equalities. The
idea is to replace the indices with parameters, and to make all constructors take equalities between those
parameters and the indices of the original inductive. Given an inductive
Inductive I (x1 : A1) . . . (xm : Am) (y1 : B1) . . . (yn : Bn) : □i :=
| c1 : Π(z1

1 : U1
1), . . . , (z1

n1
: U1

n1
).I x1 . . . xm u1

1 . . . u1
n

...
| ck : Π(zk

1 : Uk
1), . . . , (zk

nk
: Uk

nk
).I x1 . . . xm uk

1 . . . uk
n

it can be transformed into
Inductive I ′ (x1 : A1) . . . (xm : Am) (y1 : B1) . . . (yn : Bn) : □i :=
| c′

1 : Π(z1
1 : U1

1), . . . , (z1
n1

: U1
n1

), (e1
1 : IdB1

1
y1 ũ1

1), . . . (e1
n : IdB1

n
yn ũ1

n).I x1 . . . xm y1 . . . yn

...
| c′

k : Π(zk
1 : Uk

1), . . . , (zk
nk

: Uk
nk

), (ek
1 : IdBk

1
y1 ũk

1), . . . (ek
n : IdBk

n
yn ũk

n).I x1 . . . xm y1 . . . yn

where the ũj
i are versions of the uj

i modified to be of type Bj
i , by using the equalities el

i. A concrete example
is given for vectors in Appendix B.

To see why this transformation is sensible note that while the yi in the return type are now parameters,
they are still linked through the equalities ej

i to their actual value uj
i . In fact the new I ′ and c′

j primitives can
be used to simulate I and cj . Indeed, terms c′′

j with the same type as the cj (with I replaced with I ′) can be
constructed from the c′

j . Similarly, a term rec′
I of the same type as recI (with I replaced with I ′ and cj with

c′′
j) can be constructed from recI′ by using the ej

i . Moreover, this rec′
I has exactly the same computational

behaviour as recI .
We describe this transformation as we use it in Section 4.3, when we translate inductive types: instead

of giving the translation on every inductive types, we only translate inductive types with parameters and the
equality type, resorting to this transformation to encode any inductive type using those.

2. Gradual Typing

As we already explained, one of the most widely asked question in the gradual typing literature is “How
do I turn this static system gradual?”. Although there are of course a fair amount of variations between the
answers, the mechanisms still usually have a somewhat common structure.

The first step is to extend the type system with a new base type ?, that should be understood as a type
that will only be checked at runtime, i.e. a dynamic type – similar to the dynamic keyword of C#. The typing
judgement is then modified to account for this introduction, by relaxing the typing rules with an optimistic
treatment of ?. For instance, equality of types is replaced by a consistency relation ∼, saying that two types
could be equal. This optimism introduced at typing time is then counterbalanced by the introduction of some
checks that can fail at run-time, should the optimistic assumption be violated – as in dynamic typing.

In this section, we illustrate this process, using simply typed λ-calculus as a toy static type system, partly
following [Sie+15]. In Section 2.1, we present the gradualization, then discuss the properties a gradual type
system should respect in Section 2.2. Finally in Section 2.3, we give a quick look at other gradual type systems
related to intermediate systems between simply typed lambda calculus and CIC.

5

2.1. Gradually Typed Lambda Calculus
Simply Typed Lambda Calculus The exact system STLC we want to gradualize is given in Figure 2, it is simply
typed lambda calculus with two base types and a few constants (booleans, natural numbers, sum and if), in
order to see how they are handled. We call the types T defined here static, as opposed to the gradual types
we construct aǒterwards.

Types: T := B | N | T → T
Terms: t := x | n | b | λ x : T.t | t t | t + t | if t then t else t with n ∈ N and b ∈ B
Typing:

(x : T) ∈ Γ
Γ ⊢ x : T Γ ⊢ n : N Γ ⊢ b : B

Γ, x : T1 ⊢ t : T2

Γ ⊢ λ x : T1.t : T1 → T2

Γ ⊢ t1 : T1 Γ ⊢ t2 : T2 dom(T1) = T2

Γ ⊢ t1 t2 : cod(T2)
Γ ⊢ t1 : T1 Γ ⊢ t2 : T2 T1 = N T2 = N

Γ ⊢ t1 + t2 : N

Γ ⊢ t1 : T1 Γ ⊢ t2 : T2 Γ ⊢ t3 : T3 T1 = B T2 = T T3 = T

Γ ⊢ if t1 then t2 else t3 : T

Reduction:

(λ x : T.t) u 7→β t{x := u} n + n′ 7→+ n + n′ if true then t1 else t2 7→if t1 if false then t1 else t2 7→if t2

Figure 2: Simply Typed Lambda Calculus

The system itself is not very surprising, the only quite non-standard point is that instead of having the
same type appear in multiple places, we explicit those relations using equalities. Because of that, we also
use the dom and cod functions, that are defined such that dom(T1 → T2) := T1, cod(T1 → T2) = T2 and are
undefined otherwise. In case they are not defined, the rule is not applicable.

The reduction 7→ is the contextual closure of the base reduction rules 7→β , 7→+ and 7→if , i.e. reduction can
happen at any place in a term.

Gradualizing Typing The first step towards gradualization is to extend types to T := · · · | ?, with ? representing
a type we do not want to check at typing time. Term definition does not change in itself, but λ abstractions
now feature gradual types instead of static types. At typing time, we want to treat this ? in an optimistic way,
i.e. we consider it could stand for any other type. Thus, we define the consistency relation, as follows:

Definition 3 (Consistency)
The consistency relation ∼ is inductively defined by the following rules:

T ∼ T ? ∼ T T ∼ ?
T1 ∼ T2 T ′

1 ∼ T ′
2

T1 → T ′
1 ∼ T2 → T ′

2

Intuitively, two types are consistent if they could be equal, were the occurrences of ? to take the right
values. Note that this relation is reflexive and symmetric but not transitive: if it were transitive then it would
relate all types, as any type is consistent with ?.

All the typing rules are then updated accordingly, replacing equality of types with the looser relation of
consistency. The domain and codomain functions are updated to dom? and cod? along the same idea: con-
sidering that ? could be any type, its domain and codomain are both defined to be ?. In the end, we get the
typing rules of Figure 3, where the difference with the static rules have been highlighted.

With these rules, we get a new type system, dubbed Gradually Typed Lambda Calculus (GTLC), where typing
is more flexible than in STLC. For instance, a term like (λ x : ? .x + 1) true typechecks (with type N), because
? is consistent with both N and B. Of course, even if this term is type correct, we cannot just β-reduce it,
because this would lead to a term true + 1 that is not well-typed any more. Thus, we need to change the
semantics as well, if we want to ensure that typing is preserved by reduction – a property usually known as
subject reduction.

6

(x : T) ∈ Γ
Γ ⊢ x : T Γ ⊢ n : N Γ ⊢ b : B

Γ, x : T1 ⊢ t : T2

Γ ⊢ λ x : T1.t : T1 → T2

Γ ⊢ t1 : T1 Γ ⊢ t2 : T2 dom?(T1) ∼ T2

Γ ⊢ t1 t2 : cod?(T1)
Γ ⊢ t1 : T1 Γ ⊢ t2 : T2 T1 ∼ N T2 ∼ N

Γ ⊢ t1 + t2 : N

Γ ⊢ t1 : T1 Γ ⊢ t2 : T2 Γ ⊢ t3 : T3 T1 ∼ B T2 ∼ T T3 ∼ T

Γ ⊢ if t1 then t2 else t3 : T

Figure 3: Typing rules of Gradually Typed Lambda Calculus

Compilation to the Cast Calculus As we just highlighted, we cannot just reuse the reduction of STLC for GTLC
if we want to ensure subject reduction – an essential property of any type system. The problem is that we
cannot just forget in terms that consistency was used to type them. That use needs to be reflected in the terms,
in order to keep track of the fact that we were optimistic during typing, enabling us to check at ”runtime” that
the optimistic assumptions made by consistency indeed hold.

We therefore compile well-typed terms of GTLC to an extension of STLC, called cast calculus, where we keep
explicit track of the places where consistency was used, using a new cast operator. This compilation is directed
by the typing derivation of the term of GTLC. The syntax of the cast calculus is given in Figure 4, as well as
some rules of the compilation, denoted as⇝, to give a flavour of the way it works. The whole compilation and
the typing rules are detailed in Appendix C. The most important thing about the typing rules is that they are
static, insofar as they do not resort to consistency, and treat ? as just another base constant.

