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DEPENDENT TYPES AND SUBTYPING



FLAVOURS OF SUBTYPING – SUBSUMPTIVE

What users™ want:

SUB
Γ ⊢sub 𝑡 : 𝐴 Γ ⊢sub 𝐴 ≼ 𝐴′

Γ ⊢sub 𝑡 : 𝐴′

Semanticists hate this: forces
qΓ ⊢sub 𝐴 ≼ 𝐴′y to be (set) inclusion.

J𝑡K = J𝑡K∈ ∈

J𝐴K q𝐴′y

Too strict:
𝐴′ ≼ 𝐴 𝐵′ ≼ 𝐵
𝐴 → 𝐵 ≼ 𝐴′ → 𝐵′ is not set-theoretic inclusion…
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FLAVOURS OF SUBTYPING – COERCIVE

What semanticists want you to do:

COE
Γ ⊢coe 𝑡 : 𝐴 Γ ⊢coe 𝐴 ≼ 𝐴′

Γ ⊢coe coe𝐴,𝐴′ 𝑡 : 𝐴′

Nicer semantics:
r
coe𝐴,𝐴′

z
= “well-chosen functions”

Set-theoretic interpretation for
r
coe𝐴→𝐵,𝐴′→𝐵′

z
is the one we want

This is the work of a compiler!
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COHERENCE

Let’s just elaborate, then:

SUB
Γ ⊢sub 𝑡 : 𝐴 Γ ⊢sub 𝐴 ≼ 𝐴′

Γ ⊢sub 𝑡 : 𝐴′ ⇝ COE
Γ̃ ⊢coe ̃𝑡 : �̃� Γ̃ ⊢coe �̃� ≼ �̃�′

Γ̃ ⊢coe coe�̃�,�̃�′ ̃𝑡 : �̃�′

Coherence: J𝑡K def= q ̃𝑡 y
should be unambiguous – all elaborations should have the same

semantics.

Actually…
Cannot unify t and t.

Better coherence: we should always have ̃𝑡 ≅ ̃𝑡′ for two different elaborations of 𝑡 .
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NOW WE HAVE A GOAL

MLTTsub MLTTcoe

?

|⋅|
(removes coercions)

users models

? = the compilation we want
Only well-defined if a lot of equations hold
In particular, |𝑡 | = |𝑢| ⇒ Γ ⊢coe 𝑡 ≅ 𝑢 : 𝐴 (provided Γ ⊢coe 𝑡 , 𝑢 : 𝐴)
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COERCIONS ARE MAPS

What is a reasonable computational behaviour for coercions?

coeList 𝐴,List 𝐴′[] ≅ []

coeList 𝐴,List 𝐴′(𝑎 :: 𝑙) ≅ (coe𝐴,𝐴′ 𝑎) ::(coeList 𝐴,List 𝐴′ 𝑙)

(coe𝐴→𝐵,𝐴′→𝐵′ 𝑓 ) 𝑢 ≅ coe𝐵,𝐵′(𝑓 (coe𝐴′,𝐴 𝑢))

⋮

These are map operations! We better understand them before going further.

6/22



COERCIONS ARE MAPS

What is a reasonable computational behaviour for coercions?

coeList 𝐴,List 𝐴′[] ≅ []

coeList 𝐴,List 𝐴′(𝑎 :: 𝑙) ≅ (coe𝐴,𝐴′ 𝑎) ::(coeList 𝐴,List 𝐴′ 𝑙)

(coe𝐴→𝐵,𝐴′→𝐵′ 𝑓 ) 𝑢 ≅ coe𝐵,𝐵′(𝑓 (coe𝐴′,𝐴 𝑢))

⋮

These are map operations! We better understand them before going further.

6/22



COERCIONS ARE MAPS

What is a reasonable computational behaviour for coercions?

coeList 𝐴,List 𝐴′[] ≅ []

coeList 𝐴,List 𝐴′(𝑎 :: 𝑙) ≅ (coe𝐴,𝐴′ 𝑎) ::(coeList 𝐴,List 𝐴′ 𝑙)

(coe𝐴→𝐵,𝐴′→𝐵′ 𝑓 ) 𝑢 ≅ coe𝐵,𝐵′(𝑓 (coe𝐴′,𝐴 𝑢))

⋮

These are map operations! We better understand them before going further.

