A BAS L'n

C0Q’S TROUBLESOME 1-CONVERSION

Meven LENNON-BERTRAND — Gallinette team, Inria
Joint with the MetaCoq team

WITS 2022

1/9

SETTING UP THE SCENE

N-CONVERSION IN CoQ

Coq has n-conversion

Goal f = (fun x = f x).
reflexivity.
Qed.

Also, primivite records/strong sums/negative sums.

2/9

N-CONVERSION IN CoQ

Coq has n-conversion

Goal f = (fun x = f x).
reflexivity.
Qed.

Also, primivite records/strong sums/negative sums.

Under the hood
typed conversion testing:

- reduce to weak-head normal form
- expand only neutrals against abstractions

2/9

N-CONVERSION IN CoQ

Coq has n-conversion

Goal f = (fun x = f x).
reflexivity.
Qed.

Also, primivite records/strong sums/negative sums.

Under the hood
typed conversion testing:

- reduce to weak-head normal form
- expand only neutrals against abstractions

The implementation is the troublesome part!

2/9

CONVERSION(S) IN METACOQ

MetaCoq
- metatheory of Coq, in Coq
- correct and complete type-checker

3/9

CONVERSION(S) IN METACOQ

MetaCoq
- metatheory of Coq, in Coq
- correct and complete type-checker

Declarative conversion

F'Ft=t Tkt=ts THt="¢ Thu=4d
THt=ts Lktu=t o

'Az: At) u=t{z:= u}

3/9

CONVERSION(S) IN METACOQ

MetaCoq
- metatheory of Coq, in Coq

- correct and complete type-checker

Declarative conversion

F'Ft=t Tkt=ts THt="¢ Thu=4d

F'Fth=ts F-tu=t

'Az: At) u=t{z:= u}

Algorithmic conversion

—<

t
FEtdu:=|
! =a

Q\

3/9

THE PLAN

Step 1: Sweat

- confluence: t %

- simulation:

SR 4--
II

Q

:\

- transitivity of | and equivalence of |} and = on all terms

419

THE PLAN

Step 1: Sweat

- confluence: t %

- simulation:

SR 4--
II

Q

:\

- transitivity of || and equivalence of || and = on all terms

Step 2: Enjoy!
- injectivity of type constructors
- subject reduction

- the conversion test and type-checker meet their specification

419

EXTENDING METACOQ WITH N

EXPANSION

f= Az Afx

5/9

EXPANSION

f= Az Afx

Everybody knows it's the way to go!

5/9

EXPANSION

f= Az Afx

Everybody knows it's the way to go!
But not without types...

5/9

REDUCTION

Ax: Afz—f ifzisnotfreeinf

6/9

REDUCTION

Ax: Afz—f ifzisnotfreeinf
Bad interaction with annotations and cumulativity:
Az:Op.(Ay:01.y)

ﬁ/ \TI\}
—
Az: .z Ay: Oy

6/9

REDUCTION

Ax: Afz—f ifzisnotfreeinf
Bad interaction with annotations and cumulativity:

Az:Op.(Ay:01.y)
—BT T
Az: .z Ay: Oy

Breaks

- confluence
- subject reduction, since

F Ay Oy z:) — 0O
and + R — [y
but t/ T — [

6/9

Take inspiration from the implementation:

b =g, W 0= BB

t=gAz: Au Az At=,u

7/9

Take inspiration from the implementation:
b =g, W 0= BB
t=gAz: Au Az At=,u
Goes some way, but hits a wall again:
if true then 0 else 1 =ao if (Az:0p.true z) then 0 else 1

| !

0 +

7/9

Take inspiration from the implementation:
b =g, W 0= BB
t=gAz: Au Az At=,u
Goes some way, but hits a wall again:
if true then 0 else 1 =ao if (Az:0p.true z) then 0 else 1

| !

0 +

Still well-behaved on typed terms, but this is not enough for the plan.

7/9

HOw DO WE GET OUT?

KEEPING AN UNTYPED CONVERSION

Reduction

- Erase annotations to regain confluence

- Contravariant products or separate n-reduction to regain SR

8/9

KEEPING AN UNTYPED CONVERSION

Reduction

- Erase annotations to regain confluence

- Contravariant products or separate n-reduction to regain SR

Equality
Find a way to cut the loop?

8/9

MOVING TO TYPED CONVERSION

The addition of n-conversion is justified by the confidence that the formulation
of [CIC] based on equality [...] is applicable to the concrete implementa-
tion of Coq.

Coq 8.4 summary of changes

9/9

MOVING TO TYPED CONVERSION

The addition of n-conversion is justified by the confidence that the formulation
of [CIC] based on equality [...] is applicable to the concrete implementa-
tion of Coq.

Coq 8.4 summary of changes

Can we prove anything at all about such a type system ? In Coq?

9/9

THANK YOU!

	Setting up the scene
	Extending MetaCoq with η
	How do we get out?