Types: T := B | N | ? | T → T
Terms: t := x | n | b | λ x : T.t | t t | t + t | if t then t else t | raise | castT,T t with n ∈ N and b ∈ B
Compilation from GTLC (extract):

Γ ⊢ n⇝ n : N
Γ ⊢ t1 ⇝ t′

1 : T1 Γ ⊢ t2 ⇝ t′
2 : T2 T1 ∼ N T2 ∼ N

Γ ⊢ t1 + t2 ⇝ (castT1,N t′
1) + (castT2,N t′

2) : N

Γ ⊢ t1 ⇝ t′
1 : T1 Γ ⊢ t2 ⇝ t′

2 : T2 dom?(T1) ∼ T2

Γ ⊢ t1 t2 ⇝ (castT1,dom?(T1)→cod?(T1) t′
1) (castT2,dom?(T1) t′

2) : cod?(T2)

Figure 4: The Cast Calculus (Extract)

Reduction in the Cast Calculus Now that the coercions have been inserted, the rules 7→β and 7→if satisfy
subject reduction. However, we also need reduction rules for our two new operators cast and raise. For raise,
the rules are fairly easy: since we do not have any error catching mechanism, raise just propagates. For
castT1,T2 t, the rules are given in Figure 5.

Success: castT1,T2 t 7→cast t if T1 and T2 are B, N or ? and T1 = T2
Failure: castT1,T2 t 7→cast t if T1 and T2 are both B, N or · → · and have different heads

Function: castT ′
1→T ′′

1 ,T ′
2→T ′′

2
t 7→cast λ x : T ′

2. castT ′′
1 ,T ′′

2
t (castT ′

2,T ′
1

x)
Cast cancellation: cast?,T2 castT1,? t 7→cast castT1,T2 t

Figure 5: Reduction of the casting operator

The first two rules are the base cases: the cast disappears in case the types are equal base static types, and
fails if they have different static head constructors. Otherwise, the third rule applies, recursively decomposing
a cast between arrow types into a cast on the input and a cast on the output. The last rule is the most
interesting: it enables to reveal the type of a term hidden under type ? as it is used. It is in a way similar
to looking up the type tag of a value at runtime in a dynamic typing setting. The term castT1,? t can indeed
be seen as the term t together with a type tag T1, and casting this term to the type T2 triggers a comparison
between T1 and T2 in order to check that this cast is legal.

7

2.2. Properties of Gradual Type Systems
The main properties expected from a gradual type system are twofold. First, there should be an embedding

of the corresponding fully static and fully dynamic systems into the gradual type system, in order to ensure
that the gradual system really is a superset of those. But these properties do not say anything of what happens
in between those two extremes. This is the reason why [Sie+15] introduced the so-called gradual guarantee,
which says what should happen when relaxing parts of a term from the static to the looser dynamic discipline.
We give those properties in the case of GTLC as an illustration.

Embeddings We denote as ⊢S the typing judgement of STLC, and write t ⇓S t′ if t′ is a normal form for t in
STLC. Then we have the following:

Proposition 4 (Correctness of the embedding of STLC)
If t is a term of STLC (that can also be seen as a term of GTLC without any ?) and T is a type of STLC then

• ⊢S t : T iff ⊢ t : T

• for any term v, e ⇓S v iff e ⇓ v

Which says that STLC really is a subsystem of GTLC, both from the typing and the reduction point of view.
The embedding for the other end of the spectrum is a little bit more involved: we want to consider pure

lambda calculus (PLC), given by the following syntax:

t := x | n | b | λ x.t | t t | t + t | if t then t else t

The difference with STLC is that abstraction does not bear a type. We keep the same reduction rules as STLC,
and of course that all terms are valid, as there are no types. We embed those terms into GTLC, as follows:

Definition 5 (Embedding of pure lambda calculus in GTLC)
The embedding ⌈·⌉ is defined recursively on term of PLC as follows:

⌈x⌉ := x ⌈n⌉ := n :: ? ⌈b⌉ := b :: ? ⌈λ x.t⌉ := (λ x : ? .⌈t⌉) :: ? ⌈t t′⌉ := ⌈t⌉ ⌈t′⌉

⌈t + t′⌉ := (⌈t⌉ + ⌈t′⌉) :: ? ⌈if t1 then t2 else t3⌉ := if⌈t1⌉ then⌈t2⌉ else⌈t3⌉

where t :: T is a shortcut for (λ x : T.x) t, so that t :: T always has type T .

We write t ⇓P v if v is a normal form for t in PLC, and we have the following:

Proposition 6 (Correctness of the embedding of PLC)
If t is any term of PLC, we have the following:

• if t has no free variable, then ⊢ ⌈t⌉ : ?

• if t ⇓P v, then either ⌈t⌉ ⇓ castT,? v for some T or ⌈t⌉ ⇓ raise

• if ⌈t⌉ ⇓ v then t ⇓P v′ and v = castT,? v′ for some T

This is similar to the embedding of STLC, apart from the fact that terms of PLC can be stuck because of a
type error, that causes their GTLC counterpart to raise an error.

8

Gradual Guarantee These properties give constraints on both ends of the spectrum. The key property to
link those ends is the so-called gradual guarantee. It is the core of the gradual approach, characterizing the
relation between the dynamic and static types. To state it, we need the following:

Definition 7 (Type precision)
The type precision ordering between types, written ⊑, is given by the following rules:

? ⊑ T N ⊑ N B ⊑ B
T1 ⊑ T2 T ′

1 ⊑ T ′
2

T1 → T ′
1 ⊑ T2 → T ′

2

The relation is extended to terms, by saying a term t of GTLC is more precise than another t′ if they
have the same shape and if all types in the abstractions of t are more precise than those in t′.

Intuitively, it says that t and t′ are the same program, but with t having more static type annotations than
t′. Now the gradual guarantee goes as follows:

Proposition 8 (Gradual Guarantee)
Suppose t and t′ are terms of GTLC such that t ⊑ t′ and ⊢ t : T . Then:

1. there is a type T ′ such that ⊢ t′ : T ′ and T ⊑ T ′

2. if t ⇓ v, then t′ ⇓ v′ with v ⊑ v′, and if t ⇑ then t′ ⇑

3. if t′ ⇓ v′ then either t ⇓ v with v ⊑ v′ or t ⇓ raise, and if t′ ⇑ then either t ⇑ or t ⇓ raise

The first property says that relaxing types cannot cause terms to fail typechecking. This is crucial, as the
purpose of the gradual approach is to ensure a smooth transition between the dynamic and static worlds.
The gradual guarantee ensures this: if the term on the static end typechecks, then every step of the transition
also typechecks. There is no need for coordinated type annotations in different place, or to make efforts in
order to understand how the typechecker works. The second and third properties give similar guarantees on
the execution.

2.3. Beyond Simply Typed Lambda Calculus
Quite a few papers already handle some of the characteristic of CIC in a gradual setting. We give a short

survey of those here.
In [TT15], a first approach to dependent types is given, but only refinement types (i.e. types Σ x : A.P x for

some proposition P) are studied, and the focus is set on decidable properties. The interest for decision is also
present in [DTT18], where the focus is set on the relation between indexed and unindexed datatypes. In the
same line of work, [LT17] also focuses on refinement types. We found that we share some of their concerns
with decidability when trying to handle identity types (see Section 4.3), however refinement types are a too
specific kind of dependent types to give real insight for general CCω , let alone CIC.

In [TLT19], a gradualization of System F – an intermediate between STLC and CCω – is given, however the
main challenge there is to preserve parametricity, a property that CCω does not enjoy without further addition.
Thus, it is not really relevant in our setting.

Finally, [ETG19] is maybe the most interesting approach to the question, as it considers CCω in full. Although
inductive types are not considered at all there, their approach to consistency can be of use in our context –
see Section 3.1 for details.

3. Type System for Gradual CIC

Similarly to STLC, we separate the gradualization of CIC into two phases. The first one corresponds to the
gradual typing discipline and to the insertion of a cast operator during typing to recover a statically well-typed

9

term, while the second is studies the semantics of that cast operator. This section is devoted to the first part,
and the next tackles the second.

3.1. Gradually Typed CIC
To extend the typing rules of CIC into a gradually typed system GCIC, we follow the same roadmap as for

STLC:

1. extend the syntax with a ? constructor

2. modify the typing rules to use consistency rather than convertibility of types

3. define a meaningful consistency relation

Extending the syntax Because CIC does not make a syntactic difference between types and terms, we simply
extend the term definition:

t := · · · | ?

