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DEPENDENT TYPES AND SUBTYPING



FLAVOURS OF SUBTYPING — SUBSUMPTIVE
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What users™ want:

1—‘}_subt:A I"_subA<A’
T ub t: A’

SUB

Semanticists hate this: forces [T 5., A < A’] to be (set) inclusion.

[ = [
(Al [A]

_ A'<A B <B
Too strict: - - is not set-theoretic inclusion...
A—>B<A"—>B
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FLAVOURS OF SUBTYPING — COERCIVE

What semanticists want you to do:

Thoet:A  Thoe A< A

T |_Coe COCA,A/ t: A,

CoE

Nicer semantics: [[coeA,A']] = “well-chosen functions”

Set-theoretic interpretation for [[coeA_,B’A,_)B/]] is the one we want
Jhis i the work of a compiler!
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COHERENCE

Let's just elaborate, then:

Iy t:A My AA f"_cer:A fl—coeA<A'
SuB ; ~> CoE = —
Fhup t: A I' Feoe Coe ;1 i/ t: A

def -~
Coherence: [t] = [t] should be unambiguous - all elaborations should have the same
semantics.

Actually...
Cannot unify t and t.

Better coherence: we should always have £ = ¢’ for two different elaborations of ¢.
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NOwW WE HAVE A GOAL

(removes coercions)

users «—— MI—TTsub MLTTcoe —> models
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NOwW WE HAVE A GOAL

(removes coercions)

users «—— MI—TTsub MLTTcoe —> models

? =the compilation we want
Only well-defined if a lot of equations hold
In particular, [t| = |u| = T tcpe t = u: A (provided T e t,u: A)
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COERCIONS ARE MAPS

What is a reasonable computational behaviour for coercions?
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COERCIONS ARE MAPS

What is a reasonable computational behaviour for coercions?

coeristaLista/ll = [l
coepist AList A/(@l) = (coey ara)z(coers A rist a7 1)
(coegpap flu = coegp/(f (coeqr 4u))

These are map operations! We better understand them before going further.
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DEFINITIONAL FUNCTOR LAWS

MLTTmap
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[ Fyap X, Y : dom(F) [ Fyap X : dom(F)
I Hnap f :homp(X,Y) I bpap £:F X
MAP MAPID F
I1|_map mapp f: FX — FY Fl—map mappidy t =t:FX
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DEFINITIONAL FUNCTOR LAWS

MLTT map €ach type former F comes with dom(F), hom(F) and mapy such that

[ Fyap X, Y : dom(F) [ Fyap X : dom(F)
I Hnap f :homp(X,Y) I bpap £:F X
MAP MAPID F
I1|_map mapp f: FX — FY Fl—map mappidy t =t:FX

I ap X, Y, Z: dom(F)

I Hnap £:homp(X,Y)  Thygp frhomp(Y,Z) Ty t:FX

ap
I Hyap mapp f (mapp gt) = mapp(f oF gIt:FZ

MapComp

+ congruences, specific laws for each F
[ Hnap (f, &) thompp((A, B),(A’,B))  Thypap h:llx:AB Thypa’: A
[ tnap mapp (f,g)ha’ = g(h(fa’)):B'[a’]
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NEW EQUATIONS FOR NEUTRALS

This is not vanilla MLTT, where

mapy ;o f (mapy ;g & x) # mapy;(f o g) x
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NEW EQUATIONS FOR NEUTRALS

This is not vanilla MLTT, where

mapy ;o f (mapy ;g & x) # mapy;(f o g) x

In general, problems with neutrals at positive types (= without n)

Can we add these equations in?