6/22



DEFINITIONAL FUNCTORIALITY



DEFINITIONAL FUNCTOR LAWS

MLTTmap

each type former 𝐹 comes with dom(𝐹), hom(𝐹) andmap𝐹 such that

MAP

Γ ⊢map 𝑋, 𝑌 : dom(𝐹)
Γ ⊢map 𝑓 : hom𝐹 (𝑋 , 𝑌 )

Γ ⊢map map𝐹 𝑓 : 𝐹 𝑋 → 𝐹 𝑌 MAPID

Γ ⊢map 𝑋 : dom(𝐹)
Γ ⊢map 𝑡 : 𝐹 𝑋

Γ ⊢map map𝐹 id𝐹𝑋 𝑡 ≅ 𝑡 : 𝐹 𝑋

MAPCOMP

Γ ⊢map 𝑋, 𝑌 , 𝑍 : dom(𝐹)
Γ ⊢map 𝑔 : hom𝐹 (𝑋 , 𝑌 ) Γ ⊢map 𝑓 : hom𝐹 (𝑌 , 𝑍) Γ ⊢map 𝑡 : 𝐹 𝑋

Γ ⊢map map𝐹 𝑓 (map𝐹 𝑔 𝑡) ≅ map𝐹 (𝑓 ∘𝐹 𝑔) 𝑡 : 𝐹 𝑍
+ congruences, specific laws for each 𝐹

Γ ⊢map (𝑓 , 𝑔) : homΠ((𝐴, 𝐵), (𝐴′, 𝐵′)) Γ ⊢map ℎ : Π 𝑥: 𝐴.𝐵 Γ ⊢map 𝑎′ : 𝐴′

Γ ⊢map mapΠ (𝑓 , 𝑔) ℎ 𝑎′ ≅ 𝑔 (ℎ (𝑓 𝑎′)) : 𝐵′[𝑎′]
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NEW EQUATIONS FOR NEUTRALS

This is not vanilla MLTT, where

mapList 𝑓 (mapList 𝑔 𝑥) ≇ mapList(𝑓 ∘ 𝑔) 𝑥

In general, problems with neutrals at positive types (= without η)

Can we add these equations in?
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MARTIN-LÖF À LA COQ
Jww. A. ADJEDJ, K. MAILLARD, P-M. PÉDROT and L. PUJET



MARTIN-LÖF TYPE THEORY

Martin-Löf logical framework

⊢ Γ Γ ⊢ 𝐴 Γ ⊢ 𝐴 ≅ 𝐵 Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴

+ type formers (Type, Π, Σ, 𝑥 =𝐴 𝑦,W… )

Derivations are not unique!
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REFL
Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝑡 ≅ 𝑡 : 𝐴 SYM
Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴
Γ ⊢ 𝑢 ≅ 𝑡 : 𝐴 TRANS
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+ type formers (Type, Π, Σ, 𝑥 =𝐴 𝑦,W… )

APPCONG
Γ ⊢ 𝑡 ≅ 𝑡′ : Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ≅ 𝑢′ : 𝐴
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βFUN
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Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵 Γ ⊢ 𝑢 : 𝐴
Γ ⊢ (λ 𝑥: 𝐴.𝑡) 𝑢 ≅ 𝑡[𝑢] : 𝐵[𝑢] ηFUN
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Derivations are not unique!
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DECLARATIVE AND ALGORITHMIC PRESENTATIONS

Declarative typing

Freestanding conversion rule

Γ ⊢de 𝑡 : 𝐴 Γ ⊢de 𝐴 ≅ 𝐵
Γ ⊢de 𝑡 : 𝐵

Conversion mixes arbitrarily:
• Computation steps (𝛽),
• Extensionality steps (𝜂)
• Congruences,
• Transitivity, symmetry and
reflexivity.

Algorithmic typing (bidirectional)

Mode-constrained conversion

Γ ⊢al 𝑡 ▷ 𝐴 Γ ⊢al 𝐴 ≅ 𝐵
Γ ⊢al 𝑡 ◁𝐵

Term/type-directed conversion alternating:
• Reduction to weak-head normal form,
• type-directed extensionality rules
• congruences
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BRIDGING THE GAP

How can we compare the two presentations of MLTT?

Algorithmic→ Declarative: Admissibility of algorithmic rules
Declarative→ Algorithmic: Need to show that every derivation has a canonical form

Gives decidability of conversion/typing… and coherence! (More on this later)
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THE LOGICAL RELATION (ABEL ET AL.)

A (proof-relevant) predicate Γ ⊩ 𝐴 characterizing types by their weak head normal form.