Updating the typing A nice feature of CIC is that its typing rules already incorporates a notion of comparison
between types, up to conversion. So we just have to add the more permissive

Γ ⊢ t : A A ∼ B Γ ⊢ B : □
Γ ⊢ t : B

that makes use of the consistency relation ∼ instead of the conversion. Since ∼ is weaker than ≡, we could
keep only this rule without changing the typable terms in our new system. However, every use of this rule
will add a cast operation when compiled (similarly to GTLC), and we wish to avoid it when it is not needed.
Thus we keep the usual conversion rule of CIC, that treats ? as a constant without any special computational
properties. Because ? is a term, we also need a rule to type it, which is simply

Γ ⊢ T : □
Γ ⊢ ? : T

meaning that ? as a term can inhabit any type. Indeed, we want to use ? as any unknown part of a type, which
can be any term, since we work with dependent types. Typically, we want to consider an inductive type with
unknown index, such as Vect A ?. Thus ? must be usable as a placeholder at any type, not just at □.

Axiomatic consistency Those modifications are quite straightforward, but the real complexity is hidden in the
consistency relation. Its definition is not as simple as for GTLC, for at least two reasons. The first one is that
consistency has to be defined on all terms, not only types, as ? can appear in any position. The second is that
it cannot be simply defined inductively on syntax as in GTLC, as we want consistency to take that computation
into account, and thus be at least as strong as conversion.

Another strong requirement is that we want consistency to be decidable, to ensure that typing stays so.
This is in tension with the previous points, since a theoretically satisfying definition of consistency might be
”too semantical” to be decidable. An example is given in the next paragraph.

Looking at this in another way, however, there is also some freedom in definition on the choice of consis-
tency. Thus, we express in an axiomatic way which properties a consistency should have, rather than define a
precise one. We first need a notion of precision, with respect to which a consistency is defined.

Definition 9 (Acceptable precision)
An acceptable precision ⊑ is a binary relation between terms of GCIC such that:

1. ⊑ is a preorder

2. ⊑ contains conversion, i.e. if t ≡ t′ then t ⊑ t′

3. if t and t′ are static terms, then t ⊑ t′ iff t ≡ t′

10

Definition 10 (Acceptable consistency)
An acceptable consistency ∼ with respect to an acceptable precision ⊑ is a binary relation between terms
of GCIC such that:

1. ∼ is reflexive and symmetric

2. ∼ is monotone with respect to ⊑, i.e. if t ∼ t′ and t′ ⊑ t′′ then t ∼ t′′

3. if t and t′ are static terms, then t ∼ t′ iff t ≡ t′

Note that that the monotony and reflexivity entail that an acceptable consistency must contain conversion.
But monotony is much stronger, and it is the key ingredient ensuring the “typing” part of the gradual guarantee.

Concrete consistencies The smallest precision is simply conversion, and the smallest acceptable consistency
(with respect to that precision) is also conversion. This consistency yields exactly the same typable terms as
CIC. On the other end of the spectrum, the biggest precision is the precision that is conversion on static terms
and such that any non-static term is greater than any other term. The greatest acceptable consistency (with
respect to that precision) says that two terms are consistent if at least one of them is non-static, or if they are
convertible. This consistency defers all type comparisons between non-static types to the cast operator. Of
course, those two extremes cannot really be called gradual: the first lacks any kind of dynamic features, while
the second does almost no static type checks. But they give an idea of what a consistency relation does: for
each pair of types it arbitrates between rejecting it at typing time or accepting it and risking cast errors.

A more interesting set of definitions is based on substitutions:

Definition 11 (Substitution precision, substitution consistency)
A substitution σ is a mapping from each ? to a term.
The substitution precision⊑s is defined as follows: t ⊑s t′ if for every substitution σ there is a substitution
σ′ such that σ(t) ≡ σ′(t′).
The substitution consistency ∼s is defined as follows: t and t′ are consistent if they are unifiable, i.e. if
there is a substitution σ such that σ(t) ≡ σ(t′).
The substitution precision is acceptable, and the substitution consistency is acceptable with respect to it.

These somewhat captures the informal semantics of ?, and they are quite close to the Abstract Gradual
Typing approach [GCT16]. However the problem of higher order unification is undecidable [Dow01], so that
basing a definition of GCIC on substitution consistency makes typing undecidable.

Because the substitution consistency seems a good theoretical definition of consistency, a good aim for
a consistency relation is to give a decidable approximation of it. This approximation can lean on the conser-
vative side, typically by resorting to a unification algorithm in the flavour of [ZS17] to try and find a suitable
substitution. This solution, however, is not monotone with respect to the substitution precision, as it may fail
to find a substitution that exists. On the other hand, the approximation can be too permissive, by allowing
types to be consistent even when they are not unifiable. This a way to interpret the approximate normalization
of [ETG19]. In this paper, they in particular prove that their consistency relation is acceptable with respect to
substitution precision.

Again, we do not wish to make a definitive choice, and leave the arbitration open. In particular, the different
options could be compared in case of an implementation.

3.2. Cast Insertion
As for STLC, once a term has a typing derivation, this derivation can be used to transform the term back to a

statically typed term in a calculus with new primitives for casting. Thus we extend CIC with two new constants,
yielding the system CICcast described in Figure 6.

For now those constants are abstract axioms, and the next section is devoted to giving them a precise
semantics. However, we can already give an intuition for it. The axiom cast is very similar to the one of
the Cast Calculus for STLC: it should behave like the identity if its two first arguments are the same, and fail
otherwise. The axiom ? is a bit more involved: used as a term (i.e. on the leǒt of a colon) it should be thought

11

t := · · · | ? | cast
⊢ ? : Π A : □.□ ⊢ cast : Π(A : □), (B : □), A → B

Figure 6: Syntax and typing extension of CICcast

Γ ⊢ T : □ ⇝ T ′

Γ ⊢ ? : T ⇝ ? T ′
Γ ⊢ t : A⇝ t′ A ∼ B Γ ⊢ A : □ ⇝ A′ Γ ⊢ B : □ ⇝ B′

Γ ⊢ castA′,B′ t′

Figure 7: Compilation rules for GCIC (Extract)

of as an error — the cast operator will reduce to it when its first arguments are not equal. However, when
used as a type (i.e. on the right of a colon) ? □ has the same semantics as ? in GTLC: it represents a type that
should be checked at runtime.

Once we have the target, we can compile any typing derivation of GCIC into a derivation of CICcast. We give
in Appendix D the whole set of compilation rules. The two most important are given in Figure 7, corresponding
to the new typing rules associated respectively with ? and ∼. The other rules are mostly compositional.

3.3. Instrumenting Refinement Algorithms
To actually insert casts in a real life setting, resorting to the mechanism of the previous section is quite

unfeasible, as it requires a fully annotated term to work on. Instead, a possibility for a concrete implementation
is to instrument a refinement algorithm.

Those algorithms are in charge, in a proof assistant, to transform a term given by the user to a term that
can be fed to the core of the proof assistant. Initially, they were mostly devoted to inferring the types that were
not given by the user, but in modern proof assistants they have a much broader role, see [Asp+12] for some
examples. In particular, a recurring feature of modern refinement algorithm is to silently insert user-defined
coercions: for instance, the user can declare a coercion from the type of groups to type □, mapping a group
to its carrier, or from the type N to the type of reals, that will be inserted silently by the refinement algorithm
to bridge the gap each time a group (resp. natural number) is used when a type (resp. real) was expected.

This usual use of coercions is very different from our cast. However, the mechanism to insert them, as
described in [Asp+12], is quite close to the one we want: whenever a term t has a certain type A and needs
to be used at another type B, the system checks if there is an existing coercion between those two types,
and in that case adds that coercion around t to turn it into a term of type B. If instrumented correctly, this
functionality could be used to implement a much better compilation from GCIC to CICcast: it would avoid having
to implement the feature by hand, which is quite a heavy work, and would also enable the user to work with
GCIC together with a functional refinement algorithm, making it much more practical.

3.4. Gradual Theorems
From those definitions, we cannot give any theorem on the reduction of the terms, as for now cast is just a

stuck axiom. However, we can already get the embedding of CIC and the typing part of the gradual guarantee.
The central property is the following, ensuring that the cast insertion is well-behaved:

Proposition 12 (Correctness of cast insertion)
If x1 : A1, . . . , xn : An ⊢ t : T in GCIC, then x1 : A′

1, . . . , xn : A′
n ⊢ t′ : T ′ where x1 : A1, . . . , xn : An ⊢ t :

T ⇝ t′ and A′
i and T ′ are obtained by cast insertion in Ai and T , respectively.