8/22



DRAFT

New Equations for Neutral Terms

A Sound and Complete Decision Procedure, Formalized

[cs.PL] 17 Jun 2013

Guillaume Allais ~ Conor McBride

University of Strathelyde
{guillaume.allais, conor.mcbride}@strath.ac.uk

Pierre Boutillier
PPS - Paris Diderot
pierre.boutillier@pps.univ-paris-diderot. fr

g)x

Abstract map : (a — b) — list a — list b
oo 3 map f [] ~ 0
The definitional equality of an intensional type theory is its test mag £ Giixs) - fximap s

of type compatibility. Today’s systems rely on ordinary evaluation
semantics to compare expressions in types, frustrating users with
type errors arising when evaluation fails to identify two obviously”
equal terms. If only the machine could decide a richer theory! We

(#+) : list a — list a — list a
++ys o ys

! ¢ xs t+ys o x i (xs ++ ys
proposea way to decids theories which supplement evalustion with = *¢ X% ¥ 8+ T 13 (x8 4+ yu) _ 0 h
“perules’, rearmanging the neutral parts of normal forms, and TepOrt 014+ (a s b s b) b —» 1ist a — b = without n
a successful initial experiment. fold ¢ n [J ~n
We study a simple A-calculus with primitive fold, map and ap- fold o n (x ¢ x8) — ¢ x (fold c n x8)

pend operations on lists and develop in Agda a sound and complete
rocedure for an equational theory enriched with monoid,
functor and fusion laws.

Table 1. §¢-rules - computational

Keywords Normalization by Evaluation, Logical Relations, Simply-

ry Toped Lambda Calculus, Map Fusion I x. fx ia—b

N I +p <r,p.,~p):a«b

& 1. Introduction Lo i1

S The programmer working in intensional type theory is no stranger T ——

0. 'ogviglhly true’ cqu.nibﬂn\ she wishes hetd t/A'/lr(Iylit)rvtl//) for ner Table 2. 77-rules - canonicity

(e} program to typecheck without having to chase down ill-typed terms.

< | andbrutally coerce them. In this artcle, we present one way (o relax X o

oL definitional equality, thus accommodting some of her longi fied judgmentally. Table[3]shows a kit for building computationally
o Wedistinguish three types of fundamental relations between terms. inert neutral terms growing layers of thwarted progress around a
—_ ‘The first denotes computational rules: itis untyped, oriented and variable which we dub the “nut’, together with some equations on
T+ denoted by ~ ints one step version or ~* when the reflexive tran- neutral terms which held only propositionally — until now. This pa-
> | sitive congruence closure is considered. In Table[[] we introduce a  per shows how to extend the judgmental equality with these new
17 few such rules which corr spond 1o the equations the programmer “vrules’. We gain, for example, that map swap . map swap
o are referred to as 6 (for definitions) id, where swap swaps the elements of a pair.

:j and ¢ (for pattern- malthlng on inductive data) rules and hold com-

putationally just like the more common f-rule.

‘ond is the judgmental equality

itis typed, tractable
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on
o Abstract
(@] The definitional equality of an intensional ty
o of type compatibility. Today's systems rely ot
= ' semantics to compare expressions in types,
“= ' type errors arising when evaluation fails to ide
equal terms. If only the machine could decide . o q: . .
T propose a way to decde theories which supple Decidability of Conversion for Type Theory in Type Theory
“y-tules’, rearranging the neutral parts of norr
. asuccessful initial experiment.
We study a simple A-calculus with primiti —
D_]. pend operations on lists and develop in Agda ¢ ANDREAS ABEL, Gothenburg University, Sweden
5 decis I‘(flofccf!um] for an equational theory et JOAKIM OHMAN, IMDEA Software Institute, Spain
y unctor and fusion laws.
Q . o ANDREA VEZZOSI, Chalmers University of Technology, Sweden
=" Keywords Normalization by Evaluation, Log
ey Typed Lambda Caleulus, Map Fusion Type theory should be able to handle its own meta-theory, both to justify its foundational claims and to obtain
g 1. Introduction a verified implementation. At the core of a type checker for intensional type theory lies an algorithm to check
é The programmer working in intensional type equality of types, or in other words, to check whether two types are convertible. We have formalized in Agda
0 1o *obviously true’ equations she wishes held a practical conversion checking algorithm for a dependent type theory with one universe a la Russell, natural
S P bratally sberce them. I his artiele, we pre numbers, and 7-equality for IT types. We prove the algorithm correct via a Kripke logical relation parameterized
a 2 e article, we
g definitional equality, thus accommodating sc by a suitable notion of equivalence of terms. We then instantiate the parameterized fundamental lemma twice:
A We%llnm(r_'gu:h three types of |u"d|'-\m7"l"" rele once to obtain canonicity and injectivity of type formers, and once again to prove the completeness of the
tdenotes computationa t . : . . . o . -
T denoted ‘br; f',‘:,’::;::l“{ifp Vorsion or w* w algorithm. Our proof relies on inductive-recursive definitions, but not on the uniqueness of identity proofs.
51 sitive congruence closure i considered. In Ta Thus, it is valid in variants of intensional Martin-L6f Type Theory as long as they support induction-recursion,
i+ few such rules which comespond to the equat for instance, Extensional, Observational, or Homotopy Type Theor
P< " writes to define functions. They are referred to g g ] Py Typ: ¥ 8/2
= and ¢ (for patter-matching on inductive data) .
. putationally just like the more common f-rulc CCS Concepts: « Theory of computation — Type theory; Proof theory;