For A :: Γ ⊩ 𝐴, 3 predicates:
Γ ⊩A 𝐴 ≅ 𝐵 Γ ⊩A 𝑡 : 𝐴 Γ ⊩A 𝑡 ≅ 𝑢 : 𝐴

Natural numbers:

Γ ⊢ 𝑇 ⇝⋆ 𝐍
Γ ⊩ 𝑇

+ typing side-conditions
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FLIRTING WITH LOGICAL LIMITS

• mutual definition of Γ ⊩ 𝐴 and Γ ⊩ 𝑡 : 𝐴
• reducibility at the universe Γ ⊩ 𝐴 : Type is basically Γ ⊩ 𝐴…

(Small) induction-recursion + stratified definitions
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PROPERTIES OF THE LOGICAL RELATION

• Escape: Γ ⊩ 𝐴 ⇒ Γ ⊢ 𝐴
• Irrelevance
• Equivalence: reflexivity, symmetry, transitivity
• Stability by weakening
• Neutral reflection
• Closure by anti-reduction

Fundamental lemma: if Γ ⊢de 𝑡 : 𝐴 then A :: Γ ⊩ 𝐴 and Γ ⊩A 𝑡 : 𝐴
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3 LOGICAL RELATIONS IN 1

declarative
Γ ⊢de 𝐴

logical relation
Γ ⊩ 𝐴

algorithmic
Γ ⊢al 𝐴

generic
Γ ⊢ 𝐴Soundness

Fundamental

Escape
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ALL FORMALISED!
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BACK TO BUSINESS



MLTTmap

The whole story extends…

To handle new equation for neutrals:

1. map fusion in reduction
neutral 𝑛

mapList 𝑓 (mapList 𝑔 𝑛) ⇝ mapList(𝑓 ∘ 𝑔) 𝑛

2. identity in comparison
Γ ⊢map 𝑛 ≈ 𝑛′ : List 𝐴 Γ, 𝑥: 𝐴 ⊩ 𝑓 𝑥 ≅ 𝑥 : 𝐴

Γ ⊩ mapList 𝑓 𝑛 ≅ 𝑛′ : List 𝐴

List ( ),W, Id, + … ( )
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MLTTcoe

The story still extends…

• extend conversion to subtyping, reducible conversion to reducible subtyping
• coe𝐴,𝐵 𝑡 reduces 𝐴, 𝐵, then applies the relevantmap
• coe𝐴,𝐵 coe𝐴′,𝐵′ 𝑡 is compacted if 𝐴 𝐵 𝐴′ 𝐵′ are all neutral, or are positive types
and 𝑡 is neutral

• identity in comparison as before
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MLTTsub

Only the algorithmic system!

MLTTsub MLTTcoe

type preserving elaboration

|⋅|
(removes coercions)

users models

Much easier to show that elaboration preserves algorithmic typing.
Key lemma: coercions never block redexes.

For “free”: coherence up to conversion.
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WRAPPING UP



THE RESULTS

• Martin-Löf à la COQ: all meta-theory of MLTT, formalised in COQ (and there’s more I
have not told you about).

• MLTTmap: normalisation, decidability of type-checking… extending the logical
relations.

• MLTTcoe: pen and paper, relatively straightforward extension of MLTTmap (main
difference: reduce types in coe𝐴,𝐵).

• MLTTsub: erasure from MLTTcoe is type-preserving and invertible; in particular,
“syntactic” coherence, up to conversion.

• Main tool: bidirectional/algorithmic/canonical derivations.

To interpret subsumptive structural subtyping, you (only) need functoriality equations.
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WHAT WE’RE STILL UNHAPPY ABOUT

Martin-Löf à la COQ

• renamings vs well-typed weakenings
• automation (proofs by reflection?)
• better structure and abstractions (categories?)
• more types!

Functoriality and subtyping

• No formalisation of MLTTcoe/MLTTsub
• No good story for elaborating MLTTcoe to MLTTmap
• No general class of ”good inductive types”
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MLTTsub MLTTcoe

∃

|⋅|

users models

MLTTmap

?

THANKS!

Γ ⊢map map𝐹 𝑓 : 𝐹 𝑋 → 𝐹 𝑌 Γ ⊢map map𝐹 id𝐹𝑋 𝑡 ≅ 𝑡 : 𝐹 𝑋
Γ ⊢map map𝐹 𝑓 (map𝐹 𝑔 𝑡) ≅ map𝐹 (𝑓 ∘𝐹 𝑔) 𝑡 : 𝐹 𝑍
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