Proof (Sketch)
Intuitively, the proof is by induction on the derivation of Γ ⊢ t : T : we can transform a derivation tree for t in GCIC into a
derivation tree with almost the same shape in CICcast, the only difference being the place where consistency was used in
GCIC and a cast was used instead in CICcast. However, to completely carry the proof, there are some technical subtleties
to handle.
In particular, we need a lemma saying that we can choose a set of canonical typing derivations for every derivable judge-
ment Γ ⊢ t : T , such that a sub-derivation of a canonical derivation is itself a derivation. The aim is to ensure that every

12

time we need to type x1 : A1, . . . , xi−1 : Ai−1 ⊢ Ai : □ the A′
i we get is the same. This lemma is a consequence of

decidability of typing: as long as we have a deterministic procedure for type checking, the derivation trees given by it
are a system of canonical derivation. The induction is then performed on canonical derivations rather than on arbitrary
derivations.

For the static part, we get:

Proposition 13 (Embedding of CIC in CICcast)
If t and T are terms of CIC, then ⊢ t : T is derivable in CIC iff it is derivable in GCIC.

Proof (Sketch)
The proposition is a consequence of the correctness property of cast insertion, and of the fact that an acceptable consis-
tency corresponds to conversion on static terms.

For the fully dynamic, we do not have an equivalent to the theorems on the embedding of pure lambda
calculus, as we lack a system that could play the role of pure lambda calculus, i.e. a form of ”untyped CIC”.

For the gradual part, however, we get what we want:

Proposition 14 (Gradual guarantee)
Let t, s and T be three terms of GCIC, such that ⊢ t : T in GCIC and t ⊑ s. Then we have that also ⊢ s : S
with T ⊑ S.

Proof (Sketch)
The key property here is that ∼ is monotone wrt. ⊑, so that any use of the consistency rule to type t is still correct in order
to type s.

4. Realizing the Cast Operator

In this section, we concentrate on the way to give a semantics to CICcast by giving one to the axioms ?
and cast of the previous section. To do so, we resort to syntactical models, and in particular to the so-called
exceptional type theory. The main feature of those syntactical models is to give us a way to handle exceptions
inside CIC. This is a challenging problem, because effects mess up heavily with dependent types by exposing
calling conventions, and because naïve exceptions break consistency (because any type can be inhabited using
exceptions).

Section 4.1 describes the general technique of syntactical models, Section 4.2 gives an overview of the way
we use them, Section 4.3 gives a syntactical translation of the cast operator in an intermediate type system,
which is in turn justified via another syntactical model in Section 4.4.

4.1. Syntactical Models
Syntactical models of type theory, first described in [BPT17], are a way to give a semantics to a type theory

using type theory itself. In general, to give a semantics and/or justify a type theory, one gives a model, i.e.
objects in some meta-theory that interpret the syntax under consideration. Syntactical models are a very
special kind of models, insofar as most objects in the source theory S are interpreted as the same objects in
a target, usually simpler, type theory T : a context is interpreted by a context, a term by a term, conversion by
conversion, and typing should be preserved as well. Another way to look at syntactical models is to see them
as a kind of compilation, transforming a program in S into a program in T .

An important use of those syntactical models is to justify T extended with some axiom. To do so, first
find a suitable translation from T to itself, then find a term t that inhabits the translation of the axiom’s type.
The consistency of the original T entails the consistency of T augmented by the axiom. But it is even better:
because t is a term, it has a computational behaviour, and is not just a stuck axiom. This computational
behaviour can then be taken as a definition for the computational rules of the axiom in the source theory.

Used this way, syntactical translations are a dependently typed generalization of the idea underlying the
CPS translation [Gri90], that realizes classical axioms in intuitionistic predicate logic by using a program trans-
formation similar to the CPS transformation used in some compilers.

13

The ”×B” model A simple example, to get an idea of what happens when defining such syntactical models, is a
translation from CCω+Id to CCω+Id+B+Σ, that justifies the negation of function extensionality in CCω . Function
extensionality is the type

funext := Π(A : □), (B : □), (f : A → B), (g : A → B).(Π x : A.f x = g x) → f = g

saying that functions are equal whenever they are pointwise equal. It is independent from CIC, however
constructing a model that negates it is not that easy, since in such a model Π-types cannot be interpreted as
usual set-theoretic functions, since those are by definition extensional.

The translation is described in Figure 8 on CCω , it can be extended functorially on the identity type. Note
the different steps of the translation: the translation for term [·] is defined inductively, using an operation
(here the identity) that maps the translation [A] of a type of the source to a type JAK of the target, and it is
extended pointwise from types to contexts. This is the general pattern for such definitions.

[x] := x [□i] := □i [λ x : A.t] := (λ x : JAK.[t], true) [t t′] := (π1[t]) [t′]

[Π x : A.B] := (Π x : JAK.[B]) × B

JAK := [A] J·K := · JΓ, x : AK := JΓK, x : JAK
Figure 8: The ”×B” translation

This translation has the main property of a syntactic model: it preserves the typing judgement:

Proposition 15 (Preservation of typing)
If Γ ⊢ t : A in the source theory, then JΓK ⊢ [t] : JAK in the target theory.

The proof of this proposition needs the following lemmas, which have to be true in any syntactical model:

Lemma 16 (Preservation of substitution, conversion)
We have [t{x := t′}] ≡ [t]{x := [t′]} for any terms t and t′ of the source, and therefore if t ≡ t′ in the source
then [t] ≡ [t′] in the target.

Now that we have a model of CCω , we can extend it to a model of CCω+¬funext, by simply inhabiting the typeJ¬funextK. This can be done by picking A and B to be B, f to be (λ x : B.x, true) and g to be (λ x : B.x, false).
By function extensionality, f and g are equal, from which we get true = false, and the absurd.

4.2. Battle plan
Now that we have an idea of how to realize the cast operator, we can look at our battle plan, in Figure 9.

GCIC

CICcast

CIdC + cast

ETT + quote

CIC + Induction-Recursion

1: replacing consistency with casting

2: encoding of inductives with equality

3: realizing cast and ?

4: syntactical model

Figure 9: Battle plan

We already described the type theories GCIC and CICcast, as well as step 1 of the translation in the previous
section. Let us detail a bit more the rest of the plan.

14

The theory CIdC corresponds to the theory where all inductives are indices-free, apart from the equality.
We showed how to transform every inductive type in this way in Section 1.2, which corresponds to step 2.

Step 3 realizes the abstract cast and ? operators via a syntactical translation – this is the most novel part
of this work. Instead of doing this translation directly back to CIC, we use an intermediate type theory ETT +
quote, that mixes two different constructions. The system ETT (for Exceptional Type Theory) is a version of CIC
with errors, first described in [PT18] as a syntactical model. This is not the end of the work on errors in CIC,
which is continued in [Péd+19]. However it is enough to serve as a base for their use within CIC, even if more
developments in those line of works might give stronger properties for GCIC in the future. The quote operator
is a type quoting operator, that allows to do recursion on types (also known as ad-hoc polymorphism). A
syntactical model for this operator is given in [BPT17].

Thus step 4 mainly consists in making those two translations work together in order to realize at the same
time errors and ad-hoc polymorphism. Note that the final target is not pure CIC, but also contains Induction-
Recursion [Dyb00], a generalization of inductive types. This feature is necessary for the syntactical translation
of ad-hoc polymorphism.

4.3. Realizing the Cast
Target language To realize the cast, our target language is CIC extended by some axioms:

• a function raise, intuitively corresponding to error raising

• a family quotei of quoting operators

• three functions tag, Untag and untag to respectively construct (tag) and destruct (Untag and untag) a
term of type raise □

Their typing rules are given in Figure 10. Instead of giving the exact general shape of PI , we give it on our
favourite examples. It can be obtained on a generic inductive using parametricity techniques, in order to
exactly pin down the available inductive hypothesis, and of course there needs to be one such clause for each
inductive in the source theory.