cond is the judgmental equality
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MARTIN-LOF TYPE THEORY

Martin-Lof logical framework

=T r-A 'A=8B 't:A 'Ht=u:A
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MARTIN-LOF TYPE THEORY

Martin-Lof logical framework

=T '—A I'-A=8B I'—t:A IT't=u:A

IT't:A T'Ht=u:A I't=u:A TFu=z=v:A
REFL —————————— SYM ———— TRANS

T't=t: A T'+u=t:A THt=wv:A
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MARTIN-LOF TYPE THEORY

Martin-Lof logical framework

=T r-A '-A=B F'—t:A F't=u:A

+ type formers (Type, IL 3, x =4 y,W ...)
I't=t':IIx: A.B Tuz=u: A
IFT'—tu=tu :Blu]

APPCONG

'-A TI,xxA-B
ILx:A+t:B Tru:A '~ f:IIx:AB

F
T Qx: A u = t[u] : Blu] O T f=AxAfx:TxAB

BFu

9/22



MARTIN-LOF TYPE THEORY

Martin-Lof logical framework

=T '—A I'-A=8B I'—t:A IT't=u:A
I't=u:A TFu=z=v:A THt: A I'HA=B
TRANS CONV
T'Ht=wv:A I'—t:B

+ type formers (Type, IL 2, x =4 y, W ...)
Derivations are not unique!
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DECLARATIVE AND ALGORITHMIC PRESENTATIONS

Declarative typing Algorithmic typing (bidirectional)
Freestanding conversion rule Mode-constrained conversion
rrdes. A  Trde A=B rrt-A TrHlA=B
rrdes. B rr2ltaB
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DECLARATIVE AND ALGORITHMIC PRESENTATIONS

Declarative typing Algorithmic typing (bidirectional)
Freestanding conversion rule Mode-constrained conversion
rrdes. A Trde =3B rr2t-A TrYA=B
I+d¢.B rra¢oB
Conversion mixes arbitrarily: Term/type-directed conversion alternating:
- Computation steps (), - Reduction to weak-head normal form,
« Extensionality steps () - type-directed extensionality rules
« Congruences, + congruences

« Transitivity, symmetry and
reflexivity. 10/22
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BRIDGING THE GAP

How can we compare the two presentations of MLTT?

Algorithmic — Declarative: Admissibility of algorithmic rules
Declarative — Algorithmic: Need to show that every derivation has a canonical form

Gives decidability of conversion/typing... and coherence! (More on this later)
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THE LOGICAL RELATION (ABEL ET AL.)

A (proof-relevant) predicate I'' IF A characterizing types by their weak head normal form.
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THE LOGICAL RELATION (ABEL ET AL.)

A (proof-relevant) predicate I" I A characterizing types by their weak head normal form.

