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SETTING UP THE SCENE



η-CONVERSION IN COQ

Coq has η-conversion
Goal f = (fun x ⇒ f x).
reflexivity.
Qed.
Also, primivite records/strong sums/negative sums.

Under the hood
Untyped conversion testing:

• reduce to weak-head normal form
• expand only neutrals against abstractions

The implementation is not the troublesome part!
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CONVERSION(S) IN METACOQ

MetaCoq
• metatheory of Coq, in Coq
• correct and complete type-checker

Declarative conversion

Γ ⊢ t1 ≡ t2 Γ ⊢ t2 ≡ t3

Γ ⊢ t1 ≡ t3

Γ ⊢ t≡ t′ Γ ⊢ u≡ u′

Γ ⊢ t u≡ t′ u′

Γ ⊢ (λ x : A.t) u≡ t{x := u}
. . .

Algorithmic conversion

Γ ⊢ t⇓ u :=
t u

t′ u′=α
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THE PLAN

Step 1: Sweat

• confluence:

t

t1 t2

t′′

• simulation:
t u

t′ u′

=α

=α

• transitivity of ⇓ and equivalence of ⇓ and ≡ on all terms

Step 2: Enjoy!
• injectivity of type constructors
• subject reduction
• the conversion test and type-checker meet their specification
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EXTENDING METACOQ WITH η



EXPANSION

f→λ x : A.f x

Everybody knows it’s the way to go!

But not without types…
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REDUCTION

λ x : A.f x→ f if x is not free in f

Bad interaction with annotations and cumulativity:

λ x : □0.(λ y : □1.y) x

λ x : □0.x λ y : □1.y
β η

Breaks

• confluence
• subject reduction, since
⊢ λ x : □0.(λ y : □1.y) x : □0 → □1
and ⊢ λ y : □1.y : □1 → □1
but ̸⊢ λ y : □1.y : □0 → □1
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EQUALITY

Take inspiration from the implementation:

. . .
t x=α u

t=α λ x : A.u
t=α u x

λ x : A.t=α u

Goes some way, but hits a wall again:

if true then 0 else 1 if (λ x : □0.true x) then 0 else 1

0

=α

×

Still well-behaved on typed terms, but this is not enough for the plan.
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HOW DO WE GET OUT?



KEEPING AN UNTYPED CONVERSION

Reduction
• Erase annotations to regain confluence
• Contravariant products or separate η-reduction to regain SR

Equality
Find a way to cut the loop?
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MOVING TO TYPED CONVERSION

The addition of η-conversion is justified by the confidence that the formulation
of [CIC] based on typed equality […] is applicable to the concrete implementa-
tion of Coq.

Coq 8.4 summary of changes

Can we prove anything at all about such a type system ? In Coq?
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THANK YOU!
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