⊢ raise : Π A : □.A ⊢ tag : Π A : □.A → raise □ ⊢ Untag : raise □ → □

⊢ untag : Π x : raise □, Untag x ⊢ quote0 : Π P : □0 → □0.P 0
0 → P 0

Id → PI → P 0
raise → Π A : □0.PA

⊢ quotei+1 : Π P : □i+1 → □i+1.P □i → P i+1
0 → · · · → P i+1

i+1 → P i+1
Id → PI → P i+1

raise → Π A : □i+1.PA

where

P i
j := Π A : □j , B : (A → □i).(Π x : A.P (B x)) → P (Π x : A.B x)

P i
i := Π A : □i, B : (A → □i).P A → (Π x : A.P (B x)) → P (Π x : A.B x)

P i
Id := Π A : □i, Π a, a′ : A.P (IdA a a′) P i

raise := P (raise □i) PN := P N

PΣ := Π A : □i.P A → Π B : A → □i.(Π x : A.P (B x)) → P (Σ x : A.B x)

P i
Id := Π A : □i.P A → Π a, a′ : A.P (IdA a a′)

Figure 10: Axioms of ETT + quote

The functions raise and quote are not very surprising: raise corresponds to some kind of polymorphic error,
and quote to induction on types – with one clause for each possible case for a type in normal form (a universe,
a Π-type, an inductive, or an error).

The last three functions are much more surprising, as they really encompass the way we think of for ?. As
a term, it is uninformative, but used as a type it has a different semantics: a term of type ? □ can be a term
of any type, because ? stands for all possible types. So to construct a term of type ? □, one must provide a
term a together with its type A, which can be any type. This is what tag does. On the contrary, the Untag and
untag primitive enable us to get back the type and term hidden in a term of type ? □.

This semantics can be linked with at least two different intuitions. The first one is to remark that the
primitives we provide for ? □ correspond to a negative presentation of the type Σ A : □.A, so ? □ really
corresponds to the disjoint sum of all possible types. Another way to consider it is to look into what happens

15

in dynamically typed languages: usually, during executions, values are tagged with their type, and every time
they are used the tag is inspected to be sure the value has the correct type. We chose the names tag and
untag with that comparison in mind, as this is what they do: tag forms a term of type ? □ by tagging a term
with its type, while Untag and untag respectively get the type and term of a tagged term.

Syntactic translation Now, using those primitives, we need to give the translations [·] and J·K from CICcast
to the target we just described. The translation of the whole CIC fragment is completely transparent: we setJAK := [A], and [·] is recursively defined on a term as the identity, apart from the axioms ? and cast.

For those, again the case of ? is quite straightforward: we set [?] := raise, because we think of the term ?
as an error.

Now only the actually tricky point remains: defining [cast] : Π(A : □), (B : □).A → B. We define [cast] by
”pattern-matching” on its first two arguments, i.e. using quote twice. Rather than giving an actual term using
quote, we give the intended return term with each possible pair of types, in Figure 11. We do not give tI in full
generality, but only its type, intuition, and some concrete examples.

A
B □i Π y : B1.B2 IdA a a′ I ′ y1 . . . yn raise □i

□j
λ x : □i.x if i = j

raise otw. raise raise raise λ a : A.tag A a

Π x : A1.A2 raise tΠ raise raise λ a : A.tag A a
IdB b b′ raise raise raise raise λ a : A.tag A a

I x1 . . . xm raise raise raise t̃I if I = I ′

raise otw. λ a : A.tag A a

raise □j tuntag tuntag tuntag tuntag
λ x : A.x if i = j

raise otw.

tΠ := λ(f : Π x : A1.A2), (y : B1). castA2{x:=castB1,A1 y},B2(f castB1,A1 y)

tuntag := λ x : raise □. castUntag x,B untag x

t̃I := tI x1 . . . xn y1 . . . yn

tI : Π(x1 : A1), . . . , (xn : An), (x : I x1 . . . xn), (y1 : A1), . . . , (yn : An{xi := yi}).I y1 . . . yn

Figure 11: Pattern-matching definition of [cast] A B

Outside of the diagonal, [castA,B] is only defined when eitherA orB is [?], otherwise it is just an error: types
don’t match so casting fails. When A is [?], untagging happens, and the value that is obtained is recursively
cast using the type obtained. On the contrary, when B is [?], the value of type A is tagged. Combined together,
these two rules are quite similar to the cast cancellation rule in the Cast Calculus: a cast from A to [?] followed
by a cast from [?] to B corresponds to a cast from A to B.

On the diagonal, on the contrary, the cast should succeed. In case of a base case, i.e. a universe or an error,
the cast is simply discarded. In case of a Π a recursive call happens, again similarly to what happened for
the arrow type in STLC. For inductive types as well an inductive call happens, using the term tI that basically
keeps the shape of its argument intact, only inserting cast all over the place to correct the type. Examples are
given in Figure 12. The case of Vect′ is the most interesting, as the original definition used indices: note how
everything happening around the indices is shiǒted to the cast between equality types.

Finally, note that for the identity a cast never succeeds. This is because in general there is no way to decide
whether the arguments of the identity type are equal or not. However, this very pessimistic behaviour could
be made a lot better by resorting a decision procedure when it exists, and considering the identity type itself
as inductively defined. Those ideas are in relation with the frameworks developed in [DTT18] or [TTS18]. We do
not describe this possibility in this report, at it would add another level of complexity, but we believe it would
be an important piece of an actual implementation of GCIC. The impact of that systematic failure, together
with the encoding of inductive types using equality, is that whenever indices are actually inspected, which
amounts to destroying the equalities systematically added to the constructors, the obtained term always fails.
A special case on vectors is studied in Section 5.1.

4.4. Realizing the Intermediate Language
The last level of the syntactic model is to give a model of ETT + quote. It is novel, in the sense that both

features have not been given a model together, however both ETT and ad-hoc polymorphism have been given
a syntactic model, the first in [PT18], and the second in [BPT17].

16

tB := recB (λ b : B.B) true false tN := recN (λ n : N.N) 0 (λ n : N.S)

tΣ := λ(A : □), (A′ : □ → A), (s : Σ x : A.A′ x), (B : □), (B′ : B → □).uΣ

uΣ := recΣ A A′ (λ s : (Σ x : A.A′ x). Σ y : B.B′ y) (λ a : A, a′ : (A′ a).(castA,B a, castA′a,B′ castA,B a a′) s

tVect′ := λ(A : □), (m : N), (v : Vect′ A m), (B : □), (n : N).uVect′

uVect′ := recVect′ A (λ m : N, v : Vect′ A m. Π n : N, Vect′ B n) tnil tcons m v

tnil := λ(m : N), (e : IdN m 0), (n : N).nil B castIdN m 0,IdN n 0 e

tcons := λ(m : N), (m′ : N), (a : A), (v′ : Vect′ A m′), (v′′ : Π n : N.Vect′ B n), (e : IdN m (S m′)), (n : N).ucons

ucons := cons B n castA,B a (v′′ m′) castIdN m (S m′),IdN n (S m′) e

Figure 12: Examples of casting on inductive types

Ad-Hoc Polymorphism In [BPT17], the key feature is to present universes via so-called codes: codes form a new
type typei, that is inductively defined together with a function Eli : typei → □i that describes how to interpret
a code as a ”real” type. This mutual definition is not a usual inductive one, but a recursive-inductive one.
This generalization of inductive types due to Dybjer [Dyb00] allows simultaneous definition of an inductive
type and of a function using this type as domain. The shape of those definitions can be found in [BPT17], we
simply add a constructor ι of typei for each inductive type I in the source. The type of ι can be obtained by
applying the J·K translation of the ad-hoc polymorphism model to the type of I , and El is defined to be I on
ι, as expected. This recursive-inductive typei comes with a recursion principle rectype.

Exceptional Type Theory In [PT18], a framework called ETT is given for errors in ETT. The authors identify three
points where some freedom is leǒt in the translation: the type E of errors, and the terms ⊠ and ⋆ respectively
corresponding to Jraise □K and [raise □]∅, where [·]∅ describes how to inhabit JAK from an error. They choose
to make the translation parametric in E, but fix ⊠ and ⋆ to be degenerate. Here we want to do the contrary.
We fix E to be a singleton type, or even better totally erase is by replacing all instances of E → A by the
isomorphic A (E only appears to the leǒt of arrows). This is because we consider our errors as uninformative.
On the contrary, our setting needs ⊠ to be non-trivial, so we define it to be the following inductive:
Inductive ⊠ : □ :=

| box : Π A : type.El A → ⊠
And set ⋆ := (⊤, tt).