For A=:T"IF A, 3 predicates:

Natural numbers:

I't~"S(t):N F'—t~*n:N
F't~*0:N Ckt':N F'n=n:N

+ typing side-conditions
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FLIRTING WITH LOGICAL LIMITS

+ mutual definitionof 'F Aand ' F ¢: A
+ reducibility at the universe I' - A: Type is basically I' I A...
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FLIRTING WITH LOGICAL LIMITS

+ mutual definitionof 'F Aand ' F ¢: A
+ reducibility at the universe I' - A: Type is basically I' I A...

(Small) induction-recursion + stratified definitions

13/22



PROPERTIES OF THE LOGICAL RELATION

« Escape: THFA=TFA

Irrelevance

 Equivalence: reflexivity, symmetry, transitivity
« Stability by weakening
Neutral reflection

+ Closure by anti-reduction
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PROPERTIES OF THE LOGICAL RELATION

« Escape: THFA=TFA

Irrelevance

 Equivalence: reflexivity, symmetry, transitivity
« Stability by weakening
Neutral reflection

+ Closure by anti-reduction

Fundamental lemma: if T -9€ ¢: A then A=T I Aand T Fqt:A
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3 LOGICAL RELATIONS IN 1

declarative
THde A

Soundness

Fundamental

generic
' A

«— Escape —

algorithmic
r—t A

logical relation
'-A
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ALL FORMALISED!

AutoSubst

| D> >
"~ Decidability

..
6/22

1]



BACK TO BUSINESS




The whole story extends...
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The whole story extends...

To handle new equation for neutrals:

neutral n

mapy ;g f (mapy i gn) ~ mapyi(f o ghn

1. map fusion in reduction

[hpapn~n':ListA TLxAkfx=x:A
I' - mapy ;i fn=n’:ListA

2. identity in comparison

List (€&3), W, Id, + ... (8")

17/22



The story still extends...
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The story still extends...

- extend conversion to subtyping, reducible conversion to reducible subtyping
* coep gt reduces A, B, then applies the relevant map

- coey pcoeys p tis compacted if A B A” B” are all neutral, or are positive types
and t is neutral

« identity in comparison as before

18/22
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Only the algorithmic system!

(removes coercions)

T

users «——— ML Tgup MU Teoe —— models

type preserving elaboration

Much easier to show that elaboration preserves algorithmic typing.
Key lemma: coercions never block redexes.
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Only the algorithmic system!

(removes coercions)

T

users «——— ML Tgup MU Teoe —— models

type preserving elaboration

Much easier to show that elaboration preserves algorithmic typing.
Key lemma: coercions never block redexes.

For “free”: coherence up to conversion.

19/22
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THE RESULTS

+ Martin-Lof a la Coq: all meta-theory of MLTT, formalised in Coq (and there’s more |
have not told you about).
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THE RESULTS

+ Martin-Lof a la Coq: all meta-theory of MLTT, formalised in Coq (and there’s more |
have not told you about).

* MLTTap: normalisation, decidability of type-checking... extending the logical
relations.

* MLTTce: pen and paper, relatively straightforward extension of MLTT .y, (main
difference: reduce types in coe 4 p).

« MLTTg,p: erasure from MLTT. . IS type-preserving and invertible; in particular,
“syntactic” coherence, up to conversion.

 Main tool: bidirectional/algorithmic/canonical derivations.

To interpret subsumptive structural subtyping, you (only) need functoriality equations.

20/22



WHAT WE'RE STILL UNHAPPY ABOUT

Martin-Lof a la Coq

« renamings vs well-typed weakenings

« automation (proofs by reflection?)

* better structure and abstractions (categories?)
* more types!
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WHAT WE'RE STILL UNHAPPY ABOUT

Martin-Lof a la Coq

« renamings vs well-typed weakenings

« automation (proofs by reflection?)

* better structure and abstractions (categories?)
* more types!

Functoriality and subtyping

+ No formalisation of MLTT qe/MLTTgyp
» No good story for elaborating MLTT¢oe t0 MLTTpp

« No general class of "good inductive types”

21/22



users <——
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z

!

!

|

U
~

THANKS!

map, f FX > FY

r map; f (mapygt)

r map; idy ¢

map(f o* g)t FZ

models

t:FX
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