For the rest, we closely follow the paper. We first go on to define the inductive etype representing types
that can raise errors:

Inductive etype : □ :=
| TypeVal : Π A : typei.EliA → etype
| TypeErr : etypei

Using its eliminator recetype we define two functions eEl and Err that respectively recover the type and default
element from a term of type etype:

eEl : etype → □
Err : Π A : etype.eEl A

Finally, for each inductive I in the source, we define an inductive I• that corresponds to I with one constructor
c• for each constructor c of I , and an extra constructor I• representing the primitive error on type I .

Syntactic translation With these defined, the translation combines the ones for ad-hoc polymorphism and
exceptions: they are transparent on terms, but heavily modify the interpretation of types – this is where the
tricky work is. It is given in Figure 13, with Ui the code for the universe □i, and π the code for the product Π.

Realizing the axioms To finalize our translation, we still have to realize all the axioms in the translation.
For raise, tag, Untag and untag, see Figure 14. Now that we have done the hard work of defining the target,
the translation of the axioms are not too much work: raise is translated to Err, and tag, Untag and untag
respectively amount to the constructor box, the first, and the second projection of ⊠.

17

[□i] := TypeVal Ui TypeErri [x] := x [λ x : A.M] := λ x : JAK.[M] [M N] := [M] [N]

[Π x : A.B] := TypeVal (π [A] (λ x : JAK.[B])) (λ x : JAK.[B]∅)

[I] := λ x1 : JA1K, . . . , xn : JAnK.TypeVal (I• x1 . . . xn) (I∅ x1 . . . xn) [c] := c• [A]∅ := Err [A]

JAK := El [A]

Figure 13: Exceptional ad-hoc translation

[raise] : JΠ A : □.AK ≡ Π A : etype.eEl A
:= Err

[tag] : JΠ A : □.A → raise □K ≡ Π A : etype.eEl A → ⊠
:= recetype (λ A : etype.eEl A → ⊠) (λ(A : type), (A∅ : El A)(a : A).box A a) (λ x : ⊠.x)

[Untag] : Jraise □ → □K ≡ ⊠→ etype
:= rec⊠ (λ x : ⊠.etype) (λ A : type, a : El A.TypeVal A a)

[untag] : JΠ x : raise □.Untag xK ≡ Π x : ⊠.eEl (Untag x)
:= rec⊠ (λ x : ⊠.eEl (Untag x)) (λ A : type, a : El A.a)

Figure 14: Realizations of raise, tag, Untag and untag

We do not want to write down [quote] in extenso, but its definition simply combines recetype and rectype to
do type-recursion on an etype and not only on a type.

4.5. Properties
The first thing to prove is that our syntactical translations are correct, i.e. they both have the following

properties:

Proposition 17 (Correctness of the syntactic translations)
If t, t′ and T are terms of the source calculus, and Γ is a context of that source calculus, then

• if t 7→ t′ then [t] 7→ [t′]

• if Γ ⊢ t : T then JΓK ⊢ [t] : JT K
Proof (Sketch)
The first point is direct, as for both translations β-redexes are interpreted by β-redexes, and ι-redexes (application of the
recursor of an inductive type to a term with a constructor of that inductive in head) as the same ι-redexes.

The second point amounts to verify that all inference rules for ⊢ in the source are derivable in the target, and indeed
they are.

From now on we denote as [·] (resp. J·K) the composition of both translations on terms (resp. the compo-
sition of the term translation from CICcast to ETT + quote with the type component of the ad-hoc exceptional
translation), that give a syntactical model of CICcast.

Because axioms do not compute, the reduction of CICcast is strictly included in the reduction of the target.
However, we want our ”axioms” to compute, hence the following definition.

Definition 18 (Reduction for CICcast)
Define the relation t 7→cast t′ between terms of CICcast as the relation [t] 7→ [t′] between their translations.

This is the relation on which properties similar to the ”reduction” part of the theorems on GTLC should be
stated and proven. We did not extensively investigate those yet, so we leave that work open.

18

A very strong difference with GTLC is the following proposition, direct consequence of the strong normal-
ization of CIC with induction-recursion. We describe in Section 5.3 what the consequence for the stereotypical
non-terminating term Ω in GCIC are.

Proposition 19 (Strong normalization of CICcast)
The relation 7→cast is strongly normalizing.

Concerning consistency, as it was already the case for ETT, CICcast is inconsistent: one can inhabit ⊥ using
an error. However, everything is not lost, as the next proposition illustrates.

Proposition 20 (Weak consistency)
If ⊢ t : ⊥ in CICcast, then t ≡ raise ⊥. Rephrased, the only way to inhabit ⊥ in CICcast is to use an error.

Concerning GCIC itself, depending on the consistency relation, we might get a stronger property, however
we believe that concentrating on the consistency relation to avoid ⊥ to be inhabited is not a good aim. A
better way to do so should be to use the frameworks under investigation to control errors in CIC in [PT18;
Péd+19], to provide us with a better way to handle and reason about errors arising from GCIC.

5. Use Examples

5.1. Vectors
A standard example for the use of indices is the type of vectors. On the upside, they enable type-safe

functions, for instance the head function of type Π(A : □), (n : N).Vect A (S n) → A. On the downside,
programming with vectors easily gets quite involved, for instance giving the type Π(A : □), (n : N).Vect A n →
Vect A n to a quicksort function as the following OCaml one (inspired from an example of [ETG19])

let rec quicksort : int list → int list = fun l →
match l with
| [] → []
| h :: t → (quicksort (filter (fun a → a ≤ h) t))@[h]@(quicksort (filter (fun

a → h < a) t))
is already involved, as it requires a subtle handling of the indices. Instead, along the gradual typing philosophy,
a first step would be to give it the type Π(A : □), (n : N).Vect A n → Vect A ? to enable an easy definition,
leaving the work of giving it a static type to a second pass.

Such a definition would insert some casts from a static Vect A n to Vect A ? and in the other direction
as well. What happens when vectors obtained with such casts are used? As we encode indices via equality,
the equality arguments are where the interesting stuff happens. For instance, let v be a vector of size 3 and
consider the following term

v′ := castVect A 5,Vect A ? castVect A ?,Vect A 3 v

It reduces to an actual vector of length 3 (in the sense that it uses cons three times), but with a type Vect A 5,
obtained using a proof of 3 = 5, that of course is an error. Thus, as long as v′ is used without inspecting
that proof – in particular as long as v′ is used as a list – no error occurs. The faulty proof is simply carried
around. However, if a function making actual use of the index is called, it exposes the lie, and raises an error.
For instance, if one were to call a function taking the 4th element of a list of length at least 4 on v′, similar
to the safe head function, one would end up in a branch that is supposedly unreachable because of typing,
and where a term of type A is obtained by elimination of ⊥. Here this branch would actually be reached, but
the error would propagate through the proof of false and its elimination, so that the provided term of type A
would simply be raise A.

19

In general, indices are used to reason in unreachable branches, where they are used to create a proof of ⊥
that can be eliminated. With gradual types, those branches might actually be reached using erroneous proofs,
and so they would simply return an error. On the contrary indices are not useful in reachable branches, so as
long as they are not needlessly inspected there, no error should be raised.

5.2. η-rule for inductive types
The need to have a return predicate when destroying terms of an inductive types (the first argument P of

all recursors) is quite an annoying feature in practice, as writing that return predicate explicitly is tedious. A
desirable possibility is to get rid of that predicate in a systematic way. For booleans, this would give a recursor
of the following type

rec′
B : Π(P1 : □)(P2 : □).P1 → P2 → Π b : B.rec′

B □ □ P1 P2 b

In a proof assistant, the types P1 and P2 can be inferred, alleviating the user from the burden of giving an
explicit P . However, because rec′

B is typed using itself, such a recursor cannot be used, unless the theory
features so-called η-conversion, that allows the following reduction: rec′

B P P p p b 7→η p. Indeed, using that
rule, in the previous example rec′

B □ □ P1 P2 b can be given type □ instead of rec′
B □ □ □ □ b.

Sadly, η-reduction for inductive types cannot be part of the theory, for decidability reasons: already on
natural numbers it is undecidable to know whether η-reduction applies.

However, in a gradual setting, η-conversion on types can be simulated: as soon as we have

rec′
B □ □ P P b ∼ P

a term of the first type can be used as a term of the second, as if η-conversion had happened. Whenever
the underlying term ι-reduces because b has taken a concrete value, the cast inserted around it reduces to
castP,P , and if P is simple enough (as in our example) it completely disappears.

5.3. Non-terminating terms actually terminate
A very interesting discovery we made while investigating GCIC concern the term Ω defined as follows:

Ω := (λ x : ? .x x) (λ x : ? .x x)

In pure lambda calculus, Ω is the stereotypical non-normalizable term. In most gradually typed languages,
for instance GTLC, such a term is typable, and it prevents the system from being strongly normalizing. In GCIC,
in contrast, a particularly peculiar thing happens: Ω is typable, however the type hierarchy prevents it from
looping. Instead, Ω reduces to an error. The detailed reduction is presented in the Appendix E, the key point
is that to make Ω loop a cast from ? □i+1 to ? □i is needed, and as this is not the identity but an error, the
whole term fails.

Conclusion and Future Work

In this report, we presented a novel approach to gradualization in the context of CIC, the first one to try and
tame the whole complexity of CIC. Its main theoretical contribution is the casting operator, presented through
a syntactical translation, using the underspecification of the framework of ETT to give the error the semantics
of a gradual type. Even if the intuitions behind this idea are not new, their use to interpret dynamic types as
an inductive had not been observed before.

Although the structure of GCIC is clear, there still remains some work to do on exact details pertaining to
universe levels and full general definitions for inductive types. Another line of work we did not explore yet
is to implement this work in Coq, using the meta-programming features of the TemplateCoq/MetaCoq project
[Ana+18] and drawing inspiration from the plugins for program translation of [BPT17; PT18]. Both can go hand
in hand, using the automated handling of universes in Coq to alleviate some of the burden of doing all of it
by hand, an approach we already successfully used to back up our insight on the terminating Ω, or construct
and check some of quite indigestible terms, e.g. Figure 12.

20

References

[Ana+18] A. Anand et al. “Towards Certified Meta-Programming with Typed Template-Coq”. In: ITP 2018 - 9th
Conference on Interactive Theorem Proving. Vol. 10895. LNCS. Oxford, United Kingdom: Springer, July
2018, pp. 20–39. doi: 10.1007/978-3-319-94821-8_2.

[Asp+12] A. Asperti et al. “A Bi-Directional Refinement Algorithm for the Calculus of (Co)Inductive Construc-
tions”. In: Logical Methods in Computer Science Volume 8, Issue 1 (Mar. 2012). doi: 10.2168/LMCS-
8(1:18)2012. url: https://lmcs.episciences.org/1044.

[Bar91] H. Barendregt. “An Introduction to Generalized Type Systems”. In: Journal of Functional Programming
1 (Apr. 1991), pp. 125–154. doi: 10.1017/S0956796800020025.

[BPT17] S. Boulier, P.-M. Pédrot, and N. Tabareau. “The next 700 syntactical models of type theory”. In: Certified
Programs and Proofs (CPP 2017). Paris, France, Jan. 2017, pp. 182–194. doi: 10.1145/3018610.
3018620. url: https://hal.inria.fr/hal-01445835.

[CH88] T. Coquand and G. Huet. “The calculus of constructions”. In: Information and Computation 76.2 (1988),
pp. 95–120. issn: 0890-5401. doi: https://doi.org/10.1016/0890-5401(88)90005-3.

[Dow01] G. Dowek. “Chapter 16 - Higher-Order Unification and Matching”. In: Handbook of Automated Rea-
soning. Ed. by A. Robinson and A. Voronkov. Handbook of Automated Reasoning. Amsterdam: North-
Holland, 2001, pp. 1009–1062. isbn: 978-0-444-50813-3. doi: https://doi.org/10.1016/B978-
044450813-3/50018-7. url: http://www.sciencedirect.com/science/article/pii/
B9780444508133500187.

[DTT18] P.-É. Dagand, N. Tabareau, and É. Tanter. “Foundations of Dependent Interoperability”. In: Journal of
Functional Programming 28 (2018), 9:1–9:44.

[Dyb00] P. Dybjer. “A General Formulation of Simultaneous Inductive-Recursive Definitions in Type Theory”.
In: Journal of Symbolic Logic 65 (June 2000). doi: 10.2307/2586554.

[ETG19] J. Eremondi, É. Tanter, and R. Garcia. “Approximate Normalization for Gradual Dependent Types”. In:
Proceedings of the ACM on Programming Languages 3.ICFP (Aug. 2019).

[GCT16] R. Garcia, A. M. Clark, and É. Tanter. “Abstracting Gradual Typing”. In: Proceedings of the 43rd ACM
Symposium on Principles of Programming Languages (POPL 2016). St Petersburg, FL, USA: ACM Press,
Jan. 2016, pp. 429–442.

[Gri90] T. G. Griffin. “A Formulae-as-type Notion of Control”. In: Proceedings of the 17th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’90. ACM, 1990, pp. 47–58. doi: 10.1145/
96709.96714.

[LT17] N. Lehmann and É. Tanter. “Gradual Refinement Types”. In: Proceedings of the 44th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2017). Paris, France: ACM Press,
Jan. 2017, pp. 775–788.

[Pau15] C. Paulin-Mohring. “Introduction to the Calculus of Inductive Constructions”. In: All about Proofs,
Proofs for All. Ed. by B. W. Paleo and D. Delahaye. Vol. 55. Studies in Logic (Mathematical logic and
foundations). College Publications, 2015.

[Pau93] C. Paulin-Mohring. “Inductive Definitions in the System Coq - Rules and Properties”. In: Proceedings
of the conference Typed Lambda Calculi and Applications. Ed. by M. Bezem and J.-F. Groote. Lecture
Notes in Computer Science 664. LIP research report 92-49. 1993.

[Péd+19] P.-M. Pédrot et al. “A Reasonably Exceptional Type Theory”. In: ICFP 2019 - 24th ACM SIGPLAN Inter-
national Conference on Functional Programming. Berlin, Germany: ACM, Aug. 2019. doi: 10.1145/
3341712.

[PT18] P.-M. Pédrot and N. Tabareau. “Failure is Not an Option An Exceptional Type Theory”. In: ESOP 2018
- 27th European Symposium on Programming. Vol. 10801. LNCS. Thessaloniki, Greece: Springer, 2018,
pp. 245–271. doi: 10.1007/978-3-319-89884-1_9.

[RLL14] G. van Rossum, J. Lehtosalo, and Ł. Langa. PEP 484 – Type Hints. Tech. rep. The Python Soǒtware
Foundation, 2014. url: https://www.python.org/dev/peps/pep-0484/.

[Sie+15] J. G. Siek et al. “Refined Criteria for Gradual Typing”. In: 1st Summit on Advances in Programming
Languages (SNAPL 2015). Ed. by T. Ball et al. Vol. 32. Leibniz International Proceedings in Informat-
ics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015, pp. 274–293. doi: 10.4230/
LIPIcs.SNAPL.2015.274.

21

https://doi.org/10.1007/978-3-319-94821-8_2
https://doi.org/10.2168/LMCS-8(1:18)2012
https://doi.org/10.2168/LMCS-8(1:18)2012
https://lmcs.episciences.org/1044
https://doi.org/10.1017/S0956796800020025
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1145/3018610.3018620
https://hal.inria.fr/hal-01445835
https://doi.org/https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/https://doi.org/10.1016/B978-044450813-3/50018-7
https://doi.org/https://doi.org/10.1016/B978-044450813-3/50018-7
http://www.sciencedirect.com/science/article/pii/B9780444508133500187
http://www.sciencedirect.com/science/article/pii/B9780444508133500187
https://doi.org/10.2307/2586554
https://doi.org/10.1145/96709.96714
https://doi.org/10.1145/96709.96714
https://doi.org/10.1145/3341712
https://doi.org/10.1145/3341712
https://doi.org/10.1007/978-3-319-89884-1_9
https://www.python.org/dev/peps/pep-0484/
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274

[The19] The Coq Development Team. The Coq Proof Assistant, version 8.9.0. Jan. 2019. doi: 10.5281/zenodo.
2554024.

[TLT19] M. Toro, E. Labrada, and É. Tanter. “Gradual Parametricity, Revisited”. In: Proc. ACM Program. Lang.
3.POPL (Jan. 2019), 17:1–17:30. doi: 10.1145/3290330.

[TT15] É. Tanter and N. Tabareau. “Gradual Certified Programming in Coq”. In: Proceedings of the 11th ACM
Dynamic Languages Symposium (DLS 2015). Pittsburgh, PA, USA: ACM Press, Oct. 2015, pp. 26–40.

[TTS18] N. Tabareau, É. Tanter, and M. Sozeau. “Equivalences for Free”. In: Proceedings of the ACM on Pro-
gramming Languages. ICFP’18 2.ICFP (Sept. 2018), pp. 1–29. doi: 10.1145/3234615. url: https:
//hal.inria.fr/hal-01559073.

[ZS17] B. Ziliani and M. Sozeau. “A comprehensible guide to a new unifier for CIC including universe poly-
morphism and overloading”. In: Journal of Functional Programming 27 (2017), e10. doi: 10.1017/
S0956796817000028.

22

https://doi.org/10.5281/zenodo.2554024
https://doi.org/10.5281/zenodo.2554024
https://doi.org/10.1145/3290330
https://doi.org/10.1145/3234615
https://hal.inria.fr/hal-01559073
https://hal.inria.fr/hal-01559073
https://doi.org/10.1017/S0956796817000028
https://doi.org/10.1017/S0956796817000028

Appendices
A. Usual Inductive Types

Booleans:

Inductive B : □ :=
| true : B
| false : B

recB : Π P : B → □.(P true) → (P false) → Π b : B.P b

recB P ttrue tfalse true 7→ι ttrue

recB P ttrue tfalse false 7→ι tfalse

Natural numbers:

Inductive N : □ :=
| 0 : N
| S : N → N

recN : Π P : N → □.(P 0) → (Π n : N.(P n) → (P (S n)) → Π n : N.P n

recN P t0 tS 0 7→ι t0

recN P t0 tS (S t) 7→ι tS t (recN P t0 tS t)

Dependant sum:

Inductive Σ (A : □) (B : A → □) : □ :=
| p : Π a : A, b : B a. Σ A B

recΣ : Π A : □, B : A → □, P : (Σ A B) → □.(Π a : A, b : B a.P (a, b)) → Π s : (Σ A B).P s

recΣ A B P tp (a, b) 7→ι tp a b

Equality:

Inductive Id (A : □) (a : A) (a′ : A) : □ :=
| refl : Id A a a

recId : Π A : □, a : A, P : (Π a′ : A.(Id A a a′) → □).(P a (refl A a)) → Π e : Id A a a′.P a′ e

recId A a P trefl (refl A a) 7→ι trefl

Vectors:

Inductive Vect (A : □) (n : N) : □ :=
| nil : Vect A 0
| cons : Π n : N, a : A, v : Vect A n.Vect A (S n)

recVect : Π A : □, P : (Π n : N.Vect A n → □).(P 0 (nil A)) →

(Π n : N, a : A, v : Vect A n.P n v → P (S n) (cons A n a v)) → Π n : N, v : Vect A n.P n v

recVect A P tnil tcons (nil A) 7→ι tnil

recVect A P tnil tcons (cons A n a v) 7→ι tcons n a v (recVect A P tnil tcons v)

Unit:

Inductive ⊤ : □ :=
| tt : ⊤

23

rec⊤ : Π P : ⊤ → □, P tt → Π x : ⊤.P x

rec⊤ P p tt 7→ι p

False:

Inductive ⊥ : □ :=

rec⊥ : Π P : ⊥ → □, x : ⊥.P x

B. Equality Encoding of Vectors

Inductive Vect′ (A : □) (n : N) : □ :=
| nil′ : IdN n 0 → Vect′ A n
| cons′ : Π m : N, a : A, v : Vect A m.(IdN S m n) → Vect A n

nil′′ := λ A : □.nil′ A 0 (refl N 0)

cons′′ := λ A : □, n : N, a : A, v : Vect′ A n.cons′ A (S n) n a v (refl N (S n))

⊢ rec′
Vect : Π A : □, P : (Π n : N.Vect′ A n → □).P 0 (nil′′ A) →

(Π n : N, a : A, v : Vect′ A n.P n v → P (S n)(cons′′ A n a v)) → Π n : N, v : Vect′ A n.P n v

C. Cast Calculus

C.1. Typing Rules

(x : T) ∈ Γ
Γ ⊢ x : T Γ ⊢ n : N Γ ⊢ b : B

Γ, x : T1 ⊢ t : T2

Γ ⊢ λ x : T1.t : T1 → T2

Γ ⊢ t1 : T1 Γ ⊢ t2 : T2 dom(T1) = T2

Γ ⊢ t1 t2 : cod(T2)
Γ ⊢ t1 : T1 Γ ⊢ t2 : T2 T1 = N T2 = N

Γ ⊢ t1 + t2 : N

Γ ⊢ t1 : T1 Γ ⊢ t2 : T2 Γ ⊢ t3 : T3 T1 = B T2 = T T3 = T

Γ ⊢ if t1 then t2 else t3 : T Γ ⊢ raise : T

Γ ⊢ t : T1

Γ ⊢ castT1,T2 t : T2

C.2. Compilation Rules

(x : T) ∈ Γ
Γ ⊢ x⇝ x : T Γ ⊢ n⇝ n : N Γ ⊢ b⇝ b : B

Γ, x : T1 ⊢ t⇝ t′ : T2

Γ ⊢ λ x : T1.t⇝ λ x : T1.t′ : T1 → T2

Γ ⊢ t1 ⇝ t′
1 : T1 Γ ⊢ t2 ⇝ t′

2 : T2 dom?(T1) ∼ T2

Γ ⊢ t1 t2 ⇝ t′
1 (castT2,dom?(T1) t′

2) : cod?(T1)

Γ ⊢ t1 ⇝ t′
1 : T1 Γ ⊢ t2 ⇝ t′

2 : T2 T1 ∼ N T2 ∼ N
Γ ⊢ t1 + t2 ⇝ castT1,N t′

1 + castT2,N t′
2 : N

Γ ⊢ t1 ⇝ t′
1 : T1 Γ ⊢ t2 ⇝ t′

2 : T2 Γ ⊢ t3 ⇝ t′
3 : T3 T1 ∼ B T2 ∼ T T3 ∼ T

Γ ⊢ if t1 then t2 else t3 ⇝ if(castT1,B t′
1) then(castT2,T t′

2) else(castT3,T t′
3) : T

24

D. Compilation rules for GCIC

⊢ ·
Γ ⊢ A : □ ⇝ A′

⊢ Γ, x : A

Γ ⊢ B : □ ⇝ B′ Γ ⊢ x : A⇝ t′

Γ, y : B ⊢ x : A⇝ t′
⊢ Γ, x : A

Γ, x : A ⊢ x : A⇝ x

⊢ Γ
Γ ⊢ □i : □i+1 ⇝ □i

Γ, x : A ⊢ t : B ⇝ t′ Γ ⊢ Π x : A.B : □ ⇝ Π x : A′.B′

Γ ⊢ λ x : A.t : Π x : A.B ⇝ λ x : A′.t′

Γ, x : A ⊢ B : □i ⇝ B′ Γ ⊢ A : □j ⇝ A′

Γ ⊢ Π x : A.B : □max(i,j) ⇝ Πx : A′.B′
Γ ⊢ t : Π x : A.B ⇝ t′ Γ ⊢ u : A⇝ u′

Γ ⊢ t u : B{x := u}⇝ t′ u′

Γ ⊢ T : □ ⇝ T ′

Γ ⊢ ? : T ⇝ ? T ′
Γ ⊢ t : A⇝ t′ A ∼ B Γ ⊢ A : □ ⇝ A′ Γ ⊢ B : □ ⇝ B′

Γ ⊢ castA′,B′ t′

E. Reduction of Ω

We write ?i for ? □i. We first get

⊢ Ω : ?i+1 ⇝ (λ x : ?i+1 .(cast?i+1,?i+1→?i+1 x) x) (cast?i→?i,?i+1(λ x : ?i . cast?i,?i→?i
x x))

For readability, we set
δi := λ x : ?i .(cast?i,?i→?i

x) x

and (with a slight notational abuse)
Ωi := δi+1 (cast?i→?i,?i+1 δi)

The reduction now gives

Ωi 7→∗ (cast?i+1,?i+1→?i+1 cast?i→?i,?i+1 δi) (cast?i→?i,?i+1 δi)
7→∗ (cast?i→?i,?i+1→?i+1 δi) (cast?i→?i,?i+1 δi)
7→∗ (λ x : ?i+1 . cast?i,?i+1((cast?i,?i→?i

cast?i+1,?i
x) cast?i+1,?i

x))(cast?i→?i,?i+1 δi)
7→∗ (λ x : ?i+1 . cast?i,?i+1((cast?i,?i→?i

? ?i) (? ?i)))(cast?i→?i,?i+1 δi)
7→∗ ? (?i+1)

25

